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An Invariance Property of the Generalized
Likelihood Ratio Test

Steven M. Kay, Fellow, IEEE,and Joseph R. Gabriel, Member, IEEE

Abstract—The generalized likelihood ratio test (GLRT) is
invariant with respect to transformations for which the hypothesis
testing problem itself is invariant. This result from the statistics
literature is presented in the context of some simple signal
models. This is an important property of the GLRT in light of its
widespread use and the recent interest in invariant tests applied
to signal processing applications. The GLRT is derived for some
examples in which the uniformly most powerful invariant (UMPI)
test does and does not exist, including one in which the UMPI test
exists and is not given by the GLRT.

Index Terms—Signal detection, signal processing.

I. INTRODUCTION

T HE LIKELIHOOD ratio test of the statistics literature is
invariant to sets of transformations for which the hypoth-

esis test itself is invariant (e.g., [1]–[3]). The likelihood ratio
test statistic is obtained by replacing the unknown parameters
under each hypothesis with their maximum-likelihood estima-
tors (MLEs). In the engineering literature (e.g., [4] and [5]) the
likelihood ratio test is known as the generalized likelihood ratio
test (GLRT).

That the GLRT is invariant is an important property in light
of its widespread use and the increasing use of invariance prin-
ciples to obtain tests for signal processing applications [6]. For
example, for the class of matched subspace detectors, Scharf
and Friedlander [4] note the invariance of the GLRT and show
that it is uniformly most powerful invariant (UMPI). For cases
in which the UMPI test does not exist, an UMPI-inspired per-
formance bound can be used to evaluate the suboptimal perfor-
mance of the GLRT (and other invariant tests).

The following references provide additional examples of
invariant tests in the engineering literature. The adaptive sub-
space detectors of Kraut and Scharf [7], [8] extend the matched
subspace detection problem to the case of unknown covariance
using GLRTs. Kelly [9] provides a GLRT, for an invariant
adaptive detection problem, that is invariant and UMPI. Kay
and Gabriel [10] provide an invariant GLRT for a problem in
which the UMPI test does not exist and compare it with the
UMPI bound. Nicolls and de Jager [11] provide an example
for which the GLRT is invariant, but is not the UMPI test that
exists. Bose and Steinhardt [12] address an invariant problem,
for which the GLRT may be intractable, and use maximal
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invariants to facilitate the search for reasonable tests among
the class of invariant tests. Kraut and Krolik [13] generalize
the invariance group of Bose and Steinhardt to obtain a scalar
GLRT that is a maximal invariant for the problem, and Kraut
et al. [14] further show that it has momotone likelihood ratio
and hence is UMPI.

II. GLRT INVARIANCE

The problem is described in terms of a hypothesis test, with
the null hypothesis denoted by with parameter belonging to
the parameter space , and the alternate hypothesis denoted by

with parameter belonging to . As stated in Lehmann [1]
(and elsewhere), the problem of testing against

remains invariant with respect to a group of trans-
formations if the distribution remains in the same family and the
parameter spaces are preserved.

We first obtain a density relationship that can be used as a
necessary and sufficient condition to show that the distributions
are preserved over a set of transformations . Initially using
the notation of Lehmann [1], let be distributed according to a
probability distribution denoted by , , and let
be a transformation acting over the sample space. The dis-
tribution of belongs to the same family of distributions with
perhaps a different value of the parameter, denoted, which is
an element of the original parameter space(i.e., and be-
long to the same hypothesis). Lehmann denotes the distribution
relationship as for all Borel sets

. To gain some insight into the meaning of this relationship, we
define an interval , and for illustration assume that
acts monotonically (although the result holds more generally).
Expanding the left-hand side gives

Letting and changing variables, this integral can be
written as . A similar expansion

of gives . Therefore, we have that
. Changing the dummy

variable and moving the Jacobian to the other side of the equality
for notation purposes, we write

(1)

It is now shown that given a problem that is invariant with re-
spect to a set of transformations, say all , then the GLRT
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for that problem is also invariant. The GLRT is obtained by re-
placing the unknown parameters under each hypothesis by their
MLEs under that hypothesis. This can be written as

To see that the GLRT is invariant with respect to transformations
, for , consider

Replacing the parameter notationby (with an invertible
transformation) and inserting a factor to the numerator and de-
nominator that will be used later gives

Note that can be inserted here, since it is assumed not
to depend on . Using the invariance relationship of (2) gives
the ratio

And since the parameter spaces are preserved,and belong
to the same hypotheses

And hence, for all . Given that the hypoth-
esis testing problem is invariant, then the GLRT is invariant.

III. EXAMPLES

Three examples are provided. All three are invariant hypoth-
esis testing problems. The GLRTs are derived and are found to
be invariant as expected. The notation used for these examples is
first summarized. The vectorand its elements are the original

data samples. The vectorand its elements are the result of
some group transformation acting on the original samples. The
vector is used for maximal invariants, anddenotes a test
statistic.

Example 1: Detection of a DC Level of Unknown Amplitude
in Gaussian Noise of Unknown Variance (Special Case of a
Gaussian Linear Model [5]):GLRT is UMPI.

This detection problem formulated as a hypothesis test can be
written as

for , where is a deterministic unknown pa-
rameter that may be less than or greater than zero, and the
are white Gaussian noise (WGN) samples of unknown variance

. A UMP test does not exist for this problem, since the hy-
pothesis test is two-sided. This example is a special case of a
problem studied in [6] and [15].

The probability density functions (pdfs) under the hypotheses
and are given by

and

and are denoted by and , respectively.
The problem is invariant under the group of scale transforma-

tions defined by the set for . The
pdf of this transformed set of samples is Gaussian, and the pa-
rameter spaces before and after the transformation are the same.
For example, the mean is zero under and nonzero under
for any element of the set. It is easy to see in this case that the
density conditions of (1) are met.

The GLRT is obtained by substituting the MLEs ofand
under each hypothesis into these pdfs and then constructing

the likelihood ratio. The MLEs are ,
, and ,

where hats denote estimators and subscripts denote the hypoth-
esis to which it belongs. Substituting these into the pdf equa-
tions and above, constructing the likeli-
hood ratio, and simplifying, gives the statistic . We will
use a monotonically increasing function of this as the GLRT

where the threshold is selected to satisfy the probability
of the false-alarm requirement. The GLRT is scale invariant as
expected, since for

One approach to deriving the UMPI test is by constructing a
likelihood ratio using the pdfs of a maximal invariant statistic.
A maximal invariant for this problem is

We need the density of under each hypothesis. To obtain
the density of , we first transform the original data to

, which is of the same dimension as the original
and then marginalize over to obtain the pdf of the

maximal invariant .
Using the standard formula for transformation of a random

variable, we first obtain the pdf for , , which is

where is the Jacobian factor. The exponential
factor can be expanded as

Using this, marginalize the pdf of over ,
and making the obvious extension for , the ratio

is as in (2), shown at the
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bottom of the page. Applying a change of variables
where we let , and
making the substitutions and cancelations between de-
nominator and numerator, the ratio becomes as in (3),
shown at the bottom of page. This is increasing in

and in terms
of the original samples is .
This is the the GLRT, and hence the GLRT is UMPI.

Example 2: Detection of a Known Signal of Unknown Lo-
cation in Gaussian Noise of Known Variance:GLRT is not
UMPI, and UMPI exists.

The detection problem formulated as a hypothesis test can be
written as

where is a discrete delta function, and
is unknown. As before, , and the

are samples of WGN except in this example the signal amplitude
and the variance areknown. Under , the samples

consist of noise samples and one signal plus noise sample.
This example is a special case of the problem considered by
Nicolls and de Jager [11] and can be found in [16].

As in the previous examples, we first establish the invariances
of the problem. Since the location of the sample containing the
signal is unknown, we should expect that the ordering of the
samples is not a relevant feature of the problem. The problem is
invariant under the rotation group for

, where is the right-shift permutation matrix
that shifts the samplespositions. This transformation group is
called a cyclic permutation in [11]. The densities of the original
samples and are

and

The problem is easily shown to be invariant using (1).
To find the GLRT for this problem, we need the MLE of

the unknown parameter under . The equation above for

is maximized when the expression of the exponent is
minimized or

The value of that minimizes this expression is that
which maximizes . Hence, the MLE is

. The GLRT is obtained by con-
structing the ratio , which is

where is used for . This is increasing in .
Thus, the GLRT is where the
threshold is set to satisfy the Pfa requirement. This is invariant,
since as expected.

For comparison with the optimal invariant test, we outline the
derivation of the UMPI test. A maximal invariant for is given
by , where is selected such that the maximum sample
(the probability that two or more are the same is zero) is the last
element of the vector, i.e., in the position. The pdf of
is

and under is . This
signal is denoted in vector form using the nat-
ural basis vector . Using these to construct the ratio and
making the appropriate cancelations results in the statistic

. This can be written in terms of
, which we will use as the UMPI test

Since is known, and there are no unknowns under the null
hypothesis, the UMPI test exists. Observe that for this example
the GLRT is not UMPI. This is a case in which the UMPI test
exists and it isnot given by the GLRT.

(2)

(3)
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Example 3: Detection of a DC Level of Unknown Amplitude
in Laplacian Noise of Unknown Variance:GLRT is not UMPI,
and UMPI does not exist.

This detection problem can be written as in the first example,
except that now the noise is Laplacian. The pdfs under the hy-
potheses for this example are given by

As in the first example, can be less than or greater than zero.
The parameter is greater than zero. This problem is scale in-
variant as in Example 1.

To find the GLRT, we first determine the MLEs of the un-
known parameters under each hypothesis. These MLEs can be
shown to be med , , and

med , where med is the median
of . Substituting these into and given
above, constructing the ratio, and simplifying gives the GLRT

med

Observe that this test statistic is scale invariant as expected,
since .

To find the UMPI test, we use the same maximal invariant as
in the first example, and the pdf will be obtained using the same
method. The pdf of under denoted by is
is

Marginalizing over to obtain the pdf of , we have

Writing the integral over the domain 0 to and expanding as
before, letting , and making the
substitutions and appropriate cancelations, the ratio becomes as
shown by the equation at the top of the page, where

. Since the denominator is not a function of
the data, the ratio is increasing in the numerator alone, which
can be considered the test statistic. Note that unlike in the inte-
gral of (3) where we could extract an increasing function of the
data, revealing the independence on any unknown parameters,
we cannot do so here.

Since the test statistic requires knowledge of , which
is unknown, it cannot be implemented, and hence the UMPI
test does not exist for this example. This is a case where
the GLRT is invariant, but is not UMPI, since the UMPI test
does not exist.
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