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Abstract

For a decision rule whose decision region is suboptimal we show how to transform the decision statistic

to recover optimal performance. The procedure simply amounts to transforming the decision statistic

to yield a combined statistic/decision function which is optimal. The approach may be thought of as a

generalization of the stochastic resonance phenomenon, which employs a random linear transformation,

and hence should be widely applicable to practical problems.

1 Introduction

The phenomenon of stochastic resonance [1] is that by adding noise to an observed test statistic one may

sometimes improve the detection performance of a fixed but suboptimal detector [2]. A detailed analysis

of this phenomenon from a statistical detection theory viewpoint is contained in [3]. For example, assume

that we decide a signal is present if a test statistic exceeds a threshold or if X > γ. If we add a noise

sample to X to form Y = X + U and then compare it to a threshold, we will decide a signal is present

if X + U > γ. This is equivalent to deciding a signal is present if X > γ − U , which is seen to be a
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transformation of the decision region, although a stochastic one. One wonders if there are more general

methods of transforming the decision region that will improve the detectability. We show in the next section

how a suboptimal decision region can be effectively transformed into an optimal one by transforming X

using a nonlinear transformation. The method is completely general in that any suboptimal decision rule

may be transformed into an optimal one, under some mild conditions.

2 Mathematical Description of Transformation Method

A mathematical justification of the approach is given in this section with an example in the next section.

The reader may wish to skip this section and proceed directly to the example, as the latter more clearly

indicates the procedure.

We assume that the problem is to decide between two hypotheses H0 and H1 based on an observed

scalar test statistic x. The two hypotheses are assumed to be random events with prior probabilities of

π0 and π1. This test statistic is a function of the original data. A future paper will address the extension

to the case when the original data is accessible. Based on the observed data sample x a decision rule has

been implemented as follows:

φ(x) = 1 decide H1

φ(x) = 0 decide H0.

This decision rule is assumed to be suboptimal. Denoting the probability density functions (PDFs) as

pX
0 (x) and pX

1 (x) under H0 and H1, respectively, the probability of a correct decision is

Pc = π0

∫ ∞

−∞
(1 − φ(x))pX

0 (x)dx + π1

∫ ∞

−∞
φ(x)pX

1 (x)dx

= π0 +
∫ ∞

−∞
φ(x)(π1p

X
1 (x) − π0p

X
1 (x)))dx

Note that unless φ(x) = 1 for all x such that π1p
X
1 (x) − π0p

X
0 (x) > 0 and zero otherwise (which is the

optimal decision rule) this probability will not be maximized.

Now consider that we transform the test statistic as y = g(x) using some function g. The function is

assumed to be piece-wise monotonic so that over each interval of a finite number of disjoint intervals either

g′(x) ≥ 0 or g′(x) < 0 (the prime denotes differentiation). The transformed test statistic y is then input

to the decision rule φ(·) to yield φ(y). This is inaccordance with the assumption that the decision rule is

fixed and so cannot be changed, only the test statistic can be modified. It is assumed that the cumulative

distribution function of Y is continuous, i.e., that Y is a continuous random variable. We will see next

that this transformation of the test statistic is mathematically equivalent to modifying the decision rule.
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To do so note that Pc, which is now based on y, is

Pc = π0 +
∫ ∞

−∞
φ(y)(π1p

Y
1 (y) − π0p

Y
1 (y))dy.

We now utilize the piece-wise monotonic assumption of g(·) to write a subset of the real line as S =

∪N
i=1Ii = ∪N

i=1(ai, bi), where a1 < b1 < a2 < b2 . . . < aN < bN and the intervals are open. The function

g(·) is monotonic over each interval Ii. The omission of a finite number of points from the real line R and

subsequently from any integral will not affect the results as long as the PDFs do not contain any impulses

at these points (or the cumulative distribution function is continuous over all of R). Now we have that by

defining

Ji =




(ai, bi) if g′(Ii) ≥ 0

(bi, ai) if g′(Ii) < 0

and using a change of variables from y to g(x)

Pc = π0 +
∫

φ(g(x))(π1p
Y
1 (g(x)) − π0p

Y
0 (g(x)))g′(x)dx

= π0 +
N∑

i=1

∫
Ji

φ(g(x))(π1p
Y
1 (g(x)) − π0p

Y
0 (g(x)))g′(x)dx.

Note that for the intervals for which g′(x) < 0, we have Ji = (bi, ai). Absorbing the negative sign into

g′(x) for the monotonically decreasing function intervals yields

Pc = π0 +
N∑

i=1

∫
Ii

φ(g(x))(π1p
Y
1 (g(x)) − π0p

Y
0 (g(x)))

∣∣g′(x)
∣∣ dx.

Next we recognize that pY
1 (g(x)) |g′(x)| = pX

1 (x) and pY
0 (g(x)) |g′(x)| = pX

0 (x) so that we have finally

Pc = π0 +
N∑

i=1

∫
Ii

φ(g(x))(π1p
X
1 (x) − π0p

X
0 (x))dx

= π0 +
∫ ∞

−∞
φ(g(x))(π1p

X
1 (x) − π0p

X
0 (x))dx. (1)

We now see that the probability of a correct decision is based on φ(g(x)). In effect by transforming the

decision test statistic x to g(x) we have been able to effectively modify the decision region. It is clear from

(1) that for optimal performance we must have

φ∗(x) = φ(g(x)) =




1 if π1p
X
1 (x) > π0p

X
0 (x)

0 otherwise

where φ∗(x) denotes the optimal decision rule based on x. In composite function notation, we require for

optimality that

φ ◦ g(x) = φ(g(x)) = φ∗(x). (2)

We need only determine the function g(·). We provide an example in the next section.
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3 An Example

We consider a very simple example, for which the solution is obvious. The example is that of deciding

between x ∼ N (0, 1) under H0 and x ∼ N (1, 1) under H1, where N (µ, σ2) denotes a Gaussian PDF with

mean µ and variance σ2. The prior probabilities are π0 = π1 = 1/2. We assume that the suboptimal

decision rule is to decide H1 if x ≥ 0 and decide H0 if x < 0. The optimal decision rule for this problem is

to decide H1 if x ≥ 1/2 and to decide H0 if x < 1/2. This is just the maximum likelihood decision rule [4].

The suboptimal decision rule produces the correct decision for all x not in the interval [0, 1/2) as shown

in Figure 1. It is clear now that to modify the suboptimal decision rule to make it optimal we need only

φ(x) = 1φ(x) = 0

pX
0 (x)

pX
1 (x)

x

wrong decision

1
2 1

Figure 1: Example of suboptimal decision regions.

map the values of x in the interval [0, 1/2) into any other interval for which the suboptimal decision rule

will produce a zero at its output. For example, we could use

g(x) =




x for x ≥ 1/2 and x < 0

−x for 0 ≤ x < 1/2

as shown in Figure 2. Note that the effect of the transformation is to do nothing (g(x) = x) if the test

statistic value will produce the correct decision. However, in the interval [0, 1/2) the decision is incorrect.

To convert it to a correct decision we simply negate the value of the test statistic as g(x) = −x. Then,

the values 0 ≤ x < 1/2 become negative and are decided to correspond to H0 in accordance with the

suboptimal decision rule. Finally, it should be observed that the function chosen is piece-wise monotonic

(as well as discontinuous).
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Figure 2: Transforming function - one of many possibilities.
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