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ABSTRACT 

An optimal procedure for segmenting one-dimensional 
signals whose parameters are unknown and change at 
unknown times is presented. The method is maximum 
likelihood segmentation, which is computed using dynamic 
programming. In this procedure, the number of segments 
of the signal need not be known a priori but is 
automatically chosen by the Minimum Description Length 
rule. The signal is modeled as unknown DC levels and 
unknown jump instants with an example chosen to 
illustrate the procedure. This procedure is applied to image 
denoising and boundary feature extraction. Because the 
proposed method uses the global information of the whole 
image, the results are more robust and reasonable than 
those obtained through classical procedures which only 
consider local information. The possible directions for 
improvement are discussed in the conclusion.   

 
1. INTRODUCTION 

Signal segmentation is a very important problem that 
appears in many areas such as speech recognition, image 
feature extraction, edge detection, signal detection and 
communications [1]. The problem is stated as following. A 
data set { }[0], [1], , [ 1]x x x N −�  is observed which is 

composed of 
SN  segments of differing statistics. With 

SN segments there are 1SN −  transition times composing 

the set { }1 2 1, , ,
SNn n n −

� . Additionally, each segment may 

depend on a set of unknown parameters 
�

. The most 
general segmentation problem is to estimate the number of 
segments 

SN , the transition times 
in , and the unknown 

vector of parameters 
i

�
 for each segment. 

There have been numerous attempts to solve the 
segmentation problem [2-9]. A statistically optimal 
approach (for large data records) is to find the maximum  
likelihood estimator (MLE) of the unknown parameters 
[10]. Unfortunately, due to the computational burden of 

implementation which grows exponentially with the 
number of segments, this has not been pursued. 
Suboptimal methods based on sequential estimation have 
been proposed to reduce the computation. The 
disadvantage is the reduced performance as well as the 
need for the setting of various thresholds. The choice of the 
thresholds tends to be ad hoc and so reliable segmentation 
cannot always be obtained. 

In this paper we propose an MLE segmenter whose 
computational complexity is reduced drastically over a 
conventional implementation. This reduction is due to the 
use of dynamic programming (DP) [11]. The approach 
which is proposed has been motivated by the work of 
Bellman in fitting a piecewise linear model to a given 
curve [12]. Our work was originally implemented for 
segmentation of autoregressive process in [16]. It should 
also be mentioned that similar methods have been 
independently reported in [13] and [17].  

The paper is organized as follows. Section 2 derives 
the DP formalism for solving the segmentation problem. 
Section 3 shows the application of DP to segment the 
signal modeled as unknown DC levels with unknown jump 
instants. In section 4 those results are applied to the 
problem of image denoising and in Section 5 they are 
applied to boundary feature extraction. Section 6 concludes 
the paper.  

2. MAXIMUM LIKELIHOOD SEGMENTATION 
FOR ONE-DIMENSIONAL SIGNAL 

2.1. Known Number of Segments 
We wish to segment a discrete time series (one-
dimensional signal) { }[0], [1], , [ 1]x x x N −�  into 

SN  

segments by choosing the set of transition times 

{ }1 2 1, , ,
SNn n n −

� . To do so we assume that the ith segment 

is characterized by the PDF ( )1[ ], , [ 1];i i i ip x n x n− − �� , 

where 
i

�
is a vector of unknown parameters. Furthermore, 

each segment is assumed to be statistically independent of 
all other segments. With these assumptions the PDF of the 
data set can be written as  



 ( )1
1

[ ], , [ 1];
SN

i i i i
i

p x n x n−
=

−∏ �� .  (1) 

Since by definition 
0 0n ≡ ,

SNn N≡ , the MLE 

segmenter chooses { }1 2 1 1 2, , , , , , ,
S NSNn n n −

��� �� �  which 

maximizes (1), or by defining 
 [ ] [ ], [ ] [ 1] [ ]

T
i j x i x i x j= +X �   

the MLE segmenter must maximize 

 [ ]( )1
1

ln , 1 ;
SN

i i i i
i

p n n−
=

−
�

X � .  (2) 

Note that to maximize (2) we need to  
1)Choose a set of transition times; 2)Estimate 

i

�
 for each 

segment to yield [ ]1, 1 ; ii i ip n n
∧

−

	 

−

� �
 �X � ; 3)Sum all log 

PDFs for all [ ]1, 1 ; ii i ip n n
∧

−

� �
−

� �� �X � ; 4)Repeat the 

calculation for every possible set of transition times to 
determine which one yields the maximum. 

The difficulty is of course due to the exponential rate 
of increase of number of possible partitions with number of 
segments. To circumvent this we let 

 [ ] [ ]1 1, 1 ln , 1 ; ii i i i i in n p n n
∧

− −

� �
∆ − = − −

� �� �X �  

so that we wish to minimize  

 [ ]1
1

, 1
SN

i i i
i

n n−
=

∆ −
�

    (3) 

over { }1 2 1, , ,
SNn n n −

� . (It is assumed that the MLE of 

i

 
for the ith segment is easily found once the segment 

boundaries have been specified.) But (3) has the 
Markovian form and is readily solvable via DP. To do so 
let 

 ( ) [ ]
1 2 1

0

1, ,
1

0, 1

min , 1
k

k

k

k i i in n n
i

n n L

I L n n
−

−
=

= = +

= ∆ −
!

"   (4) 

which represents the minimum negative log likelihood 
function for k  segment partitions of the data record 

{ }[0], [1], , [ ]x x x L# . Note there are some implicit 

restrictions on the transition times, which result from 

1 2 11 kn n n L−≤ < < < ≤$ . Now, 

( ) [ ]

[ ] [ ]

( ) [ ]

( ) [ ]

1 1 2 2

0

1 1 2 2

0

1

1

1, ,
1

1 0

1

1 1, ,
1

1 0

1 1 1

1

1 1 1

min min , 1

min min , 1 , 1

min 1 , 1

min 1 ,

k k

k

k k

k

k

k

k

k

k i i in n n n
i

n L n

k

i i i k k kn n n n
i

n L n

k k k k kn

n L

k k k kn

I L n n

n n n n

I n n n

I n n L

− −

− −

−

−

−
=

= + =

−

− −
=

= + =

− − −

= +

− − −

= ∆ −

= ∆ − + ∆ −

% &
= − + ∆ −' (

% &
= − + ∆' (

)

)
*

*  

where we have used (4). Including the constraints on the 
transition times 

( ) ( ) [ ]
1

1 1 11
min 1 ,

k
k k k k kk n L

I L I n n L
−

− − −− ≤ ≤

+ ,
= − + ∆- .  (5) 

for 1, , , 1L k k N= − −/ . The solution to our original 

problem occurs for 
Sk N= and 1L N= − . To begin the 

recursion we need to compute  

( ) [ ] [ ] [ ] 11 1 0 1 1, 0, ln 0, ;I L n L L p L
∧

0 1
= ∆ = ∆ = − 2 34 5X 6  (6) 

for 0,1, , 1L N= −7 . The actual procedure embodied in (5) 

and (6) is as follows: 
1) Compute (6) for 0,1, , 1L N= −7 and store the results 

in ( )1I L . This is the maximum likelihood for all data 

records from 0n =  to n L=  or for all the one-segment 
“partitions”. 
2) According to (5) the optimal two-segment partitions as 
a function of data record length are found as 
 ( ) ( ) [ ]

1
2 1 1 2 11

min 1 ,
n L

I L I n n L
≤ ≤

8 9
= − + ∆: ; . 

To compute this we need to compute [ ]2 1,n L∆  for all 

11 n L≤ ≤ (the lower limit is 1 to allow for a minimum one 

sample first segment). To this we add ( )1 1 1I n −  which has 

already been found and stored in step 1. 
3) We continue the procedure requiring at each step the 
computation of [ ]1,k kn L−∆ . Hence the computation goes 

up linearly with number of segments. 
It should also be noted that due to the recursive nature 

of the DP solution the best 2,3, , 1SN −<  segmentations 

are found as a byproduct of the approach. This allows us to 
determine the best segmentation when the number of 
segments is not known a priori as described next. 
2.2. Unknown Number of Segments 
In order to determine the number of segments we employ 
the Minimum Description Length (MDL) [14]. If we were 
naively to choose the partition as the one which maximizes 
the likelihood, then we would always choose the maximum 
number of segments. This is because more parameters (the 

i

=
) are estimated as more segments are assumed, causing 

the likelihood function to monotonically increase with 
number of segments. The MDL as applied to our problem 

chooses the number of segments 
SN

∧
 as the value of 

k which minimizes for 1,2, ,k S= >  

( ) 1

1

MDL ln [ ], , [ 1]; ln
2

k
k

i i ii
i

r
k p x n x n N

∧ ∧ ∧

−
=

? @
= − − +

A BC D∏ EF .(7) 

Here S  is the maximum number of segments, which is 

chosen by the user. 1 2 1 1 2{ , , , , , , , }k kn n n
∧ ∧ ∧ ∧ ∧ ∧

− G�G GH H  is the 

MLE for the k -segment partition of the entire data record. 



By definition 0 0n
∧

= , 
SNn N

∧

= . Finally, 
kr  is the number of 

parameters estimated for an assumed k  segments. If the 

dimension of i

∧�
 is 

iq , then 

 
1

1
k

k i
i

r q k
=

= + −
�

    (8) 

with the first term of (8) representing the estimated 
i

�
 and 

the second due to the 1k −  transition times. 
The first term of the MDL of (7) may be computed 

using DP as described in the previous section. This is 
because the maximum likelihood solution using DP also 
provides all the lower order solutions as well. Almost no 
extra computation is required when the number of 
segments is unknown. 
3. ONE-DIMENSIONAL SIGNAL MODELING AND 

ITS SEGMENTATION 
We model the one-dimensional signal as a multilevel DC 
signal, which jumps at the unknown transition times and is 
contaminated by white Gaussian noise (WGN). The signal 
is  

 [ ]1
1

[ ] [ ] [ ]
SN

i i i
i

s n A u n u n−
=

= −
�

  (9) 

where 
0 1 2 10

s sN Nn n n n n N−= < < < < < =�  and [ ]u n  is 

the unit step sequence. Here N  is the length of the signal. 
The contaminated signal we observed is  
 [ ] [ ] [ ]x n s n w n= +    (10) 

where [ ]w n  is WGN. Let [ ][0] [1] [ 1]
T

x x x N= −X � .  

The PDF of X is 

( )
( )

( )
1

1
2

/ 2 22
1

1 1
exp [ ]

22

S i

i

N n

iN
i n n

p x n A
σπσ −

−

= =

� �� �
= − −� 	� 	
 �
 �

� �
X;A,n (11) 

where 
1 2[ ]

s

T

NA A A=A 
 , 
1 2 1[ ]

s

T

Nn n n −=n �  

and 2σ is the variance of the WGN. From equation (11), 
the MLE of 

iA  is 

 
1

1

1

1
[ ]

i

i

n

i

n ni i

A x n
n n −

−∧

=−

=
−

�
.   (12)

Then    

 
[ ] [ ]

( )
1

1 1

21
21

2

, 1 ln , 1 ;

1
[ ] ln 2

2 2

i

i

ii i i i i i

n
i i

i

n n

n n p n n

n n
x n A πσ

σ −

∧

− −

− ∧
−

=

� �
∆ − = − −

� �� �

−
� �

= − +
� �� ��

X �
 (13) 

Since ( )1
1

sN

i i
i

n n N−
=

− =
�

, we need only minimize 

 [ ]1
1

, 1
S

N

i i i
i

n n−
=

∆ −
�

    (14) 

where [ ]
1

21

1, 1 [ ]
i

i

n

ii i i
n n

n n x n A
−

− ∧

−
=

� �
∆ − = −

� �� � 
. Comparing 

Equation (14) with Equation (4) and (5), we know that we 

can use the method of DP to find 
∧

A  and 
^

n  which 
maximize ( )p X;A,n . Here, because the number of 

segments is unknown, we need to compute the ( )MDL k  

using equation (7). Then the estimation of the number of 

segments, 
SN

∧
 is the “valley” of value of k  which globally 

minimizes the ( )MDL k  over all possible segment 

numbers.  
A computer simulation example is show in Figure 1. In 
this example, the multi-levels of the original signal is 

T[1  4  2  6  -2  1  5  2]=A . The corresponding transition 

times are T[20  50  65  100  105  110  115]=n . The DP 

estimate of the transition times is 
T[20  50  65  100  105  110  115]

∧

=n , and the MLE of the 

multi-levels is 
T[1.14 4.13 1.45 6.04 -2.49 0.86 4.94 2.35]

∧

=A . 

From this experiment we find that DP estimations of the 
transition times and number of segments are very accurate, 
even under the condition of low SNR. It is important to 
notice another advantage of the algorithm. At the end of 
the multiple DC level signal, the length of each DC level is 
just 5 samples. However, the DP algorithm can still detect 
the transition times very precisely. This motivates one to 
apply this algorithm to image denoising and edge 
detection. 

 
 (a) (b) 

 
 (c) (d) 

Figure 1. Segmentation and reconstruction of one-dimensional 
multi-level signal. (Unknown number of segments. (a)Original 
multi-level DC signal; (b)Observed signal contaminated by white 
Gaussian noise ( 2 1σ = ); (c)Reconstructed multi-level DC 
signal; (d)Minimum Description Length of the segmentation.  
 



4. APPLICATION TO IMAGE DENOISING 
By generalizing the results of the DP segmentation and 
reconstruction of 1-D signal to 2-D signal, i.e the image, 
image denoising is done by 1) reconstruct 1d signal 
horizontally (note the result image ( ),HI i j ) and vertically 

(note the result image ( ),VI i j );  2) Take the average of 

the two image by 

( ) ( ) ( )2 2
, ,

,
2

H V

D

I i j I i j
I i j

+
= . (15) 

 The average SNR(db) of denoising results over many 
standard images compared with traditional methods are 
show in table 1. (Images are omitted due to space limit.) 

2σ  of WGN 100 400 900 
SNR(db) of image with noise  22.38 16.34 12.80 
SNR(db) after low pass filtering  17.80 17.34 16.62 
SNR(db) after median filtering  20.43 18.78 16.97 
SNR(db) of DP segmentation/reconstruction 23.90 19.69 17.29 

Table 1. The SNR of the denoised images. 
5. APPLICATION TO EDGE DETECTION 

By detect the jump position of the 2-D image horizontally 
and vertically, this algorithm can find the global boundary 
feature, while the traditional algorithm extracting 
boundary feature by edge detection only consider the local 
response of a compact support filter. The boundary feature 
extraction results compared with Canny edge detector are 
shown in figure 2.   

6. CONCLUSION 
Maximum likelihood segmentation appears to work quite 
well for one-dimensional signals, but the computation is 
extremely intensive. When DP is used, the computational 
complexity is substantially reduced from exponentially to 
only linearly increasing with an increased number of 
segments. MDL is introduced to decide the optimal 
segment number in the sense of minimum description 
length. The AR/MA process, or other statistical models 
may be used to represent the image [15]. MLE 
segmentation based on these models can still be realized 
through DP [16].  
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Figure 2 The boundary feature extraction results. First row: The 
original images contaminated by WGN; Second row: the results 
of Canny edge detection; The third row: the results of optimal DP 
segmentation combined with MDL detection. 


