Due: Due beginning of lab the next week. Be sure to email your machine code listings to the TA.

Goal: To learn to program the LC-3 computer in its native machine code.

For all of the following problems, write your machine code in binary, have your program start at memory location x3000, and end with a HALT instruction (b1111000000100101). In the simulator, manually set the source registers to verify your programs work correctly.

- 1. The LC-3 instruction set includes only the NOT and the AND logical operations. Write four separate programs in the LC-3 machine language that implement the NAND, OR, NOR, and XOR operations. Implement each of these operations as follows.
 - (a) $R1 \leftarrow R2 \text{ NAND } R3$
 - (b) $R1 \leftarrow R2 \text{ OR } R3$
 - (c) $R1 \leftarrow R2 NOR R3$
 - (d) $R1 \leftarrow R2 \text{ XOR } R3$

After thoroughly testing your programs, demonstrate them to your TA using the values

R2: x0003 which is binary 0011

R3: x0005 which is binary 0101

Write the value you expect to see in R1 for each case:

(:		(1	h)	((c))	((ď	1
١,	<i>~,</i>	(\sim ,		· •		1.	•	

2. Write an LC-3 program to evaluate the following truth table. You can simplify it as much as you want. Use R2 for A, R3 for B, R4 for C, and R1 for Z.

Α	В	C	Z
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

After thoroughly testing your program, demonstrate it to your TA using the values

R2 (A): x000F which is binary 00001111

R3 (B): x0033 which is binary 00110011

R4 (C): x0055 which is binary 01010101

Write the value you expect to see in R1 for this test case:

3. Write an LC-3 program to compute the difference between two numbers. Implement the operation as follows:

$$R1 \leftarrow R2 - R3$$

After thoroughly testing your program, demonstrate it using x0F75 in R2 and x07FC in R3.

Write the value you expect to see in R1 for this test case:

LC-3 Instruction Set

Logic properties:

$$ABC+DEC = (AB+DE)C$$

$$AA = A + A = A$$

$$AB = BA$$

$$A + B = B + A$$

$$A + \overline{A} = 1$$

$$A\overline{A} = 0$$

DeMorgan's Law:

$$A + B = \overline{\overline{A}} \, \overline{\overline{B}}$$

$$AB = \overline{\overline{A} + \overline{B}}$$