
Traditional Four Questions for
Memory Hierarchy Designers

• Q1: Where can a block be placed in the upper level?
(Block placement)

– Fully Associative, Set Associative, Direct Mapped
• Q2: How is a block found if it is in the upper level?

(Block identification)
– Tag/Block

• Q3: Which block should be replaced on a miss?
(Block replacement)

– Random, LRU
• Q4: What happens on a write?

(Write strategy)
– Write Back or Write Through (with Write Buffer)

Q4: What happens on a write?

• Write through—The information is written to
both the block in the cache and to the block in
the lower-level memory.

• Write back—The information is written only to
the block in the cache. The modified cache
block is written to main memory only when it
is replaced.

– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no repeated writes to same location

• WT always combined with write buffers so
that don’t wait for lower level memory

Write Buffer for Write Through

• A Write Buffer is needed between the Cache and
Memory

– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

• Memory system designer’s nightmare:
– Store frequency (w.r.t. time) -> 1 / DRAM write cycle
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM

What are all the aspects of
cache organization that impact

performance?

• Miss-oriented Approach to Memory Access:

– CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess
Execution

CPIICCPUtime ×⎟
⎠
⎞

⎜
⎝
⎛ ××+×=

CycleTimeyMissPenalt
Inst

MemMisses
Execution

CPIICCPUtime ×⎟
⎠
⎞

⎜
⎝
⎛ ×+×=

Review: Cache performance

• Separating out Memory component entirely
– AMAT = Average Memory Access Time
– CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccessCPI
Inst

AluOpsICCPUtime AluOps ×⎟
⎠
⎞

⎜
⎝
⎛ ×+××=

yMissPenaltMissRateHitTimeAMAT ×+=
()
()DataDataData

InstInstInst

yMissPenaltMissRateHitTime
yMissPenaltMissRateHitTime

×+

+×+=

Impact on Performance
• Suppose a processor executes at

– Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1
– 50% arith/logic, 30% ld/st, 20% control

• Suppose that 10% of memory operations get 50 cycle miss
penalty

• Suppose that 1% of instructions get same miss penalty
• CPI = ideal CPI + average stalls per instruction

1.1(cycles/ins) +
[0.30 (DataMops/ins)

x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins)

x 0.01 (miss/InstMop) x 50 (cycle/miss)]
= (1.1 + 1.5 + .5) cycle/ins = 3.1

• 58% of the time the proc is stalled waiting for memory!
• AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

Unified vs Split Caches
• Unified vs Separate I&D

• Example:
– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%
– 32KB unified: Aggregate miss rate=1.99%

• Which is better (ignore L2 cache)?
– Assume 33% data ops ⇒ 75% accesses from instructions (1.0/1.33)
– hit time=1, miss time=50
– Note that data hit has 1 stall for unified cache (only one port)

AMATHarvard=75%x(1+0.64%x50)+25%x(1+6.47%x50) = 2.05
AMATUnified=75%x(1+1.99%x50)+25%x(1+1+1.99%x50)= 2.24

ProcI-Cache-1
Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1
Proc

Unified
Cache-2

How to Improve Cache
Performance?

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

yMissPenaltMissRateHitTimeAMAT ×+=

Where do misses come from?
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache,
so the block must be brought into the cache. Also called cold start
misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur due to
blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity
misses) will occur because a block can be discarded and later
retrieved if too many blocks map to its set. Also called collision
misses or interference misses.
(Misses in N-way Associative, Size X Cache)

• 4th “C”:
– Coherence - Misses caused by cache coherence.

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate
(SPEC92)

Conflict

Cache Size

• Old rule of thumb: 2x size => 25% cut in miss rate
• What does it reduce?

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Cache Organization?

• Assume total cache size not changed:
• What happens if:

1) Change Block Size:

2) Change Associativity:

3) Change Compiler:

Which of 3Cs is obviously affected?

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

Larger Block Size
(fixed size&assoc)

Reduced
compulsory

misses Increased
Conflict
Misses

What else drives up block size?

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Associativity
Conflict

3Cs Relative Miss Rate

Cache Size (KB)

0%

20%

40%

60%

80%

100%

1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size
Good: insight => invention

Associativity vs Cycle Time

• Beware: Execution time is only final measure!
• Why is cycle time tied to hit time?

• Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way

external cache +10%,
internal + 2%

– suggested big and dumb caches

Effective cycle time of assoc
pzrbski ISCA

Example: Avg. Memory Access
Time vs. Miss Rate

• Example: assume CCT = 1.10 for 2-way, 1.12 for 4-way,
1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way

1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

Fast Hit Time + Low Conflict =>
Victim Cache

• How to combine fast hit time of
direct mapped
yet still avoid conflict misses?

• Add buffer to place data
discarded from cache

• Jouppi [1990]: 4-entry victim
cache removed 20% to 95% of
conflicts for a 4 KB direct
mapped data cache

• Used in Alpha, HP machines

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

Reducing Misses via
“Pseudo-Associativity”

• How to combine fast hit time of Direct Mapped and have the lower
conflict misses of 2-way SA cache?

• Divide cache: on a miss, check other half of cache to see if there, if
so have a pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to processor (L2)
– Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

Reducing Misses by Hardware
Prefetching of Instructions & Data
• E.g., Instruction Prefetching

– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB

cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8

streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory
bandwidth that can be used without penalty

Reducing Misses by
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults; a form of

speculative execution
• Prefetching comes in two flavors:

– Binding prefetch: Requests load directly into register.
» Must be correct address and register!

– Non-Binding prefetch: Load into cache.
» Can be incorrect. Faults?

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

Reducing Misses by Compiler
Optimizations

• McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound elements

vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order stored in

memory
– Loop Fusion: Combine 2 independent loops that have same looping and some

variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data repeatedly vs.

going down whole columns or rows

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through
memory every 100 words; improved spatial
locality

Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access;
improve spatial locality

Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits

Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to N3/B+2N2

• Conflict Misses Too?

Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the misses vs.

48 despite both fit in cache

Blocking Factor

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand) Summary: Miss Rate Reduction

• 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Prefetching comes in two flavors:
– Binding prefetch: Requests load directly into register.

» Must be correct address and register!
– Non-Binding prefetch: Load into cache.

» Can be incorrect. Frees HW/SW to guess!

CPUtime = IC × CPI Execution +
Memory accesses

Instruction
× Miss rate × Miss penalty⎛

⎝
⎞
⎠ × Clock cycle time

Review: Improving Cache
Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Write Policy:
Write-Through vs Write-Back

• Write-through: all writes update cache and underlying memory/cache
– Can always discard cached data - most up-to-date data is in memory
– Cache control bit: only a valid bit

• Write-back: all writes simply update cache
– Can’t just discard cached data - may have to write it back to memory
– Cache control bits: both valid and dirty bits

• Other Advantages:
– Write-through:

» memory (or other processors) always have latest data
» Simpler management of cache

– Write-back:
» much lower bandwidth, since data often overwritten multiple times
» Better tolerance to long-latency memory?

Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

• Write allocate: allocate new cache line in cache
– Usually means that you have to do a “read miss” to fill

in rest of the cache-line!
– Alternative: per/word valid bits

• Write non-allocate (or “write-around”):
– Simply send write data through to underlying

memory/cache - don’t allocate new cache line!

1. Reducing Miss Penalty:
Read Priority over Write on Miss

• Write-through w/ write buffers => RAW conflicts with
main memory reads on cache misses

– If simply wait for write buffer to empty, might increase read miss
penalty (old MIPS 1000 by 50%)

– Check write buffer contents before read;
if no conflicts, let the memory access continue

• Write-back want buffer to hold displaced blocks
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read, and then

do the write
– CPU stall less since restarts as soon as do read

2. Reduce Miss Penalty:
Early Restart and Critical Word First

• Don’t wait for full block to be loaded before restarting
CPU

– Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

– Critical Word First—Request the missed word first from memory and
send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

• Generally useful only in large blocks,
• Spatial locality => tend to want next sequential word,

so not clear if benefit by early restart

block

3. Reduce Miss Penalty: Non-blocking
Caches to reduce stalls on misses

• Non-blocking cache or lockup-free cache allow data
cache to continue to supply cache hits during a miss

– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss” reduces the effective miss penalty
by working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may
further lower the effective miss penalty by overlapping
multiple misses

– Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses

– Requires muliple memory banks (otherwise cannot support)
– Penium Pro allows 4 outstanding memory misses

Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
pr

es
so

xl
is

p

co
m

pr
es

s

m
dl

js
p2 ea

r

fp
pp

p

to
m

ca
tv

sw
m

25
6

do
du

c

su
2c

or

w
av

e5

m
dl

jd
p2

hy
dr

o2
d

al
vi

nn

na
sa

7

sp
ic

e2
g6 or

a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

4: Add a second-level cache
• L2 Equations

AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit TimeL2 + Miss RateL2 + Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total number of

memory accesses to this cache (Miss rateL2)
– Global miss rate—misses in this cache divided by the total number of

memory accesses generated by the CPU

– Global Miss Rate is what matters

Comparing Local and Global
Miss Rates

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to
single level cache rate
provided L2 >> L1

• Don’t use local miss rate
• L2 not tied to CPU clock

cycle!
• Cost & A.M.A.T.
• Generally Fast Hit Times

and fewer misses
• Since hits are few, target

miss reduction

Linear

Log

Cache Size

Cache Size

Reducing Misses:
Which apply to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations

Relative CPU Time

Block Size

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size & A.M.A.T.

• 32KB L1, 8 byte path to memory

Reducing Miss Penalty Summary

• Four techniques
– Read priority over write on miss
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit under Miss, Miss under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in

between
– First attempts at L2 caches can make things worse, since

increased worst case is worse

CPUtime = IC × CPI Execution +
Memory accesses

Instruction
× Miss rate × Miss penalty⎛

⎝
⎞
⎠ × Clock cycle time

What is the Impact of What
You’ve Learned About Caches?

• 1960-1985: Speed
= ƒ(no. operations)

• 1990
– Pipelined

Execution &
Fast Clock Rate

– Out-of-Order
execution

– Superscalar
Instruction Issue

• 1998: Speed =
ƒ(non-cached memory accesses)

• Superscalar, Out-of-Order machines hide L1 data cache miss
(-5 clocks) but not L2 cache miss (-50 clocks)?

1

10

100

1000

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

Pitfall: Predicting Cache Performance
from Different Prog. (ISA, compiler, ...)

• 4KB Data cache miss
rate 8%,12%, or 28%?

• 1KB Instr cache miss
rate 0%,3%,or 10%?

• Alpha vs. MIPS
for 8KB Data $:
17% vs. 10%

• Why 2X Alpha v.
MIPS?

0%

5%

10%

15%

20%

25%

30%

35%

1 2 4 8 16 32 64 128
Cache Size (KB)

Miss
Rate

D: tomcatv
D: gcc
D: espresso
I: gcc
I: espresso
I: tomcatv

D$, Tom

D$, gcc

D$, esp

I$, gcc

I$, esp

I$, Tom

Cache Optimization Summary
Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2
Better memory system + 3
Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Caches + 2

m
is

s
ra

te
hi

t t
im

e
m

is
s

pe
na

lty

Virtual Memory

The issues(s)

• DRAM is too expensive to buy gigabytes
– Yet we want our programs to work even if

they require more DRAM than we bought.
– We also don’t want a program that works on a

machine with 128MB of DRAM to stop
working if we try to run it on a machine with
only 64MB of main memory.

• We run more than one program on the
machine.

Solution: User control

• Leave the problem to the programmer
– Assume the programmer knows the exact

configuration of the machine.
• Programmer must either make sure the program

fits in memory, or break the program up into pieces
that do fit and load each other off the disk when
necessary

Solution: Virtual memory

• Build new hardware and software that
automatically translates each memory
reference from a virtual address (that the
programmer sees as an array of bytes) to a
physical address (that the hardware uses to
either index DRAM or identify where the
storage resides on disk)

Basics of Virtual Memory

• Any time you see the word virtual in
computer science and architecture it means
“using a level of indirection”

• Virtual memory hardware changes the
virtual address the programmer sees into
the physical ones the memory chips see.

0x800

Virtual address

0x3C00

Physical address

Disk ID 803C4

Virtual Memory View

• Virtual memory lets the programmer “see” a
memory array larger than the DRAM
available on a particular computer system.

• Virtual memory enables multiple programs to
share the physical memory without:
– Knowing other programs exist (transparency).
– Worrying about one program modifying the data

contents of another (protection).

Managing virtual memory

• Managed by hardware logic and operating
system software.
– Hardware for speed
– Software for flexibility and because disk

storage is controlled by the operating system.

Virtual Memory

• Treat main memory like a cache
– Misses go to the disk

• How do we minimize disk accesses?
– Buy lots of memory.
– Exploit temporal locality

• Fully associative? Set associative? Direct mapped?

– Exploit spatial locality
• How big should a block be?

– Write-back or write-through?

Virtual memory terminology

• Blocks are called Pages
– A virtual address consists of

• A virtual page number
• A page offset field (low order bits of the address)

• Misses are called Page faults
– and they are generally handled as an exception

Virtual page number Page offset
01131

Caching vs Demand Paging

CPU CPUcache primary
memory

primary
memory

secondary
memory

caching demand paging
cache entry page-frame
cache block (~16 bytes) page (~4k bytes)
cache miss (1% to 20%) page fault (~.001%)
cache hit (~1 cycle) page hit (~10 cycles)
cache miss (~10 cycles) page fault(~10K cycles)
a miss is handled in a miss is handled mostly in

hardware software

Modern Virtual Memory Systems:
illusion of a large, private, uniform store

Demand Paging
capacity of secondary memory
at the speed of primary memory

Address Translation
dynamic relocation
large “perceived” address space

Protection
several users, each with their private
address space and a common system
space

VA PAmap
-ping

OS

useri

Primary
Memory

Swapping
Store

Virtual to Physical Address Translation

de
co

de
r

Physical Address

Virtual Address

Main MemoryPA = f(VA)

Swap Disk

Page-Based Virtual Memory

de
co

de
r

de
co

de
r

Physical
Page

Number

Translation
memory

(page table)

Page offset

Main memory pages

Virtual address

Virtual
page
number

Physical address

Where to hold this translation memory and
how much translation memory do we need?

(64-bit)

(40-bit)

(12-bit)

(52-bit)

(~8-bytes)

(1~10 GBytes)

(10 ~ 100 GBytes)

Pages: virtual memory blocks
• Page faults: the data is not in memory, retrieve it from disk

– huge miss penalty, thus pages should be fairly large (e.g., 4KB)
– reducing page faults is important (LRU is worth the price)
– can handle the faults in software instead of hardware
– using write-through is too expensive so we use writeback

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

Address Translation

0

0

0

Virtual
address address

Physical

Disk
addresses

Address
translation

The address translation
information of the
program is contained
in the Page Table.

Page table components

Page table register

Virtual page number Page offset

1 Physical page number

Physical page number Page offset

valid Physical page number

Page table register points to
beginning of page table

Page table components

Page table register

0x00004 0x0F3

1 0x020C0

0x020C0 0x0F3

valid Physical page number

Physical address = 0x020C00F3

Page table components

Page table register

0x00002 0x082

0 Disk address

valid Physical page number

Exception:
page fault

1. Stop this process
2. Pick page to replace
3. Write back data
4. Get referenced page
5. Update page table
6. Reschedule process

How do we find it on disk?

• That is not a hardware problem! ☺
• Most operating systems partition the disk

into logical devices (C: , D: , /home, etc.)
• They also have a hidden partition to

support the disk portion of virtual memory
– Swap partition on UNIX machines
– You then index into the correct page in the

swap partition.

Size of page table

• How big is a page table entry?
– For MIPS the virtual address is 32 bits

• If the machine can support 1GB = 230 of physical memory
and we use pages of size 4KB = 212, then the physical page
number is 30-12 = 18 bits. Plus another valid bit + other
useful stuff (read only, dirty, etc.)

• Let say about 3 bytes.

• How many entries in the page table?
– MIPS virtual address is 32 bits – 12 bit page offset =

220 or ~1,000,000 entries
• Total size of page table: 220 x 18 bits ~ 3 MB

Putting it all together

• Loading your program in memory
• Ask operating system to create a new process
• Construct a page table for this process
• Mark all page table entries as invalid with a

pointer to the disk image of the program
• That is, point to the executable file containing the

binary.
• Run the program and get an immediate page

fault on the first instruction.

Page replacement strategies

• Page table indirection enables a fully
associative mapping between virtual and
physical pages.

• How do we implement LRU?
– True LRU is expensive, but LRU is a heuristic

anyway, so approximating LRU is fine
– Reference bit on page, cleared occasionally by

operating system. Then pick any
“unreferenced” page to evict.

Performance of virtual memory

• To translate a virtual address into a physical
address, we must first access the page table in
physical memory.

• Then we access physical memory again to get (or
store) the data
• A load instruction performs at least 2 memory reads
• A store instruction performs at least 1 read and then a

write.
• Every memory access performs at least one slow

access to main memory!

Translation lookaside buffer

• We fix this performance problem by
avoiding main memory in the translation
from virtual to physical pages.

• We buffer the common translations in a
Translation lookaside buffer (TLB), a
fast cache memory dedicated to storing a
small subset of valid VtoP translations.

Making Address Translation
Fast

• A cache for address translations: translation lookaside buffer

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page

number

Physical page
or disk address

Physical memory

Disk storage

Translation Look-aside Buffer
(TLB)

=

Index

Tag

Physical page no.

Physical address

Page offset

Virtual address
Virtual page no.

Page
offset

A cache of address translations

tag idx

Set-Associative and Fully Associative
TLBs

=
=

Physical address

Page
offset

Virtual page no.

PPN tag

Phy. pg. no.

page offset tag

=
=
=

=

Virtual
page
no.

Physical address

Page
offset

PPN tag

Phy. pg. no.

page offset

Virtual to Physical Address Translation
Effective
Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
OS
Table Walk

Protection
Check

Physical
Address
To Cache

miss hit

succeed fail denied permitted

Protection
Fault

≤ 1 pclk

≤ 1 pclk100’s pclk

10000’s pclk

Where is the TLB lookup?

• We put the TLB lookup in the pipeline
after the virtual address is calculated and
before the memory reference is performed.
– This may be before or during the data cache

access.
– Without a TLB we need to perform the

translation during the memory stage of the
pipeline.

Placing caches in a VM system

• VM systems give us two different
addresses: virtual and physical

• Which address should we use to access the
data cache?
– Virtual address (before VM translation)

• Faster access? More complex?

– Physical address (after VM translations)
• Delayed access?

Placing caches in a VM system

• VM systems give us two different
addresses: virtual and physical

• Which address should we use to access the
data cache?
– Virtual address (before VM translation)

• Faster access? More complex?

– Physical address (after VM translations)
• Delayed access?

Physically addressed caches

• Perform TLB lookup before cache tag
comparison.
– Use bits from physical address to index set
– Use bits from physical address to compare tag

• Slower access?
– Tag lookup takes place after the TLB lookup.

• Simplifies some VM management
– When switching processes, TLB must be invalidated,

but cache OK to stay as is.

Cache Placement and Address
Translation

CPU Virtual
Cache

MMU
Physical
Memory

VA

PA

CPU Physical
Cache

MMU
Physical
Memory

VA

PA
Physical Cache (Most Systems)

aliasing problem

cold start after
context switch

longer
hit time

Virtual Cache (SPARC2’s)

Virtual caches are not popular anymore because
MMU and CPU can be integrated on one chip

fetch critical path

fetch critical path

Tag Index Page Offset (PO)

TLB

Phy. Page No. (PPN) PO
Tag Index BO

D-cache

Data

k
g

p

Virtual
Address
(n=v+g bits)

Physical
Address
(m=p+g bits)

Virtual Page No. (VPN)

v-k

t i b

Physically Indexed Cache

Page offsetVirtual page

Picture of Physical caches

Virtual address

Set1 tag
Set1 tag

Set0 tag
Set0 tag

Set2 tag
Set2 tag

Tag
cmp

Tag
cmp

Cache

tag PPN
tag PPN
tag PPN
tag PPN

Page offsetPPN

tag index Block
offset

Virtually addressed caches

• Perform the TLB lookup at the same time as the
cache tag compare.
– Uses bits from the virtual address to index the cache

set
– Uses bits from the virtual address for tag match.

• Problems:
– Aliasing: Two processes may refer to the same

physical location with different virtual addresses.
– When switching processes, TLB must be invalidated,

and dirty cache blocks must be written back to
memory.

Synonym (or Aliasing)
• When VPN bits are used in

indexing, two virtual addresses
that map to the same physical
address can end up sitting in
two cache lines

• In other words, two copies of
the same physical memory
location may exist in the cache
⇒ modification to one copy
won’t be visible in the other

=

Tag Index Page Offset

D-cache

PPN
Data

Hit/Miss

p

Index BO

i b

p

Virtual Pg No. (VPN)

a

PPN
from
TLB

If the two VPNs do not differ in a then there is no aliasing problem

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to

index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K:

11 2
00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; or
SW guarantee VA[13]=PA[13]

1K
4 4

10
2 way set assoc cache

Virtually Indexed Cache
Parallel Access to TLB and Cache arrays

=

Virtual Pg No. (VPN)
Tag Index Page Offset Tag Index Page Offset

TLB

D-cache
PPN

PPN
Data

Hit/Miss

p

p

gk Index BOv-k

i b

p

p

Virtual Pg No. (VPN)

How large can a virtually indexed cache get?

Large Virtually Indexed Cache

=

Virtual Pg No. (VPN)
Tag Index Page Offset Tag Index Page Offset

TLB

D-cache
PPN

PPN
Data

Hit/Miss

p

p

gk Index BOv-k

i b

p

p

Virtual Pg No. (VPN)

If two VPNs differs in a, but both map to the same PPN then
there is an aliasing problem

a

Picture of Virtual Caches

tag index Block offset

Virtual address

Set1 tag
Set1 tag

Set0 tag
Set0 tag

Set2 tag
Set2 tag

Tag
cmp

Tag
cmp

• TLB is accessed in parallel with cache lookup
• Physical address is used to access main memory in case of a
cache miss.

OS support for Virtual Memory

• It must be able to modify the page table
register, update page table values, etc.
– To enable the OS to do this, AND not the user

program, we have different execution modes
for a process – one which has executive (or
supervisor or kernel level) permissions and
one that has user level permissions.

