
Instruction Level Parallelism
and Superscalar Processors

What is Superscalar?
• Common instructions (arithmetic, load/store,

conditional branch) can be initiated and
executed independently

• Equally applicable to RISC & CISC
• In practice usually RISC

Why Superscalar?
• Most operations are on scalar quantities (see

RISC notes)
• Improve these operations to get an overall

improvement

General Superscalar Organization

Superpipelined
• Many pipeline stages need less than half a clock

cycle
• Double internal clock speed gets two tasks per

external clock cycle
• Superscalar allows parallel fetch execute

Superscalar v
Superpipeline

Limitations
• Instruction level parallelism
• Compiler based optimisation
• Hardware techniques
• Limited by

—True data dependency
—Procedural dependency
—Resource conflicts
—Output dependency
—Antidependency

True Data Dependency
• ADD r1, r2 (r1 := r1+r2;)
• MOVE r3,r1 (r3 := r1;)
• Can fetch and decode second instruction in

parallel with first
• Can NOT execute second instruction until first is

finished

Procedural Dependency
• Can not execute instructions after a branch in

parallel with instructions before a branch
• Also, if instruction length is not fixed,

instructions have to be decoded to find out how
many fetches are needed

• This prevents simultaneous fetches

Resource Conflict
• Two or more instructions requiring access to the

same resource at the same time
—e.g. two arithmetic instructions

• Can duplicate resources
—e.g. have two arithmetic units

Effect of
Dependencies Design Issues

• Instruction level parallelism
—Instructions in a sequence are independent
—Execution can be overlapped
—Governed by data and procedural dependency

• Machine Parallelism
—Ability to take advantage of instruction level

parallelism
—Governed by number of parallel pipelines

Instruction Issue Policy
• Order in which instructions are fetched
• Order in which instructions are executed
• Order in which instructions change registers and

memory

In-Order Issue
In-Order Completion
• Issue instructions in the order they occur
• Not very efficient
• May fetch >1 instruction
• Instructions must stall if necessary

In-Order Issue In-Order Completion
(Diagram)

In-Order Issue
Out-of-Order Completion
• Output dependency

—R3:= R3 + R5; (I1)
—R4:= R3 + 1; (I2)
—R3:= R5 + 1; (I3)
—I2 depends on result of I1 - data dependency
—If I3 completes before I1, the result from I1 will be

wrong - output (read-write) dependency

In-Order Issue Out-of-Order Completion
(Diagram)

Out-of-Order Issue
Out-of-Order Completion
• Decouple decode pipeline from execution

pipeline
• Can continue to fetch and decode until this

pipeline is full
• When a functional unit becomes available an

instruction can be executed
• Since instructions have been decoded, processor

can look ahead

Out-of-Order Issue Out-of-Order
Completion (Diagram) Antidependency

• Write-write dependency
—R3:=R3 + R5; (I1)
—R4:=R3 + 1; (I2)
—R3:=R5 + 1; (I3)
—R7:=R3 + R4; (I4)
—I3 can not complete before I2 starts as I2 needs a

value in R3 and I3 changes R3

Register Renaming
• Output and antidependencies occur because

register contents may not reflect the correct
ordering from the program

• May result in a pipeline stall
• Registers allocated dynamically

—i.e. registers are not specifically named

Register Renaming example
• R3b:=R3a + R5a (I1)
• R4b:=R3b + 1 (I2)
• R3c:=R5a + 1 (I3)
• R7b:=R3c + R4b (I4)
• Without subscript refers to logical register in

instruction
• With subscript is hardware register allocated
• Note R3a R3b R3c

Machine Parallelism
• Duplication of Resources
• Out of order issue
• Renaming
• Not worth duplication functions without register

renaming
• Need instruction window large enough (more

than 8)

Branch Prediction
• 80486 fetches both next sequential instruction

after branch and branch target instruction
• Gives two cycle delay if branch taken

RISC - Delayed Branch
• Calculate result of branch before unusable

instructions pre-fetched
• Always execute single instruction immediately

following branch
• Keeps pipeline full while fetching new instruction

stream
• Not as good for superscalar

—Multiple instructions need to execute in delay slot
—Instruction dependence problems

• Revert to branch prediction

Superscalar Execution

Superscalar Implementation
• Simultaneously fetch multiple instructions
• Logic to determine true dependencies involving

register values
• Mechanisms to communicate these values
• Mechanisms to initiate multiple instructions in

parallel
• Resources for parallel execution of multiple

instructions
• Mechanisms for committing process state in

correct order

Pentium 4
• 80486 - CISC
• Pentium – some superscalar components

—Two separate integer execution units

• Pentium Pro – Full blown superscalar
• Subsequent models refine & enhance

superscalar design

Pentium 4 Block Diagram Pentium 4 Operation
• Fetch instructions form memory in order of

static program
• Translate instruction into one or more fixed

length RISC instructions (micro-operations)
• Execute micro-ops on superscalar pipeline

—micro-ops may be executed out of order
• Commit results of micro-ops to register set in

original program flow order
• Outer CISC shell with inner RISC core
• Inner RISC core pipeline at least 20 stages

—Some micro-ops require multiple execution stages
– Longer pipeline

—c.f. five stage pipeline on x86 up to Pentium

Pentium 4 Pipeline Pentium 4 Pipeline Operation (1)

Pentium 4 Pipeline Operation (2) Pentium 4 Pipeline Operation (3)

Pentium 4 Pipeline Operation (4) Pentium 4 Pipeline Operation (5)

Pentium 4 Pipeline Operation (6) PowerPC
• Direct descendent of IBM 801, RT PC and

RS/6000
• All are RISC
• RS/6000 first superscalar
• PowerPC 601 superscalar design similar to

RS/6000
• Later versions extend superscalar concept

PowerPC 601 General View
PowerPC 601
Pipeline
Structure

PowerPC 601 Pipeline
Intel IA-64 Architecture

ITANIUM

Background to IA-64
• Pentium 4 appears to be last in x86 line
• Intel & Hewlett-Packard (HP) jointly developed
• New architecture

—64 bit architecture
—Not extension of x86
—Not adaptation of HP 64bit RISC architecture

• Exploits vast circuitry and high speeds
• Systematic use of parallelism
• Departure from superscalar

Motivation
• Instruction level parallelism

—Implicit in machine instruction
—Not determined at run time by processor

• Long or very long instruction words (LIW/VLIW)
• Branch predication (not the same as branch

prediction)
• Speculative loading
• Intel & HP call this Explicit Parallel Instruction

Computing (EPIC)
• IA-64 is an instruction set architecture intended

for implementation on EPIC
• Itanium is first Intel product

Superscalar v IA-64 Why New Architecture?
• Not hardware compatible with x86
• Now have tens of millions of transistors available on chip
• Could build bigger cache

— Diminishing returns

• Add more execution units
— Increase superscaling
— “Complexity wall”
— More units makes processor “wider”
— More logic needed to orchestrate
— Improved branch prediction required
— Longer pipelines required
— Greater penalty for misprediction
— Larger number of renaming registers required
— At most six instructions per cycle

Explicit Parallelism
• Instruction parallelism scheduled at compile

time
—Included with machine instruction

• Processor uses this info to perform parallel
execution

• Requires less complex circuitry
• Compiler has much more time to determine

possible parallel operations
• Compiler sees whole program

General Organization

Key Features
• Large number of registers

—IA-64 instruction format assumes 256
– 128 * 64 bit integer, logical & general purpose
– 128 * 82 bit floating point and graphic

—64 * 1 bit predicated execution registers (see later)
—To support high degree of parallelism

• Multiple execution units
—Expected to be 8 or more
—Depends on number of transistors available
—Execution of parallel instructions depends on

hardware available
– 8 parallel instructions may be spilt into two lots of four if

only four execution units are available

IA-64 Execution Units
• I-Unit

—Integer arithmetic
—Shift and add
—Logical
—Compare
—Integer multimedia ops

• M-Unit
—Load and store

– Between register and memory
—Some integer ALU

• B-Unit
—Branch instructions

• F-Unit
—Floating point instructions

Instruction Format Diagram Instruction Format
• 128 bit bundle

—Holds three instructions (syllables) plus template
—Can fetch one or more bundles at a time
—Template contains info on which instructions can be

executed in parallel
– Not confined to single bundle
– e.g. a stream of 8 instructions may be executed in parallel
– Compiler will have re-ordered instructions to form

contiguous bundles
– Can mix dependent and independent instructions in same

bundle

—Instruction is 41 bit long
– More registers than usual RISC
– Predicated execution registers (see later)

Assembly Language Format
• [qp] mnemonic [.comp] dest = srcs //
• qp - predicate register

— 1 at execution then execute and commit result to hardware
— 0 result is discarded

• mnemonic - name of instruction
• comp – one or more instruction completers used to

qualify mnemonic
• dest – one or more destination operands
• srcs – one or more source operands
• // - comment
• Instruction groups and stops indicated by ;;

— Sequence without read after write or write after write
— Do not need hardware register dependency checks

Assembly Examples
ld8 r1 = [r5] ;; //first group
add r3 = r1, r4 //second group
• Second instruction depends on value in r1

—Changed by first instruction
—Can not be in same group for parallel execution

Predication
Speculative
Loading

Control & Data Speculation
• Control

—AKA Speculative loading
—Load data from memory before needed

• Data
—Load moved before store that might alter memory

location
—Subsequent check in value

Software Pipelining
L1: ld4 r4=[r5],4 ;; //cycle 0 load postinc 4

add r7=r4,r9 ;; //cycle 2
st4 [r6]=r7,4 //cycle 3 store postinc 4
br.cloop L1 ;; //cycle 3

• Adds constant to one vector and stores result in another
• No opportunity for instruction level parallelism
• Instruction in iteration x all executed before iteration x+1 begins
• If no address conflicts between loads and stores can move

independent instructions from loop x+1 to loop x

Unrolled Loop
ld4 r32=[r5],4;; //cycle 0
ld4 r33=[r5],4;; //cycle 1
ld4 r34=[r5],4 //cycle 2
add r36=r32,r9;; //cycle 2
ld4 r35=[r5],4 //cycle 3
add r37=r33,r9 //cycle 3
st4 [r6]=r36,4;; //cycle 3
ld4 r36=[r5],4 //cycle 3
add r38=r34,r9 //cycle 4
st4 [r6]=r37,4;; //cycle 4
add r39=r35,r9 //cycle 5
st4 [r6]=r38,4;; //cycle 5
add r40=r36,r9 //cycle 6
st4 [r6]=r39,4;; //cycle 6
st4 [r6]=r40,4;; //cycle 7

Unrolled Loop Detail
• Completes 5 iterations in 7 cycles

—Compared with 20 cycles in original code

• Assumes two memory ports
—Load and store can be done in parallel

Software Pipeline Example Diagram Support For Software Pipelining
• Automatic register renaming

—Fixed size are of predicate and fp register file (p16-
P32, fr32-fr127) and programmable size area of gp
register file (max r32-r127) capable of rotation

—Loop using r32 on first iteration automatically uses
r33 on second

• Predication
—Each instruction in loop predicated on rotating

predicate register
– Determines whether pipeline is in prolog, kernel or epilog

• Special loop termination instructions
—Branch instructions that cause registers to rotate and

loop counter to decrement

IA-64 Register Set IA-64 Registers (1)
• General Registers

— 128 gp 64 bit registers
— r0-r31 static

– references interpreted literally
— r32-r127 can be used as rotating registers for software pipeline

or register stack
– References are virtual
– Hardware may rename dynamically

• Floating Point Registers
— 128 fp 82 bit registers
— Will hold IEEE 745 double extended format
— fr0-fr31 static, fr32-fr127 can be rotated for pipeline

• Predicate registers
— 64 1 bit registers used as predicates
— pr0 always 1 to allow unpredicated instructions
— pr1-pr15 static, pr16-pr63 can be rotated

IA-64 Registers (2)
• Branch registers

— 8 64 bit registers
• Instruction pointer

— Bundle address of currently executing instruction
• Current frame marker

— State info relating to current general register stack frame
— Rotation info for fr and pr
— User mask

– Set of single bit values
– Allignment traps, performance monitors, fp register usage

monitoring

• Performance monitoring data registers
— Support performance monitoring hardware

• Application registers
— Special purpose registers

Register Stack
• Avoids unnecessary movement of data at procedure call

& return
• Provides procedure with new frame up to 96 registers

on entry
— r32-r127

• Compiler specifies required number
— Local
— output

• Registers renamed so local registers from previous
frame hidden

• Output registers from calling procedure now have
numbers starting r32

• Physical registers r32-r127 allocated in circular buffer to
virtual registers

• Hardware moves register contents between registers
and memory if more registers needed

Register Stack Behaviour Register Formats

Itanium Organization
• Superscalar features

—Six wide, ten stage deep hardware pipeline
—Dynamic prefetch
—branch prediction
—register scoreboard to optimise for compile time

nondeterminism

• EPIC features
—Hardware support for predicated execution
—Control and data speculation
—Software pipelining

Itanium Processor Diagram

