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Abstract

In this paper we address the design of an optimal transmit signal and its corresponding optimal

detector for a radar or active sonar system. The focus is on the temporal aspects of the waveform

with the spatial aspects to be described in a future paper. The assumptions involved in modeling

the clutter/reverberation return are crucial to the development of the optimal detector and its conse-

quent optimal signal design. In particular, the target is assumed to be a Gaussian point target and

the clutter/reverberation a stationary Gaussian random process. In practice, therefore, the modeling

will need to be assessed and possibly extended, and additionally a means of measuring the “in-situ”

clutter/reverberation spectrum will be required. The advantages of our approach are that a simple an-

alytical result is obtained which is guaranteed to be optimal, and also the extension to spatial-temporal

signal design is immediate using ideas of frequency-wavenumber representations. Some examples are

given to illustrate the signal design procedure as well as the calculation of the increase in processing

gain. Finally, the results are shown to be an extension of the usual procedure which places the signal

energy in the noise band having minimum power.

∗This work was supported by the Air Force Research Lab, Rome, NY under subcontract FA8750–04–C–0230 to SAIC,
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1



1 Introduction

The problem of signal waveform design for optimal detection in signal-dependent noise has been a problem

of long-standing interest. In particular, the fields of radar and sonar have seen much work in this area.

Some of the salient references are listed in [1–9]. Signal-dependent noise is generally referred to as clutter

in radar and reverberation in active sonar. In either case, the fact that the received noise characteristics

are dependent on the transmitted signal greatly complicates the signal design. For the case of signal design

in colored noise whose spectrum does not depend on the transmitted signal, the solution is well known.

It says to place all the signal energy into the frequency band for which the noise power is minimum.

Correspondingly, for discrete signal vector design one should choose the signal as the eigenvector of the

noise covariance matrix whose eigenvalue is minimum [10].

To date there has been no analytical solution to the signal-dependent noise problem, although a slightly

flawed analysis did appear in [11]. In this paper we describe an approach that yields a simple solution,

subject to the assumptions of a particular scattering model. Some of these results were previously summa-

rized in [12], but here we include the missing details as well as expand the discussion to include examples

and an actual signal synthesis method. The scattering model assumes that the signal-dependent noise is

the output of a random linear time invariant (LTI) filter, whose impulse response can be assumed to be

a realization of a wide sense stationary (WSS) random process. The same model has been used before in

[13] and more recently in [14]. It should be noted that this model does not allow for spectral spreading, as

would be inherent in a moving platform and/or intrinsic clutter motion situation. Hence, it differs from

the standard one usually assumed [8]. However, subject to this limitation the advantage of such a model

is that

1. An analytical solution for the optimal waveform is obtained.

2. New insights into the signal design problem are evident.

3. The results can be extended to the design of a spatial-temporal transmit signal using concepts of

frequency-wavenumber filtering. This will be addressed in a future paper. Hence, multidimensional

techniques or even multichannel techniques as are now important for MIMO radar [15] are easily

derived.

Previous results using the random LTI scattering model were of limited practical utility. For example in [6,

13] a Fredholm equation needs to be solved and in [14] an iterative solution is proposed, which is neither

guaranteed to converge nor to produce the optimal signal.

For a practical implementation one can envision a probing signal that measures the channel characteris-

tics needed for waveform design. Then, the optimal transmit signal may be designed “in-situ”. Techniques
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such as reported in [16] for channel estimation then become immediately applicable.

In this paper we first consider the modeling assumptions in Section 2, followed by the optimal detector

and its performance in Section 3. In Section 4 the main results of the paper are given, which are the design

of the signal with the optimal energy spectral density. Examples are next given in Section 5. A method to

realize the optimal signal is described in Section 6 and finally conclusions are given in Section 7.

2 Problem Statement and Modeling Assumptions

The model for the received waveform is shown in Figure 1. For the purposes of this paper a point target

is assumed so that g(t) = Aδ(t). However, a more general extended target, such as is considered in [17] is

easily accommodated. To clarify the exposition, however, we will only discuss the point target.

Σ

Σ
s(t)

g(t)

h(t)

n(t)

H1

H0

c(t)

x(t)

channel

target

Figure 1: Modeling of received waveform. s(t) is the transmitted signal, h(t) is the impulse response of

the random LTI channel filter, g(t) is the impulse response of random LTI target filter, and n(t) represents

ambient noise and interference.

We assume that the received waveform is the complex envelope of the real bandpass data and is

denoted by x(t) for |t| ≤ T/2. When no target return is present, i.e., under hypothesis H0, we have

that x(t) = c(t) + n(t), where c(t) denotes clutter (henceforth, we will use radar terminology) and n(t)

is the sum of ambient noise and interference, i.e., jamming. Under the hypothesis H1, the target return

is modeled as As(t), where s(t) is the complex envelope of the transmitted signal and A is a complex

reflection factor with the probability density function (PDF) A ∼ CN (0, σ2
A). Here the designation CN

means complex normal or Gaussian. We have assumed a zero Doppler target, which represents a worst case

scenario. It is felt that if we can make progress on this signal design problem, then the nonzero Doppler

target should yield improved performance as well. Note that it is only the optimality of the transmit signal
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that is in question for nonzero Doppler targets. The proposed detector is still applicable to the nonzero

Doppler target but of course will require separate Doppler channels. Also, n(t) is modeled as a complex

WSS Gaussian random process with zero mean and power spectral density (PSD) Pn(F ). The baseband

frequency band is assumed to be −W/2 ≤ F ≤ W/2 and hence all PSDs are defined over this band. Finally,

we model the clutter return c(t) as the output of a random LTI filter with impulse response h(t), whose

input is the transmitted signal. This is the model used in [11, 14]. This type of modeling is appropriate

for multipath [8] since the filtering will model the altered frequency spectrum of the return signal. (Note

that in [8] the statistical characteristics of the filter are different. There the uncorrelated scattering model

is used, whereby each point of the impulse response is uncorrelated with any other point and the variance

varies from point to point.) However, Doppler spreading due to clutter motion and/or platform motion is

not accommodated. To model the latter the more usual model is a convolution in frequency, which yields

frequency spreading, as opposed to a multiplication. We do not pursue this further.

Continuing with the clutter modeling, if s(t) is the transmit signal, then the clutter return will be

c(t) = s(t) � h(t), where � denotes convolution, at the receiver. By reversing the convolution we can write

this as c(t) = h(t)�s(t), where now the filter input is h(t) and the filter impulse response is s(t). If we now

assume that h(t) is a complex WSS Gaussian random process with zero mean and PSD Ph(F ), then c(t) will

also be a complex WSS Gaussian random process [18, 19] with zero mean and PSD Pc(F ) = T |S(F )|2Ph(F ),

where S(F ) is the normalized Fourier transform (the usual Fourier transform multiplied by 1/
√

T ) of s(t).

It should be noted that in modeling the channel impulse response by a random process it is implicitly

assumed that the duration of the impulse response is time-limited. As a result, the model is capable of

representing a stable and causal filter, which of course, the channel must be. In practice, this constraint is

manifested in processing successive range windows over the range of interest.

3 Optimal Detector and its Performance for a Given Transmit Signal

With the previous modeling assumptions and assuming that the time-bandwidth product WT satisfies

WT > 16 [21], we can easily derive an optimal detector. This is done in Appendix A and is based on the

Neyman-Pearson criterion [10]. The optimal detector, which is conveniently expressed in the frequency

domain, decides a signal is present if∣∣∣∣∣∣
M/2∑

m=−M/2

X(Fm)S∗(Fm)
Ph(Fm)T |S(Fm)|2 + Pn(Fm)

∣∣∣∣∣∣
2

> γ (1)

where Fm = m/T , M = WT , and the Fourier transforms are defined as

X(F ) =
1√
T

∫ T/2

−T/2
x(t) exp(−j2πFt)dt. (2)
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In practice, FFTs would be used to approximate the continuous-time Fourier transforms used in (1). The

detection performance of the optimal detector is shown in Appendix A to be monotonically increasing with

the parameter

d2 = σ2
A

∫ W/2

−W/2

T |S(F )|2
Ph(F )T |S(F )|2 + Pn(F )

dF. (3)

Hence, the optimal signal design problem reduces to the relatively simple problem of choosing a signal s(t)

that is constrained in energy, which is defined as

E =
∫ W/2

−W/2
T |S(F )|2dF (4)

and that maximizes d2. Note that it is only the energy spectral density (ESD) or Es(F ) = T |S(F )|2 that

affects performance. The phase of the Fourier transform can be chosen arbitrarily and in practice will be

selected for ease of signal realizability.

4 Maximizing the Detection Performance by Transmit Signal Design

The key to maximizing (3) over all |S(F )|2, subject to the constraints that |S(F )|2 ≥ 0 and the energy

constraint of (4), lies in the property that d2 is a concave functional of |S(F )|2. This assures us that the

solution found via differential means will produce a global maximum. In contrast to this, we note that in

[14] the algorithm given is iterative, for which it is neither guaranteed to converge nor if it converges, to

produce the global maximum. There are no such limitations with the approach described here. However,

with the proposed approach, we will only find |S(F )|2, so that a further necessary step is to synthesize a

time-limited signal with the given ESD. Fortunately, this is possible and amounts to a filter design problem

based on a given magnitude frequency response specification. Many techniques are available to effect the

design [20]. In Section 6 we use Durbin’s method for moving average parameter estimation to realize a

signal with a given ESD.

In Appendix C we derive the ESD that maximizes d2. It is given by

Es(F ) = T |S(F )|2 = max

(√
Pn(F )/λ − Pn(F )

Ph(F )
, 0

)
(5)

where max(x, 0) means the maximum of x and 0. The parameter λ is found from the energy constraint of

(4) so that we must solve ∫ W/2

−W/2
max

(√
Pn(F )/λ − Pn(F )

Ph(F )
, 0

)
dF = E (6)

for λ, where λ is positive. A solution for λ is guaranteed since if

g(λ) =
∫ W/2

−W/2
max

(√
Pn(F )/λ − Pn(F )

Ph(F )
, 0

)
dF
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then g(0) = ∞ and g(∞) = 0 and g is a continuous function, which means that it takes on all values in

between by the intermediate value theorem. We can narrow down the search region for λ, however, by

noting that for E > 0, we must have
√

Pn(F )/λ−Pn(F )

Ph(F ) > 0 for at least some values of F . We can then

exclude those values of λ for which
√

Pn(F )/λ−Pn(F )

Ph(F ) ≤ 0 for all F . These are the values λ ≥ 1/Pn(F ).

Thus, we need not search the values for which λ ≥ 1/min(Pn(F )) or we have that the search region is

0 < λ <
1

min(Pn(F ))
.

We can also compute the maximum value of d2 to allow us to determine either improvements over other

detectors, either in the case of a suboptimal detector, e.g., a matched filter, or in the case of the optimal

detector that uses a suboptimal transmit signal. The maximum value of d2 is given by (3) with the optimal

signal ESD given by (5).

Before considering some examples, we note the following interesting result. Because of the max opera-

tion in (5) we see that the optimal ESD will be zero for those frequencies for which

√
Pn(F )/λ − Pn(F ) ≤ 0

or equivalently for the frequencies

Pn(F ) ≥ 1
λ

.

Hence, if there is a large amount of ambient noise and jamming in a particular frequency band, the optimal

signal will not put any of its energy into that band. An illustration of this phenomenon is shown in Figure

2. It is normally referred to as “water filling” and also appears as the solution for distributing energy to

maximize channel capacity for parallel channels [22].

5 Some Examples

5.1 White Ambient Noise and No Jamming or Pn(F ) is Flat

A very simple result occurs if Pn(F ) is a constant. This will occur for no jamming and white ambient

noise. In this case Pn(F ) = N0 and therefore from (5)

Es(F ) = max

(√
N0/λ − N0

Ph(F )
, 0

)
.

It is clear that we must have
√

N0/λ − N0 > 0 or else Es(F ) = 0 for all F . When this condition holds, we

have that

Es(F ) =
√

N0/λ − N0

Ph(F )
(7)
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Figure 2: “Water-filling” interpretation of optimal signal design.

and for the energy constraint to hold

∫ W/2

−W/2

√
N0/λ − N0

Ph(F )
dF = E

or √
N0/λ − N0 =

E∫W/2
−W/2

1
Ph(F )dF

so that we have finally from (7)

Es(F ) =
E/Ph(F )∫W/2

−W/2
1

Ph(F )dF
. (8)

Note that Es(F ) = c/Ph(F ), where c is a constant, so that the clutter PSD Pc(F ) = Ph(F )Es(F ) = c or

the optimal signal is one that whitens the clutter. Since the ambient noise is also assumed to be white, this

choice of signal results in the detection of a signal in white noise.

In this case the performance can be shown from (3) and (8) to be

d2 = σ2
A

E
N0

N0
∫W/2
−W/2

1
Ph(F )dF

E + N0
∫W/2
−W/2

1
Ph(F )dF

and noting that σ2
AE/N0 is an upper bound on performance that is attained in the case of no clutter (let

Ph(F ) = 0 and Pn(F ) = N0 in (3)), we see that the optimal detector with optimal signal design cancels

clutter to within a factor of

ξ = 10 log10

N0
∫W/2
−W/2

1
Ph(F )dF

E + N0
∫W/2
−W/2

1
Ph(F )dF

dB. (9)
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The intuitive result is that if Ph(F ) is small within a band of frequencies, we concentrate our energy in that

band (see (8)) and also the detection performance is nearly the upper bound of σ2
AE/N0 if

∫W/2
−W/2

1
Ph(F )dF

is large.

5.2 Manasse’s Result

As a special case of the previous result, assume we also have Ph(F ) = k. This is the case of a clutter PSD

that is a scaled replica of the transmitted signal. Then we essentially have the result of Manasse given in

[26]. From (8) the optimal signal is just

Es(F ) =
E/Ph(F )∫W/2

−W/2
1

Ph(F )dF

=
E/k∫W/2

−W/2
1
kdF

=
E
W

.

The signal should have a flat ESD over the entire frequency band as reported by Manasse. Also, the

degradation is from (9) with Ph(F ) = k

ξ = 10 log10
N0W/k

E + N0W/k

which approaches zero as W → ∞.

5.3 A Numerical Example

We next illustrate the entire approach by using a numerical example. Consider the case where Ph(F ) = 1

and Pn(F ) = exp(−|F |) over the frequency band −1 ≤ F ≤ 1, with the allotted signal energy being

E = 1/8. Hence, this corresponds to a clutter return that is identical to the transmit signal and noise

that is colored. This example has been chosen mainly for convenience since it leads to a simple analytical

solution. However, we will now solve it numerically using MATLAB to illustrate the procedure followed

for more complicated noise and clutter PSDs. From (5) the optimal ESD is

Es(F ) = max
(

exp(−|F |/2) 1√
λ
− exp(−|F |), 0

)
− 1 ≤ F ≤ 1 (10)

and it must integrate to E = 1/8 over the entire frequency band so that

E(λ) =
∫ 1

−1
max

(
exp(−|F |/2) 1√

λ
− exp(−|F |), 0

)
dF =

1
8

must be solved for λ. As described previously, 0 < λ < 1/min(Pn(F )). Here, the minimum value of Pn(F )

is Pn(1) = exp(−1) so that 0 < λ < exp(1). We can search for this noting that the integral or energy is
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Figure 3: Energy of transmit signal as a function of λ.
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Figure 4: Energy spectral density of optimal transmit signal.

a monotonically decreasing function of λ. For this example, E(λ) is shown in Figure 3 from which it is

found that λ = 1.364. Using this value in (10) produces the optimal signal ESD shown in Figure 4. It is

interesting to note that for frequencies below the cutoff frequency of F = ±0.31, there is no signal energy.

This is as expected since the optimal signal will not place energy where the noise PSD Pn(F ) = exp(−|F |)
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is large. Finally, to verify that this is indeed optimal we compute d2 for this ESD as well as for an ESD

that is flat with frequency. We have from (3) that

d2

σ2
A

=
∫ 1

−1

Es(F )
Es(F ) + exp(−|F |)dF

which is found numerically to be d2/σ2
A = 0.2129. A flat ESD of Es(F ) = E/W = 1/16 produces

d2

σ2
A

=
∫ 1

−1

1/16
1/16 + exp(−|F |)dF

which numerically evaluates to d2/σ2
A = 0.1927.

5.4 A Radar Example

In all cases we will assume that Ph(F ) = k, which means that the clutter PSD, which is Pc(F ) =

Ph(F )Es(F ), is equal to a scaled version of the signal ESD. This is a worst case scenario in that there

is no spreading in Doppler of the clutter return. Note that when k = 0 the noise background is devoid of

clutter.

From (5) the optimal ESD is given by

Es(F ) = T |S(F )|2 =
1
k

max
(√

Pn(F )/λ − Pn(F ), 0
)

and the maximum detectability index is from (3)

d2
opt = σ2

A

∫ W/2

−W/2

Es(F )
kEs(F ) + Pn(F )

dF.

As a benchmark to performance consider also a linear FM (LFM), whose ESD is given by

Es(F ) =
E
W

|F | ≤ W/2.

With this signal the detectability index is

d2
LFM = σ2

A

∫ W/2

−W/2

E/W

kE/W + Pn(F )
dF.

We now consider the following scenario. The bandwidth is W = 5 Mhz, the signal pulse width is

T = 1 µ sec, the signal energy is E = 106 joules, the clutter constant is k = 1, and the noise PSD is

Pn(F ) = Pi(F )+N0, where Pi(F ) is the interference PSD, and the ambient noise PSD is N0 = 1 watts/Hz.

(Note that WT = 5 was chosen for this example to illustrate typical radar parameters. Although it does

not satisfy WT > 16, the comparative results will still be correct. Many wideband radar systems do

indeed satisfy this requirement.) The interference is composed of three sinusoidal jammers whose PSD in

watts/Hz is

Pi(F ) = P1

(
sin(π(F − F1)T )

π(F − F1)T

)4

+ P2

(
sin(π(F − F2)T )

π(F − F2)T

)4

+ P3

(
sin(π(F − F3)T )

π(F − F3)T

)4
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where P1 = P2 = 104 and P3 = 105, and the center frequencies are F1 = 1 Mhz, F2 = 0.5 Mhz, and

F3 = −0.25 Mhz. The value obtained for the energy constraint parameter is λ = 0.1098. The optimal ESD

is shown in Figure 5 as the solid curve along with the PSD of the interference and ambient noise shown as

the dashed curve. It can be seen that as expected the signal energy is placed in the frequency bands where
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Figure 5: Optimal transmit ESD and interference plus noise PSD.

the interference power is least. Also, note that over much of the band the signal energy is zero. However,

all the energy in the band is not placed where the interference PSD is minimum. This would only be the

case if the colored noise did not depend on the transmit signal. This is not the case here unless k = 0. In

fact, it is shown in Appendix D that if k = 0, the optimal transmit signal does indeed place all its energy

in the frequency band where the colored noise PSD is minimum. To verify this we let k → 0. In this case

the results are shown in Figure 6 and we recover the usual result for k = 0. Hence, the solution presented

here can be viewed as an extension of the usual result [10].

Finally, the detectability indices for k = 1 (corresponding to Figure 5) are

d2
opt = 53.0 dB

d2
LFM = 46.4 dB

an improvement over the LFM signal of 6.6 dB. For the case of no clutter or k = 0 (corresponding to

Figure 6) the detection improvement over the LFM is 11.4 dB since

d2
opt = 58.0 dB
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d2
LFM = 46.6 dB.
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Figure 6: Optimal transmit ESD and interference plus noise PSD in the absence of clutter.

6 A Signal Synthesis Example

We will assume that Ph(F ) = k, which means that the clutter PSD, which is Pc(F ) = Ph(F )Es(F ), is equal

to a scaled version of the signal ESD. From (5) the optimal ESD is given by

Es(F ) = T |S(F )|2 =
1
k

max
(√

Pn(F )/λ − Pn(F ), 0
)

(11)

and the maximum detectability index is from (3)

d2
opt = σ2

A

∫ W/2

−W/2

Es(F )
kEs(F ) + Pn(F )

dF.

In synthesizing a signal with the optimal ESD we will assume that the radar transmits a pulse train

with the mth pulse multiplied by an amplitude Am > 0 and phase shifted by a phase φm so that the real

transmitted signal is [23]

sR(t) =
M−1∑
m=0

Am cos(2πF0(t − mTp) + φm)u(t − mTp)
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where F0 is the radar center frequency, 1/Tp is the PRF and u(t) is a square pulse of width τ defined as

u(t) =


 1 0 ≤ t ≤ τ

0 otherwise

and τ � Tp. Alternatively, we can write this as

sR(t) = Re

(
M−1∑
m=0

Am exp(j(2πF0(t − mTp) + φm))u(t − mTp)

)

= Re

(
M−1∑
m=0

Am exp(jφm) exp(−j2πF0mTp)u(t − mTp) exp(j2πF0t)

)

and letting s[m] = Am exp(jφm) be the “slow-time” signal sequence and assuming F0Tp is an integer, we

have that

s(t) =
M−1∑
m=0

s[m]u(t − mTp)

is the complex envelope of the transmit signal. If it is assumed that the received waveform is sampled

at the PRF rate (after matched filtering of the pulse), then the received discrete signal will be just s[m].

Hence, we wish to choose s[m] so that the ESD of s(t) is given by (11) over the normalized frequency range

−1/2 ≤ F/(1/Tp) ≤ 1/2. It is assumed that W = 1/Tp.

We now consider the following scenario. The bandwidth is W = 5000 Hz so that the PRF is 1/Tp = 5000

pulses per second, the signal pulse width is τ = 1 µ sec, the signal energy is E = 104 joules, the clutter

constant is k = 1, and the noise PSD is Pn(F ) = Pi(F ) + N0, where Pi(F ) is the interference PSD and the

ambient noise PSD is N0 = 1 watts/Hz. The interference is composed of three Gaussian jammers whose

PSD is

Pi(F ) =
3∑

i=1

Pi exp
[
−(1/(2B))(F − Fi)2

]
where P1 = P2 = 100 and P3 = 1000, and the center frequencies are F1 = 1000 Hz, F2 = 500 Hz, and

F3 = −250 Hz, and B = 104. The PSD of the jammers and ambient noise is shown in Figure 7 as the

dashed curve. The value of the energy constraint parameter is found to be λ = 0.0699. The ESD of the

optimal signal is shown in Figure 7 as the solid curve. It can be seen that as expected the signal energy is

placed in the frequency bands where the interference power is least. Also, note that over much of the band

the signal energy is zero. However, it does not place all the energy in the band where the interference PSD

is minimum.

To synthesize s[m] we use Durbin’s method as described in [20, 24]. Although it is normally used to

estimate the parameters of a moving average random process based on a set of time series data, it can also

be used for signal synthesis. An advantage of Durbin’s method is that it produces a minimum phase signal.

Hence, most of the energy is concentrated up front, making truncation of the sequence less problematic.
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Figure 7: Optimal transmit ESD and jammers plus noise PSD.

To implement Durbin’s method we first take the inverse Fourier transform of the desired ESD to obtain an

autocorrelation function. The autocorrelation samples are used in the Levinson algorithm to solve for a set

of autoregressive parameters using a large autoregressive model order. Then the autoregressive samples are

used as data, the autocorrelation function estimated, and finally the solution of the Yule-Walker equations

provides the moving average parameters. These moving average parameters are our s[m] samples. The

approximation using Durbin’s method for M = 200 yields s[m] as shown in Figure 8. Note that since s[m]

is complex we plot only the magnitude in the figure. Its ESD is shown in Figure 9 and is seen to closely

match the optimal one of Figure 7.

7 Conclusions

A new method has been proposed to design signals for optimal detection performance in signal-dependent

noise. If the channel power spectral density is known, then coupled with knowledge of the noise power

spectral density, it has been shown how to synthesis the transmit waveform. The actual gain realized by

invoking this procedure will be dependent upon the environmental conditions. Extensions to the case of

an extended target and/or spatial processing will be discussed in a future paper.
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A Derivation of Neyman-Pearson Detector and its Performance

As per the assumptions described in Section 2 we consider the following detection problem.

H0 : x(t) = c(t) + n(t)

H1 : x(t) = As(t) + c(t) + n(t)

for −T/2 ≤ t ≤ T/2. The assumptions are that s(t) is a known complex signal, A is a complex random

variable with A ∼ CN (0, σ2
A), c(t) is a complex WSS Gaussian random process with zero mean and PSD

Pc(F ) = Ph(F )T |S(F )|2 = Ph(F )Es(F ), and n(t) is a complex WSS Gaussian random process with zero

mean and PSD Pn(F ). The random variable A, the random processes c(t) and n(t) are all independent of

each other. We convert the received data into the frequency domain using a Fourier transform as defined

by (2) and using the frequency snapshot model [21]. For WT > 16 we can assert that the frequency samples

X(Fm) for Fm = m/T and m = −(M/2), . . . ,M/2 are all independent. They are also complex Gaussian

random variables with zero mean and variance equal to the PSD value, which is Px(Fm). Hence, after

Fourier transforming we obtain the (M + 1) × 1 complex vector

X = [X(F−M/2) . . . X(FM/2)]
T

so that the equivalent detection problem is

H0 : X = C + N

H1 : X = AS + C + N

where all complex vectors are (M + 1)× 1 vectors of the Fourier transform samples. Furthermore, because

of the statistical properties of the vectors, being all complex Gaussian random vectors and all independent

of each other, we have

H0 : X ∼ CN (0,C0)

H1 : X ∼ CN (0, σ2
ASSH + C0)

where C0 is the covariance matrix of C+N. We will give this explicitly later. We now derive the Neyman-

Pearson detector for this problem. A similar one can be found in [10] on page 481, where the noise is

assumed to be white. Hence, this is a slight extension of that result, which is termed the rank one signal

covariance matrix. The PDFs under either hypothesis are complex multivariate Gaussian so that

p(X;H0) =
1

πM+1|det(C0)| exp(−XHC−1
0 X)

p(X;H1) =
1

πM+1|det(C1)| exp(−XHC−1
1 X)
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where C1 = σ2
ASSH + C0. The log-likelihood ratio is

l(X) = ln
p(X;H1)
p(X;H0)

= ln |det(C0)| − ln |det(C1)|︸ ︷︷ ︸
c

+XH(C−1
0 − C−1

1 )X

and ignoring the constant c, we need to simplify the difference of the inverse covariance matrices. But

using Woodbury’s identity we have

(C−1
0 − C−1

1 ) = C−1
0 −

(
C0 + σ2

ASSH
)−1

= C−1
0 − C−1

0 +
C−1

0 σ2
ASSHC−1

0

1 + σ2
ASHC−1

0 S

and hence we have

l(X) = XH C−1
0 σ2

ASSHC−1
0

1 + σ2
ASHC−1

0 S
X

= σ2
A

|XHC−1
0 S|2

1 + σ2
ASHC−1

0 S
.

Again the constants may be ignored so that finally we have the test statistic

T (X) = |XHC−1
0 S|2

which is recognized as a prewhitener/matched filter, although in the frequency domain. It can be simplified

further if we recall that the elements of C0 are

[C0]mn = E[X(Fm)X∗(Fn)]

≈

 0 m 	= n

Px(Fm) m = n.

Hence, C0 is diagonal with diagonal elements [C0]mm = Px(Fm) = Pc(Fm) + Pn(Fm), and we have that

T (X) = |XHC−1
0 S|2

= |SHC−1
0 X|2

=

∣∣∣∣∣∣
M/2∑

m=−(M/2)

S∗(Fm)X(Fm)
Pc(Fm) + Pn(Fm)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
M/2∑

m=−(M/2)

X(Fm)S∗(Fm)
Ph(Fm)T |S(Fm)|2 + Pn(Fm)

∣∣∣∣∣∣
2

which is (1). The performance of this detector is next derived. We first state a general result, which

is derived in Appendix B. It states that if X is a complex random variable with X ∼ CN (0, σ2), then
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P [|X|2 > γ] = exp(−γ/σ2). Furthermore, if only the variance changes under the two hypotheses with σ2
i

denoting the variance under Hi, it is also shown in Appendix B that the probability of detection PD is

related to the probability of false alarm PFA by

PD = P
σ2
0/σ2

1
FA . (12)

We apply this result by determining the PDF of X = XHC−1
0 S under both hypotheses. Since X is a

complex Gaussian random vector, any linear transformation of it produces another complex Gaussian

random variable [18]. The mean of X under either hypothesis is zero since X is zero mean. Hence, we need

only determine its variance or equivalently its second moment. Considering first X under H0 we have

σ2
0 = E[|X|2]

= E[|XHC−1
0 S|2]

= E[SHC−1
0 XXHC−1

0 S]

= SHC−1
0 E[XXH ]C−1

0 S

= SHC−1
0 C0C−1

0 S

= SHC−1
0 S.

Using the diagonal nature of C0, we have that

σ2
0 = SHdiag−1(Pc(Fm) + Pn(Fm))S

=
M/2∑

m=−M/2

|S(Fm)|2
Pc(Fm) + Pn(Fm)

.

Similarly under H1 we have that

σ2
1 = SH(C−1

0 (C0 + σ2
ASSH)C−1

0 S

= σ2
0 + σ2

A|SHC−1
0 S|2︸ ︷︷ ︸

∆

.

Now

σ2
0

σ2
1

=
σ2

0

σ2
0 + ∆

=
1

1 + ∆/σ2
0

and from (12)

PD = P

1

1+∆/σ2
0

FA .
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But PD is monotonically increasing with ∆/σ2
0 for a fixed PFA so that we can quantify our detection

performance by defining

d2 =
∆
σ2

0

=
σ2

A|SHC−1
0 S|2

SHC−1
0 S

.

Since SHC−1
0 S is a real positive quantity (just take the hermitian transpose) we have finally that

d2 = σ2
ASHC−1

0 S

as our figure of merit. This is explicitly evaluated as

d2 = σ2
A

M/2∑
m=−M/2

|S(Fm)|2
Pc(Fm) + Pn(Fm)

and can be approximated as follows

d2 = σ2
A

1
∆F

M/2∑
m=−M/2

|S(Fm)|2
Pc(Fm) + Pn(Fm)

∆F

≈ σ2
A

1
∆F

∫ W/2

−W/2

|S(F )|2
Pc(F ) + Pn(F )

dF

= σ2
A

1
∆F

∫ W/2

−W/2

|S(F )|2
Ph(F )T |S(F )|2 + Pn(F )

dF

= σ2
A

∫ W/2

−W/2

T |S(F )|2
Ph(F )T |S(F )|2 + Pn(F )

dF

where ∆F = 1/T and T is assumed large, and hence producing (3).

B Derivation of Detection Performance

Assume that we have X ∼ CN (0, σ2
0) under H0 and X ∼ CN (0, σ2

1) under H1. The detector decides H1 if

|X|2 > γ. We derive the performance of this detector. Note that for a complex Gaussian random variable

with variance σ2 the real and imaginary parts each have a variance of σ2/2 and are independent. Hence,

we have with X = U + jV

PFA = P [|X|2 > γ;H0]

= P [U2 + V 2 > γ;H0]

= P


( U

σ0/
√

2

)2

+

(
V

σ0/
√

2

)2

> 2γ/σ2
0 ;H0




= P [N2
1 + N2

2 > 2γ/σ2
0 ;H0]

21



where N1 and N2 are independent N(0, 1) random variables. Hence, the sum of their squares is a χ2
2

random variable for which

PFA =
∫ ∞

2γ/σ2
0

1
2

exp(−x/2)dx = exp(−γ/σ2
0).

Similarly, we have that

PD = exp(−γ/σ2
1)

and eliminating the threshold γ produces the desired result of

PD = P

σ2
0

σ2
1

FA.

C Derivation of Optimal Signal Energy Spectral Density

The optimal signal ESD is given by the frequency function |S(F )|2 that maximizes (3). As before we let

Es(F ) = T |S(F )|2 and maximize

I =
∫ W/2

−W/2

Es(F )
Ph(F )Es(F ) + Pn(F )

dF

subject to the energy constraint ∫ W/2

−W/2
Es(F )dF = E

and the nonnegativity constraint Es(F ) ≥ 0 for −W/2 ≤ F ≤ W/2. Because I is a concave functional a

local maximum as determined by a differentiation will also be a global maximum. Note that the constraint

of energy is a linear one (and hence the region is convex) and the constraint of a nonnegative function

also produces a convex region so that this is a convex progamming problem. It is well known that the

maximum can be found by maximizing the Lagrangian [25]. Hence, we form

L(Es(F )) =
∫ W/2

−W/2

Es(F )
Ph(F )Es(F ) + Pn(F )

dF − λ

(∫ W/2

−W/2
Es(F )dF − E

)

or

L(Es(F )) =
∫ W/2

−W/2

( Es(F )
Ph(F )Es(F ) + Pn(F )

− λEs(F )
)

dF + λE . (13)

We note in passing that the actual energy constraint is such that∫ W/2

−W/2
Es(F )dF ≤ E .

However, it can be shown that I is monotonically increasing with E and hence we can replace the inequality

by equality. This also says that for the maximum value of I

∂Imax

∂E > 0
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and since it is well known that

λ =
∂Imax

∂E
this also asserts that the Lagrangian multiplier must be positive. In the course of the derivation we will

establish that I is a concave functional. Since we are free to choose any value of Es(F ) for each F in (13),

as long as it is nonnegative, we can equivalently maximize

G(Es(F )) =
Es(F )

Ph(F )Es(F ) + Pn(F )
− λEs(F )

for each F over Es(F ) ≥ 0. We let x = Es(F ), α = Ph(F ) > 0, and β = Pn(F ) > 0, so that we wish to

maximize

g(x) =
x

αx + β
− λx.

This function is strictly concave on the interval [0,∞) as we now show by differentiation. The first derivative

is

g′(x) =
β

(αx + β)2
− λ (14)

and the second derivative is

g′′(x) = − 2αβ

(αx + β)3
< 0.

Since the second derivative is negative for x ≥ 0, g(x) is concave. This also shows that I is a concave

functional since it is a “sum” of concave functions. To determine the maximizing value of g(x), we set the

first derivative equal to zero to yield
β

(αx + β)2
− λ = 0

and solving for x produces

x0 =
√

β/λ − β

α

as long as x0 is nonnegative. If x0 as given above is nonnegative, then the positivity constraint is not binding

and hence this is the solution. When x0 is negative, however, the constraint is binding and therefore, g is

maximized over [0,∞) by x = 0. This is because if x0 is negative, then

√
β/λ − β < 0

which is equivalent to λ > 1/β. But from (14) we have for λ > 1/β and x > 0

g′(x) =
β

(αx + β)2
− λ

<
β

β2
− λ =

1
β
− λ

< 0

23



and therefore g(x) is monotonically decreasing for x > 0. It is clear then that the maximum over the

interval [0,∞) is at x = 0. We have then that

x = max

(√
β/λ − β

α
, 0

)

and finally

Es(F ) = max

(√
Pn(F )/λ − Pn(F )

Ph(F )
, 0

)

by substituting in the definitions for α and β.

D Recovery of Optimal Signal for the Case of No Clutter

In order to recover the non-signal-dependent noise case we will let Ph(F ) = k in (5) and (6) and then let

k → 0. First multiplying both sides of (6) by k > 0, we have for the energy constraint

∫ W/2

−W/2
max

(√
Pn(F )/λ − Pn(F ), 0

)
dF = kE .

Next note that the integrand is nonnegative and monotonically decreasing with λ. It becomes zero when

1/λ = min(Pn(F )). To simplify the discussion we assume that the minimum of Pn(F ) occurs at a single

frequency. If we let 1/λ = min(Pn(F ))+ ε for ε > 0 (the necessary value of λ as k → 0), then the integrand

as k → 0 is

max
(√

Pn(F )(min(Pn(F )) + ε) − Pn(F ), 0
)

.

Letting α = min(Pn(F )) + ε and x = Pn(F ), then

√
Pn(F )(min(Pn(F )) + ε) − Pn(F ) =

√
αx − x.

It is clear that for
√

αx − x ≤ 0

we must have x ≥ α. Thus, the integrand will be zero if Pn(F ) ≥ min(Pn(F ))+ ε and since ε was arbitrary,

the integrand will be zero if Pn(F ) > min(Pn(F )). This says that as k → 0, the only part of the frequency

band that will contribute to the energy is the frequency band for which Pn(F ) ≤ min(Pn(F )) and hence all

the signal energy will be concentrated at the frequency for which Pn(F ) is minimum. This is the classical

result.
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