
3172 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 7, JULY 2007

Theory of the Stochastic Resonance Effect in
Signal Detection: Part I—Fixed Detectors

Hao Chen, Student Member, IEEE, Pramod K. Varshney, Fellow, IEEE, Steven M. Kay, Fellow, IEEE, and
James H. Michels, Fellow, IEEE

Abstract—This paper develops the mathematical framework to
analyze the stochastic resonance (SR) effect in binary hypothesis
testing problems. The mechanism for SR noise enhanced signal de-
tection is explored. The detection performance of a noise modified
detector is derived in terms of the probability of detection D and
the probability of false alarm FA. Furthermore, sufficient condi-
tions are established to determine the improvability of a fixed de-
tector using SR. The form of the optimal noise pdf is determined
and the optimal stochastic resonance noise pdf which renders the
maximum D without increasing FA is derived. Finally, an illus-
trative example is presented where performance comparisons are
made between detectors where the optimal stochastic resonance
noise, as well as Gaussian, uniform, and optimal symmetric noises
are applied to enhance detection performance.

Index Terms—Hypothesis testing, non-Gaussian noise, nonlinear
systems, signal detection, stochastic resonance (SR).

I. INTRODUCTION

STOCHASTIC RESONANCE (SR) is a nonlinear physical
phenomenon in which the output signals of some nonlinear

systems can be enhanced by adding suitable noise under certain
conditions. Since its discovery by Benzi et al. in 1981 [1], the
SR effect has been observed and applied in numerous nonlinear
systems [2]. The classic SR signature is the signal-to-noise ratio
(SNR) gain of certain nonlinear systems, i.e., the output SNR is
higher than the input SNR when an appropriate amount of noise
is added [3]–[17]. Some approaches have been proposed to tune
the SR system by maximizing SNR. It has been shown that the
SNR of a summing network of excitable units is optimum at a
certain level of noise [3]. Later, for some SR systems, robustness
enhancement using non-Gaussian noises was reported by Castro
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et al. [10]. For a fixed type of noise, Mitaim and Kosko [18]
proposed an adaptive stochastic learning scheme performing a
stochastic gradient ascent on the SNR to determine the optimal
noise level based on the samples from the process. Rather than
adjusting the input noise level, Xu et al. [19] proposed a numer-
ical method for realizing SR by tuning system parameters to
maximize SNR gain. Although SNR is a very important mea-
sure of system performance, SNR gain based SR approaches
have several limitations. First, the definition of SNR is not uni-
form and it varies from one application to another. Second, to
optimize the performance, the complete a priori knowledge of
the signal is required. Finally, for detection problems where the
noise is non-Gaussian, SNR is not always directly related to de-
tection performance; i.e., optimizing output SNR does not guar-
antee optimizing probability of detection.

SR was also found to enhance the mutual information (MI)
between input and output signals [20]–[25]. Similar to the SNR
scenario, for a specified type of SR noise, Mitaim and Kosko
[25] showed that almost all noise probability density functions
produce some SR effect in threshold neurons and a new statisti-
cally robust learning law was proposed to find the optimal noise
level. McDonnell et al. [26] pointed out that the capacity of a
SR channel can not exceed the actual capacity at the input. Com-
pared to SNR, MI is more directly correlated with the transferred
input signal information.

In signal detection theory, SR also plays a very important
role in improving the signal detectability. In [27] and [16], im-
provement of detection performance of a weak sinusoid signal
is reported. To detect a dc signal in a Gaussian mixture noise
background, Kay [28] showed that under certain conditions, per-
formance of the sign detector can be enhanced by adding some
white Gaussian noise. For another suboptimal detector, the lo-
cally optimal detector (LOD), Zozor and Amblard [17] pointed
out that detection performance is optimum when the noise pa-
rameters and detector parameters are matched. A study of the
stochastic resonance phenomenon in quantizers conducted by
Saha and Anand showed that a better detection performance
can be achieved by a proper choice of the quantizer thresholds
[29]. Recently, Rousseau and Blondeau [30] pointed out that
the detection performance can be further improved by using
an optimal detector on the output signal. Despite the progress
achieved by the above approaches, the study of the SR effect
in signal detection systems is rather limited and does not fully
consider the underlying theory. In this paper, we explore the un-
derlying mechanism of the SR phenomenon for a more general
two hypotheses detection problem which can be formulated as
follows.
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Consider a two hypotheses detection problem where given an
dimensional data vector , we have to decide between

two hypotheses or

(1)

where and are the pdfs of under and ,
respectively. In order to make a decision, a test (random or non-
random) is needed to choose between the two hypotheses. This
test can be completely characterized by a critical function (de-
cision function) [31] where for all . For any
observation , this test chooses the hypothesis with proba-
bility . In many cases, can be implicitly expressed by
using a test statistic which is a function of and a threshold

such that

(2)

where its corresponding critical function is

(3)

where is a suitable number. The probability of
detection is given by

(4)

and the probability of false alarm is given by

(5)

where the superscripts on and in (4) and (5) indicate
that the test in (2) is employed for the data vector . Although
the critical function and the test statistic can take
any form, we know that the optimum Neyman-Pearson
detector involves a likelihood ratio test (LRT) where

. Although a Neyman-Pearson
detector is optimum in the sense of maximizing given a
fixed , the associated LRT requires the complete knowledge
of the pdfs and which is not always available in a
practical application. Also, the input data statistics may vary
with time or may change from one application to another.
To make matters worse, there are many detection problems
where the exact form of the LRT is too complicated to be
implemented. Therefore, simpler and more robust suboptimal
detectors are used in numerous applications [32]. To improve a
suboptimal detector detection performance, two approaches are
widely used. In the first approach, the detector parameters are
varied [15]–[17], [29], [33]. Alternatively, when the detector
itself cannot be altered or the optimum parameter values are
difficult to obtain, adjusting the observed data becomes a viable
approach. It is well known that the detection performance can
be improved by adding additional noise that is statistically de-
pendent on the existing noise and/or with pdf that depends upon
which hypothesis is true [28]. However, adding a dependent

noise is not always possible because pertinent prior information
is usually not available. Therefore, in this paper, we constrain
the additive noise to be independent noise. For some suboptimal
detectors, as Kay pointed out in [28], detection performance
can be improved by adding an independent noise to the data
under certain conditions. For a given type of SR noise, the
optimal amount of noise can be determined that maximizes the
detection performance for a given suboptimal detector [34].
In an effort to explain this noise enhanced phenomenon, for
some integrate-and-fire neuron models, Tougaard demonstrated
that the detection performance gain is caused by the nonlinear
properties of the spike-generation process itself [35]. However,
despite the progress made in the literature, the underlying
mechanism of this Stochastic Resonance phenomenon in de-
tection problems has not fully been explored. For example, an
interesting question is to determine the best ‘noise’ to be added
in order to achieve the best achievable detection performance
for the suboptimal detector and this question remains unsolved.
In this case, the detection problem can be stated as: Given that
the test is fixed; i.e., the critical function (for example,

and ) is fixed, can we improve the detection performance
by adding SR noise? If the answer is yes, what kind of noise
and how much noise (i.e., noise pdf) should we add to the
observed data to maximize without increasing ? In
this paper, a theoretical analysis is presented to gain further
insight into the SR phenomenon and the detection performance
of the noise modified observations is obtained. Furthermore,
the optimum noise pdf, i.e., not only the noise level but also
the noise type is determined. As an illustrative example, the
optimum noise pdf and some suboptimal noise pdfs for the sign
detector are derived. Compared to the earlier definitions of SR
[1], [2], we further extend the concept of “SR” to a pure noise
enhanced phenomenon, i.e., a phenomenon of some nonlinear
systems in which the system performance is enhanced due to
the addition of an independent noise at the input. In this paper,
the terminologies “SR” and “noise enhanced” are used inter-
changeably. However, we point out that the latter is actually the
generalization of the former.

The paper is organized as follows. In Section II, we formulate
the noise modified detection problem and the conditions for the
best SR noise pdf are derived. The exact form of the optimum
SR noise pdf is derived in Section III. An illustrative example is
presented in Section IV. Conclusions and further comments are
given in Section V.

II. PROBLEM FORMULATION

In order to study a possible enhancement of the detection per-
formance, we add noise to the original data process and obtain
a new data process given by

(6)

where is either an independent random process with pdf
or a nonrandom signal. Notice that here we do not have any
constraint on . For example, can be white noise, colored
noise, or even be a deterministic signal , corresponding to

. As will be shown later, depending on the de-
tection problem, an improvement of detection performance may
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not always be possible. In that case, the optimal noise is equal to
zero. The pdf of is expressed by the convolutions of the pdfs
such that

(7)

The binary hypotheses testing problem for this new observed
data can be expressed as

(8)

Since the detector is fixed, i.e., the critical function of is the
same as that for , the probability of detection based on data
is given by

(9)

where

(10)

Alternatively

(11)

Similarly, we have

(12)

(13)

where

(14)

corresponding to hypothesis . , are the expected
values based on distributions and , respectively, and

, . To simplify notation, we omit the sub-
script of and and denote them as , , and , re-
spectively. Further, from (14), and are actually
the probability of detection and probability of false alarm, re-
spectively, for this detection scheme with input .
For example, is the of this detection scheme with

Fig. 1. An example of the relationship between P , P , P , P and p .
The optimum noise pdf p (n) = �(n + A).

input . Therefore, it is very convenient for us to obtain the
and values by analytical computation if , and are

known. When they are not available, and can be obtained
from the data itself by processing it through the detector and
recording the detection performance.1 From (11) and (13), we
may formalize the optimal SR noise definition as follows.

Consider the two hypotheses detection problem as in (1). The
pdf of optimum SR noise is given by

(15)

where
1) , ;
2) ;
3) .
Conditions 1) and 2) are fundamental properties of a pdf func-

tion. Condition 3) ensures that , i.e., the con-
straint specified under the Neyman-Pearson Criterion is satis-
fied. Further, if the inequality of condition 3) becomes equality,
the constant false alarm rate (CFAR) property of the original de-
tector is maintained.

A simple illustration of the effect of additive noise is shown in
Fig. 1. In this example, and

, hence which means the optimal SR
noise is a dc signal with value . In practical ap-
plications, some additional restrictions on the noise may also
be applied. For example, the type of noise may be restricted,
(e.g., may be specified as Gaussian noise), or we may require
a noise with even symmetric pdf to ensure
that the mean value of is equal to the mean value of . How-
ever, regardless of the additional restrictions, the conditions 1),
2), and 3) are always valid and the optimum noise pdf can be
determined for these conditions.

III. OPTIMUM SR NOISE FOR NEYMAN-PEARSON DETECTION

In general, it is difficult to find the exact form of directly
because of condition 3). However, an alternative approach con-
siders the relationship between and . From (14), for
a given value of , we have , where is
the inverse function of . When is a one-to-one mapping
function, is a unique vector. Otherwise, is a set of

1Thus, it is not necessary to have complete knowledge regarding �(�) and
p (�).
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for which . Therefore, we can express a value or a
set of values of as

(16)

Given the noise distribution of in the original do-
main, , the noise distribution in the domain can also
be uniquely determined. Further, the conditions on the optimum
noise can be rewritten in terms of equivalently as

4) ;
5) ;
6) ;

and

(17)

where is the SR noise pdf in the domain.
Compared to the original conditions 1), 2), and 3), this equiv-

alent form has some advantages. First, the problem complexity
is dramatically reduced. Instead of searching for an optimal so-
lution in , we are now looking for an optimal solution in a
single dimensional space. Second, by applying these new con-
ditions, we avoid the direct use of the underlying pdfs and

and replace them with and . Note that, in some cases,
it is not very easy to find the exact form of and . How-
ever, recall that and are the Probability of De-
tection and Probability of False Alarm, respectively, of the orig-
inal system with input . In practical applications, we may
learn the relationship by Monte Carlo simulation using impor-
tance sampling. In general, compared to and , and are
much easier to estimate and once the optimum is found,
the optimum is determined, as well by the inverse of the
functions and .

Let us now consider the function such that
is the maximum value of given . Clearly,

. From (17), it follows that for any
noise , we have

(18)

Therefore, the optimum is attained when
and .

A. Determination of the Improvability of Detection via SR

Improvability of the given detector when SR noise is added
can be determined by computing and comparing and .
When , the given detector is improvable by adding
SR noise. However, it requires the complete knowledge of
and and significant computation. For a large class of de-
tectors, however, depending on the specific properties of , we
may determine the sufficient conditions for improvability and
nonimprovability more easily. These are given in the following
theorems.

Theorem 1 (Improvability of Detection via SR): If
or when is second-order continu-

ously differentiable around , then there exists at least one

noise process with pdf that can improve the detection
performance.

Proof: First, when , from the definition of
function, we know that there exist at one least one such that

and , therefore, the
detection performance can be improved by choosing a SR noise
pdf . When and is continuous
around , there exists an such that on

. Therefore, from Theorem A-1, is convex
on .2 Let us add a noise with pdf

where and
. Due to the convexity of ,

. Thus, detection
performance can be improved via the addition of SR noise.

We will illustrate this result with an example in the next
section.

Theorem 2 (Nonimprovability of Detection via SR): If
there exists a nondecreasing concave function where

and for every ,
then for any independent noise, i.e., the detection
performance cannot be improved by adding noise.

Proof: For any noise and corresponding , we have

(19)

The third inequality of the Right Hand Side (RHS) of (19) is
obtained using the concavity of the function. The detection
performance cannot be improved via the addition of SR noise.

Again, we will illustrate this result in the next section.

B. Determination of the Form of Optimum SR Noise PDF

Before determining the exact pdf of , we first present the
following result for the form of optimum SR noise.

Theorem 3 (Form of Optimum SR Noise): To maximize ,
under the constraint that , the optimum noise can be
expressed as3

(20)

where . In other words, to obtain the maximum
achievable detection performance given the false alarm con-
straints, the optimum noise is a randomization of two discrete
vectors added with probability and , respectively.

Proof: Let
be the set of all pairs of . Since ,

is a subset of the linear space . Furthermore, let be the
convex hull of . Since , its dimension .

2Please refer to [36] or the Appendix for the related definitions and Theorems.
3This form of optimum noise pdf is not necessarily unique. There may exist

other forms of noise pdf that achieve the same detection performance.
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Similarly, let the set of all possible be . Since
any convex combination of the elements of , say

can be obtained by setting the SR noise pdf
such that , we have, .
It can also be shown that . Otherwise, there would exist
at least one element such that , but . In this
case, there exists a small set and a positive number such
that and ', where

' denotes an empty set. However, since , by
the well known property of integration, there always exists a fi-
nite set with finite elements such that and , a
convex combination of the elements of , such that

. Since , which con-
tradicts the definition of . Therefore, . Hence, .
From Theorem A-4, can be expressed as a convex
combination of three elements. Also, since we are only inter-
ested in maximizing under the constraint that ,
the optimum pair can only belong to , the set of the boundary
elements of . To show this, let be an arbitrary non-
boundary point inside . We know that there exists a
such that . Therefore, is inadmissible
as an optimum pair. Thus, the optimum pair can only exist on
the boundary. Therefore, each on the boundary of can be
expressed as the convex combination of only two elements in

. Hence,

(21)

where , . Therefore, we
have

(22)

Equivalently, , where
and are determined by the equations

(23)

Alternatively, the optimum SR noise can also be expressed in
terms of , such that

(24)

From (22), we have

(25)

and

(26)

C. Determination of the pdf of Optimum SR Noise

Depending on the location of the maxima of , we have
the following theorem.

Theorem 4: Let and

. It follows that
Case 1) If , then and ,

i.e., the maximum achievable detection performance

is obtained when the optimum noise is a dc signal
with value , i.e.

(27)

where and .
Case 2) If , then , i.e., the

inequality of (26) becomes equality. Furthermore

(28)

Proof: For Case 1, notice that
and . Therefore,

the optimum detection performance is obtained when the noise
is a dc signal with value with .

We use the contradiction method here to prove Case 2. First,
let us suppose that the optimum detection performance is ob-
tained when with noise pdf . Let

. It is easy to verify that is a valid pdf. Let
. We now have

and

But, this contradicts (15), the definition of . Therefore,
, i.e., the maximum achievable detection perfor-

mance is obtained when the probability of false alarm remains
the same for the SR noise modified observation .

For Case 2 of Theorem 4, i.e., when ,4 let us con-
sider the following construction to derive the form of the op-
timum noise pdf. From Theorem 4, we have the condition that

is a constant. Let us define an auxil-
iary function such that

(29)

where . We have
. Hence, also maximizes

and vice versa. Therefore, under the condition
that , maximization of is equivalent to maxi-
mization of . Let us divide the domain of into
two intervals and . Let be the
minimum value that maximizes in and let
be the minimum value that maximizes in . Also, let

and be the corresponding
maximum values. Since for any , is monotonically
decreasing when is increasing, and are mono-
tonically decreasing while and are monotonically
nonincreasing when is increasing. Since , there-
fore, , furthermore, when is very large,
we have . Hence,
there exists at least one such that .
For illustration purposes, the plots of for the detec-
tion problem discussed in Section IV are shown in Fig. 4. Let

4This case is usually true because, for a reasonable detector, a higher P
yields a higher P .
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us divide the [0,1] interval into two nonoverlapping parts ,
, such that

and . Next, represent as

(30)

where for and is zero otherwise (an indi-
cator function). From (5), we must have

(31)

and

(32)

Note that for all . Clearly, the upper bound
can be attained when for all , i.e., .
Therefore, . From (28),
we have

(33)

Notice that by letting
, (33) is equivalent to (22).

Equivalently, we have the expression of as

(34)

Further, in the special case where is continuously differ-
entiable, is also continuously differentiable. Since and

are at least local maxima, we have
. Therefore, from the derivative of (29),

we have

(35)

(36)

In other words, the line connecting and
is the bitangent line of and is its

slope. Also,

(37)

In this section, we have derived the condition under which
SR noise can improve detection performance. Also, we have
obtained the specific form of the optimum SR noise. Next we
illustrate the ideas by applying the theory to a specific detection
problem.

IV. A DETECTION EXAMPLE

Here, we consider the same detection problem as considered
by Kay [28]. The two hypotheses and are given as

(38)

for , is a known dc signal, and
are i.i.d noise samples with a symmetric Gaussian mixture noise
pdf

(39)

where . Here,
we set , and . A suboptimal detector is
considered with test statistic

(40)

where . From (40), this detector
is essentially a fusion of the decision results of i.i.d. sign
detectors.

When , the detection problem reduces to a problem
with the test statistic , threshold (sign detector)
and the probability of false alarm . The distribution
of under the and hypotheses can be expressed as

(41)

and

(42)

respectively. The critical function is given by

(43)

The problem of determining the optimal SR noise is to find the
optimal where for the new observation , the
probability of detection is maximum while
the probability of false alarm

.
When , the detector is equivalent to a fusion of in-

dividual detectors and the detection performance monotonically
increases with . Like the case, when the decision func-
tion is fixed, the optimum SR noise can be obtained by a similar
procedure. Due to space limitations, here only the suboptimal
case where the additive noise is assumed to be an i.i.d noise
is considered. Under this constraint, since the s and s of
each and every detector are the same, it can be shown that the
optimal noise for the case is the same as because
again, we need to fix for each individual detector
while increasing its . Hence, in the following discussion, we
only consider the one sample case . However, the per-
formance of the case can be derived similarly.
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Fig. 2. F (x) andF (x) as a function of x as given in (44) and (45) for � = 3,
A = 1, and � = 1, respectively.

A. Determination of the Optimal SR Noise pdf

From (11) and (13), it can be shown that in this case

(44)

and

(45)

where . It is also easy to show
that in this case, and both are monotonically
increasing with . Therefore, , and

is a single curve. Fig. 2 shows the values of and
as a function of while the relationship between and is
shown in Fig. 3. , the convex hull of all possible and
after is added is shown as the light and dark shadowed regions,
respectively, in Fig. 3. Note that a similar nonconcave ROC oc-
curs in distributed detection systems [37] and dependent ran-
domization is employed to improve system performance [38],
[39].

Fig. 3. Relationship between F (x) and F (x) as derived from (44) and (45),
respectively. The shadowed region [including both yellow (light gray) and
dashed green (dashed dark gray)] is the convex hull V of U . The green dashed
region is the region of (f ; f ) where possible SR effect may take place.

Taking the derivative of w.r.t. , we have

(46)

and,

(47)

where . Since
, we have and

(48)

Next, let us discuss the improvability of this detector. First,
when , setting (48) equal to zero and solving the equation
for , we have , the zero pole of (48)

When , we have and in
this example, . From Theorem 1, this
detector is improvable by adding independent SR noise. When

, , and the improvability
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cannot be determined by Theorem 1. However, for this partic-
ular detector, as we discuss later, the detection performance can
still be improved.

We now determine the two discrete values as well as the prob-
ability of their occurrence by solving equations (35) and (36).
From (44) and (45), the relationship between , and , and
(46), we have

(49)

Although it is generally very difficult to solve the above equation
analytically, fortunately, in this particular detection problem, we
have

so that ,
and

,
given . Thus, the roots , of (49) can
be approximately expressed as and

. Correspondingly,
and .

Hence

(50)

and

(51)

B. Optimal Symmetrical Noises

In this subsection, we consider the special cases where the SR
noise is constrained to be symmetric. These include symmetric
noise with arbitrary pdf , white Gaussian noise

and white uniform noise , ,
. The noise modified data processes are

denoted as , and , respectively. Here, for illustration pur-
poses, we find the pdfs of these suboptimal SR noises using the

functions. The same results can be obtained by applying
the same approach as in the previous subsection using and

functions.

Fig. 4. An illustration of the relationship between G(f ; k), f , f (k), � (k)
with i = 1, 2 and different k value 0,1 and 2.

For the arbitrary symmetrical noise case, we have the
condition

(52)

Therefore, is also a symmetric function, so that
. By (43) and (52), we have

(53)

Since , we also have

(54)

(55)

From (9) and (53), we have the of given by

(56)
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TABLE I
COMPARISON OF DETECTION PERFORMANCE FOR DIFFERENT SR NOISE ENHANCED DETECTORS

Fig. 5. Different H(x) curves where � = 3, A = 1.

where . Fig. 5 shows a plot of
for several values. Finally, from (42), we have

When , since when , we have,
, . From (56), for any , i.e.,

in this case, the detection performance of this detector cannot
be improved by adding symmetric noise. When and

we also have , . Therefore, adding
symmetric noise will not improve the detection performance as
well. However, when , has only a single root
for and , , , and
detection performance can be improved by adding symmetric
SR noise. From (56), we have

(57)

and

Furthermore, since
and given

, we have . Therefore

(58)

The pdf of for the hypothesis becomes

(59)

Hence, when is large enough,
. Note that, as decreases, increases,

i.e., better detection performance can be achieved by adding the
optimal symmetric noise.

Similarly, for the uniform noise case,

(60)

Substituting (60) for in (56) and taking the derivative w.r.t
, we have

(61)

Setting it equal to zero and solving, we have in
the pdf of uniform noise defined earlier. Additionally, we have

.
For the Gaussian case, the optimal WGN level is readily de-

termined since

(62)

Let . Taking the derivative w.r.t in (62), setting
it equal to zero and solving, we obtain

(63)

and , and, correspondingly,
. Therefore, when , adding WGN with variance

can improve the detection performance to a constant level
.

C. Detection Performance Results

Table I shows the values of for these different types
of SR noise. Compared to the original data process with

, the improvement of different detectors are
0.1811, 0.1593, 0.0897, and 0.0693 for optimum SR noise, op-
timum symmetric noise, optimum uniform noise, and optimum
Gaussian noise enhanced detectors, respectively.

Fig. 6 shows as well as the maximum achievable with
different values of . The detection performance is significantly
improved by adding optimal SR noise. When , a certain
degree of improvement is also observed by adding suboptimal
SR noise. When is small, and , the detec-
tion performance of the optimum SR noise enhanced detector is
close to the optimum symmetric noise enhanced one. However,
when , the difference is significant. When ,

, , so that ,
i.e, the optimal symmetric noise is zero (no SR noise). How-
ever, by adding optimal SR noise, is still larger than

, i.e., the detection performance can still be improved. When
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Fig. 6. P as a function of signal level A in Gaussian mixture noise when
� = 3 and � = 1. “LRT” is the P obtained by applying the optimum LRT
on the observed data x. “opt”, “opt Sym”, “opt Unif”, “opt WGN” and “No
SR” are the P of the optimum noise, optimum symmetric noise, optimum
uniform noise, optimum white Gaussian noise and original data (no SR noise),
respectively.

Fig. 7. P as a function of � for different types of noise enhanced detectors
when � = 3 and A = 1.

, the improvement is not that significant because
which is already a very good detector.

The maximum achievable detection performance of different
SR noise enhanced detectors with different background noise

is shown in Fig. 7. When is small, for the optimum SR
noise enhanced detectors , while for the symmetric
SR noise case . When increases, increases
and the detection performance of SR noise enhanced detectors
degrades. When , becomes a unimodal noise and
the decision function is the same as the decision function de-
cided by the optimum LRT test given the false alarm .
Therefore, adding any SR noise will not improve . Hence, all
the detection results converge to .

Fig. 8 compares the detection performance of different detec-
tors w.r.t. when and is fixed. , and

Fig. 8. P as a function of � for different types of noise enhanced detectors
when � = 1 and A = 1.

monotonically decrease when increases. Also, there
exist a unique value , such that when is small,

is still a unimodal pdf, so that the decision function is the
optimum one for . An interesting observation from
Fig. 8 is that the of the “optimum LRT”, after the lowest
value is reached, increases when increases. The explanation
of this phenomenon is that when is sufficiently large, the sep-
aration of the two peaks of the Gaussian mixtures increases as
increases so that the detectability is increased. When ,
the two peaks are sufficiently separated, so that the detection
performance of “LRT” is equal to the when .

Finally, Fig. 9 shows the ROC curves for this detection
problem when and the different types of i.i.d SR
noise determined previously are added. Different degrees of
improvement are observed for different SR noises pdfs. The
optimum SR detector and the optimum symmetric SR detector
performance levels are superior to those of the uniform and
Gaussian SR detectors and more closely approximate the LRT
curve.

V. CONCLUDING REMARKS

In this paper, we have established the mathematical theory
for the SR noise modified detection problem. Several funda-
mental theorems on SR in detection theory are established. We
analyzed the detection performance of a SR noise enhanced de-
tector where, for any additive noise, the detection performance
in terms of and can be obtained by applying the expres-
sions we have developed. Based on that, we have established the
conditions of potential improvement of via the SR effect.
This leads to the sufficient condition for the improvability/non-
improvability of most suboptimal detectors. The exact form of
the optimal SR noise pdf has been proposed. The optimal SR
noise is shown to be a proper randomization of no more than two
discrete signals. Also, the upper limit of the SR enhanced detec-
tion performance is obtained. Given the distributions and ,
a theoretical approach is proposed to determine the optimal SR
consisting of the two discrete signals and their corresponding
weights.
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Fig. 9. ROC curves for different SR noise enhanced sign detectors, N = 30.
For “LRT”, its performance nearly perfect (P � 1 for all P ’s).

Fig. 10. An illustration of a SR detection system and the corresponding
“Super” detector.

It should be pointed out that the results obtained in this paper
are very general and are applicable to a variety of SR detec-
tors considered in the literature, e.g., bistable systems. The SR
detectors presented in [22], [30], [33]–[35] can be included in
our framework as shown in Fig. 10. For example, the nonlinear
system block of Fig. 10 can depict the bistable system [33]–[35].
Let be the input to the nonlinear system,
and be the output of the system as
shown, where is the appropriate nonlinear function.
The decision problem based on can be described by decision
function as shown. It is easy to observe that the corre-
sponding decision function for the “super” detector (non-
linear system plus detector) is . Thus the SR
detectors proposed in the literature can be incorporated in our
framework and the theory developed in the paper is applicable
to these general situations.

Based on our mathematical framework, for a particular detec-
tion problem, we have compared the detection performance of
six different detectors, namely, the optimum LRT detector, op-
timum noise enhanced sign detector, optimum symmetric noise
enhanced sign detector, optimum uniform noise enhanced sign
detector, optimum Gaussian noise enhanced sign detector and
the original sign detector. Compared to the traditional SR ap-
proach where the noise type is predetermined, much better de-
tection performance is obtained by adding the proposed op-
timum SR noise to the observed data process.

This fundamental theory well explains the observed SR phe-
nomenon in signal detection problems, and greatly advances our

ability to determine the applicability of SR in signal detection.
It can also be applied to many other signal processing problems
such as distributed detection and fusion as well as pattern recog-
nition applications.

APPENDIX

REVIEW OF CONVEX FUNCTIONS AND CONVEX SETS [36]

In this section, we put together some background information
of convex functions and convex sets for reader’s convenience.
More details are available in [36].

A. Convex Functions

A function is called convex if

(64)

for all and in the open interval (0,1). It is called
strictly convex provided that the inequality (64) is strict for

. Similarly, if is convex, then we say that
is concave.
Theorem A-1: Suppose exists on . Then is convex

if and only if . And if on , then is
strictly convex on the interval.

B. Convex Sets

Let be a subset of a linear space . We say that is convex
if implies that for all

.
Theorem A-2: A set is convex if and only if every

convex combination of points of lies in .
We call the intersection of all convex sets containing a given

set the convex hull of , denoted by .
Theorem A-3: For any , the convex hull of consists

precisely of all convex combinations of elements of .
Furthermore, for the convex hull, we have Carathéodory’s

theorem for convex sets.
Theorem A-4 (Carathéodory’s Theorem): If and its

convex hull has dimension , then for each ,
there exist point of such that is a convex
combination of these points.
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