Instruction Level Parallelism
and Superscalar Processors

What is Superscalar?

e Common instructions (arithmetic, load/store,
conditional branch) can be initiated and
executed independently

» Equally applicable to RISC & CISC
e In practice usually RISC

Why Superscalar?

* Most operations are on scalar quantities (see
RISC notes)

e Improve these operations to get an overall
improvement

General Superscalar Organization
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* Many pipeline stages need less than half a clock
cycle

* Double internal clock speed gets two tasks per
external clock cycle
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Limitations

Instruction level parallelism
Compiler based optimisation
Hardware techniques
Limited by

—True data dependency
—Procedural dependency
—Resource conflicts

—OQutput dependency
—Antidependency

True Data Dependency

ADD rl, r2 (r1 :=rl+r2;)
MOVE r3,rl (r3 :=1r1;)

Can fetch and decode second instruction in

parallel with first

Can NOT execute second instruction until first is

finished




Procedural Dependency

« Can not execute instructions after a branch in

parallel with instructions before a branch
« Also, if instruction length is not fixed,

instructions have to be decoded to find out how

many fetches are needed
= This prevents simultaneous fetches

Resource Conflict

e Two or more instructions requiring access to the
same resource at the same time
—e.g. two arithmetic instructions

e Can duplicate resources
—e.g. have two arithmetic units

Execute
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Design Issues

 Instruction level parallelism
—Instructions in a sequence are independent

—Execution can be overlapped
—Governed by data and procedural dependency

e Machine Parallelism

—Ability to take advantage of instruction level
parallelism

—Governed by number of parallel pipelines




Instruction Issue Policy

In-Order Issue
In-Order Completion

e QOrder in which instructions are fetched
e QOrder in which instructions are executed

e Order in which instructions change registers and
memory

Issue instructions in the order they occur
Not very efficient

May fetch >1 instruction

Instructions must stall if necessary

In-Order Issue In-Order Completion
(Diagram)

In-Order Issue
Out-of-Order Completion

Decode Execute Write Cyele
11 12 1
13 14 11 12 2
13 14 11 3
14 13 11 ] 12 4
15 I 14 ]
8] 15 13 | 14 L]
16 7
15| I ]

e Qutput dependency
—R3:=R3 + R5; (I1)
—R4:=R3+1; (12
—R3:=R5 +1; (I3)
—I12 depends on result of 11 - data dependency

—If 13 completes before 11, the result from 11 will be
wrong - output (read-write) dependency




INn-Order Issue Out-of-Order Completion

Out-of-Order Issue

(Diagram) Out-of-Order Completion
e Decouple decode pipeline from execution
pipeline
Decode Execute Write Cyele = Can continue to fetch and decode until this
11 | 12 1 pipeline is full
13 14 I1 12 2 . . .
3 T 3 3 3 e When a functional unit becomes available an
15 | 16 14 11|13 4 instruction can be executed
16 15 14 5 . . .
T I 6 = Since instructions have been decoded, processor
16 7 can look ahead
Out-of-Order Issue Out-of-Order
Completion (Diagram) Antidependency
« Write-write dependency
—R3:=R3 + R5; (I1)
Decode Window Execute Write Cycle —R4:=R3 + 1: (|2)
Il | 12 CooT T 1 ) ’
13 | 13 N | 12 2 —R3:=R5 +1; (I3)
15 | 16 v 304 11 13 12 3 __R7:=R3 + R4; (14)
v T4, 05,06 16 14 11| 13 4
T 15 14| 16 s —I13 can not complete before 12 starts as 12 needs a
S 15 f

value in R3 and I3 changes R3




Register Renaming

e Qutput and antidependencies occur because
register contents may not reflect the correct
ordering from the program

« May result in a pipeline stall

e Registers allocated dynamically
—i.e. registers are not specifically named

Register Renaming example

 R3b:=R3a + Rba (I1)
* R4b:=R3b + 1 (12)
e R3c:=R5a + 1 (13)
e R7b:=R3c + R4b (14)

= Without subscript refers to logical register in
instruction

« With subscript is hardware register allocated
* Note R3a R3b R3c

Machine Parallelism

e Duplication of Resources
e QOut of order issue
* Renaming

< Not worth duplication functions without register
renaming

* Need instruction window large enough (more
than 8)

Branch Prediction

» 80486 fetches both next sequential instruction
after branch and branch target instruction

» Gives two cycle delay if branch taken




RISC - Delayed Branch

Calculate result of branch before unusable
instructions pre-fetched

Always execute single instruction immediately
following branch

Keeps pipeline full while fetching new instruction

stream

Not as good for superscalar
—Multiple instructions need to execute in delay slot
—Instruction dependence problems

Revert to branch prediction

Superscalar Execution

static
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Superscalar Implementation

Simultaneously fetch multiple instructions

Logic to determine true dependencies involving
register values

Mechanisms to communicate these values

Mechanisms to initiate multiple instructions in
parallel

Resources for parallel execution of multiple
instructions

Mechanisms for committing process state in
correct order

Pentium 4

= 80486 - CISC

e Pentium — some superscalar components
—Two separate integer execution units

e Pentium Pro — Full blown superscalar
e Subsequent models refine & enhance

superscalar design




Pentium 4 Block Diagram

1—.| L2 Cache and Control

H

Pentium 4 Operation

e Fetch instructions form memory in order of

static program

bt
E JL bl lela— = Translate instruction into one or more fixed
[ _ - ol Lo L] length RISC instructions (micro-operations)
o N e{aLt] . . .
“ N 3 « Execute micro-ops on superscalar pipeline
o L /@ .
3 3 p | ¥l 5 —micro-ops may be executed out of order
2 g g 5 . . . .
— = g — & E > g_.g ) E e Commit results of micro-ops to register set in
ANE g HEHEE _}—' § original program flow order
R 2 5 e Quter CISC shell with inner RISC core
et SEL [ . En — e Inner RISC core pipeline at least 20 stages
peode 5| & lep| Fadd —Some micro-ops require multiple execution stages
AGU = address genemtion unit ROM || bbb H H
BTE =hramch Iﬂrgell huffer ) B o o - Longer plpellne
ITU2 = batvation tmlotlns Ikueie buflc —c.f. five stage pipeline on x86 up to Pentium
Pentium 4 Pipeline Pentium 4 Pipeline Operation (1)
L2 Cache and Contral I-j L2 Cache and Contral |'—_|
Bl [ ]
1 2 3 4 5 [ 7 8 9 10| 11 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20

TCNxt IP | TC Fetch |DrivejAlloc|] Rename | Que | Sch | Sch | Sch | Disp | Disp| RF | RF | Ex | Flgs |Br Ck|Dri
1 1 1 1 1 L 1 1 1 1 1 1 1 1 1 1 L 1

TC Mext [P = trace cache next istruction pointer  Kename = register renaming

TC Betch = trace cache [eich (ue = micm-op quening
Alloe = allocate Sch = micm-op scheduling
L¥sp = Dispaich

KE = register file

Ex = exccule

Flgs = flags

Br Ck = branch check

ETE & I-TLE

Sehedulers
FPRF 3
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wop Quetes
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Benameidloc

Fetch/Decode

LI I-Cache and D-TLE
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Pentium 4 Pipeline Operation (6) PowerPC

Direct descendent of IBM 801, RT PC and
RS/6000

All are RISC

RS/6000 first superscalar

PowerPC 601 superscalar design similar to
RS/6000

Later versions extend superscalar concept
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PowerPC 601 Pipeline

Dispaich

Branch Decode
Instructions Fetch Execute
Predict

Intel 1A-64 Architecture

ITANIUM
Integer Dispatch .
Instructions Fetch Delzode Execute erwbackl
Load/stor i
lllSlE:'llCilpl'lllfS Fetch lil):lzg:ic: Addrgen| Cache |Writeback
Floating-point
13:11-111151112:3151 Fetch | Dispatch | Decode | Executel | Execute2 | Writeback
Background to 1A-64 Motivation

e Pentium 4 appears to be last in x86 line

New architecture
—64 bit architecture
—Not extension of x86

Intel & Hewlett-Packard (HP) jointly developed

—Not adaptation of HP 64bit RISC architecture

Departure from superscalar

Exploits vast circuitry and high speeds
Systematic use of parallelism

Instruction level parallelism
—Implicit in machine instruction
—Not determined at run time by processor

Long or very long instruction words (LIW/VLIW)

Branch predication (not the same as branch
prediction)

Speculative loading

Intel & HP call this Explicit Parallel Instruction
Computing (EPIC)

IA-64 is an instruction set architecture intended
for implementation on EPIC

Itanium is first Intel product




Superscalar v 1A-64

Why New Architecture?

Superscalar TA-o4

R15C-lins instructions, ane per word RLSC-line instroctions bundled irto groups of

thiee

Multiple parallsl exscution umits Multiple paral l=l sxecution units

Reorders and optimizes instruction stream at Reorders and optimizes instruction stream at

run tims compile time

Bmnch prediction with speculative exscution | Speculative emscution along both paths of a

ofone path branch

Loads data from memary anly when needed, Speculatively loads data before its nesded, and
and trizs ta find the data in the caches first till tries to find data in the caches first

< Not hardware compatible with x86
« Now have tens of millions of transistors available on chip
e Could build bigger cache

— Diminishing returns
* Add more execution units
— Increase superscaling
— “Complexity wall”
— More units makes processor “wider”
— More logic needed to orchestrate
— Improved branch prediction required
— Longer pipelines required
— Greater penalty for misprediction
— Larger number of renaming registers required
— At most six instructions per cycle

Explicit Parallelism

e Instruction parallelism scheduled at compile
time
—Included with machine instruction

e Processor uses this info to perform parallel
execution

e Requires less complex circuitry

e Compiler has much more time to determine
possible parallel operations

e Compiler sees whole program

General Organization

Y

128 ~ >
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.

GR = General-purpose or inleger register
FR = Floating-point or graphics register
PR = One-bit predicate register

EU =Execution unit




Key Features

e Large number of registers

—IA-64 instruction format assumes 256
— 128 * 64 bit integer, logical & general purpose
— 128 * 82 bit floating point and graphic

—64 * 1 bit predicated execution registers (see later)
—To support high degree of parallelism
e Multiple execution units
—Expected to be 8 or more
—Depends on number of transistors available

—Execution of parallel instructions depends on
hardware available

— 8 parallel instructions may be spilt into two lots of four if
only four execution units are available

IA-64 Execution Units

e |-Unit
—Integer arithmetic
—Shift and add
—Logical
—Compare
—Integer multimedia ops
e M-Unit
—Load and store
— Between register and memory
—Some integer ALU
e B-Unit
—Branch instructions
e F-Unit
—Floating point instructions

Instruction Format Diagram

< 128-bit bundle >
5 5 5 5 . . Tem-
instruction slot 2 instruction slot 1 instruction slot 0 plate
41 41 41 5
{a) IA-64 bundle
-« d1-bit instruction >
Major
opeode BE
4 31 6
{b) General IA-64 instruction format
Major . )
opeode other modifying bits GR3 GR2 GR1 PR
4 10 7 7 7 [

{c) Typical IA-64 instruction format

PR = Predicate register
GR = General or floating-point register

Instruction Format

e 128 bit bundle

—Holds three instructions (syllables) plus template
—Can fetch one or more bundles at a time
—Template contains info on which instructions can be
executed in parallel
— Not confined to single bundle
— e.g. a stream of 8 instructions may be executed in parallel

— Compiler will have re-ordered instructions to form
contiguous bundles

— Can mix dependent and independent instructions in same
bundle

—Instruction is 41 bit long
— More registers than usual RISC
— Predicated execution registers (see later)




Assembly Language Format

* [ap] mnemonic [.comp] dest = srcs //

= Qp - predicate register
— 1 at execution then execute and commit result to hardware
— 0 result is discarded

= mnemonic - name of instruction

= comp — one or more instruction completers used to
qualify mnemonic

= dest - one or more destination operands

e Srcs — one or more source operands

e // - comment

e Instruction groups and stops indicated by ; ;

— Sequence without read after write or write after write
— Do not need hardware register dependency checks

Assembly Examples

1d8 r1 = [r5] ;; //First group
add r3 = rl1, r4 //second group

e Second instruction depends on value in rl
—Changed by first instruction
—Can not be in same group for parallel execution

2. The compiler assigns a

Predication

Instroction 1

I. The branch has two
possihle oulcomes.

3 ."n.llirslnlcli.nrs\‘

along this path point
o predicate Tegister

predicate register o each
following instruction,
accowing lo s path,

4. All irstructions
alomg this path point

1o predicale tegister

Speculative I The compile scamm the
o Instroetion 1
- source code and sees an
Load N g upcoming load {insiruction

PlL. B2,

5. CPL hegire executing
instructims fmm hoth paths.

'\ &. CPU can execule /
imstuctions [Tom diTerni
paths in parallel hecause =jpe
they have no mutual
dependencies.

Instroction 4
(P1}

7. When CPLU knows the
compare outeome, it discards
tesulls [rom iovalid path.

8. Itremoves the load,
inseris a speculative load
her and a speculative =gy
check immediately hefore
the opemiion that will use
the data {instmction 9.

2. Al Tun time, this
irstruction loads the data
from memaory belore itis
needed. If the load would
irigger an excepiion, the
CPL postpones mponing
the exception.

]
5. In effect, IA-64
has hoisted the: load 1
ahowe the bmnch, !

3. The compiler
teplaced this load with
the speculative load
ahove, so instruction §
does not actually
appear in the program. Instrocton &
{luad data)

The compiler might marrange imstwctions in this order, pairing
instructions 4+ and 7, 5 and &, and 6 and 9 [or pamllel execution.

| s ormetion 1] nsrnction 2] Insoneton 3

s oncton 4| nsrncdon 7] nsoucton 5|

| s nmction 8| s ruction 6] nsoneton 9|

4. This inSITUcion )
checks the validity of
the data. If it is OK,

the CPLU does not

Teport an exceplion.




Control & Data Speculation

Software Pipelining

e Control

—AKA Speculative loading

—Load data from memory before needed
e Data

—Load moved before store that might alter memory
location

—Subsequent check in value

L1: 1d4 r4=[r5],4 ;; //cycle 0 load postinc 4
add r7=r4,r9 ;; //cycle 2
st4 [r6]=r7,4 //cycle 3 store postinc 4
br.cloop L1 ;; //cycle 3

* Adds constant to one vector and stores result in another

* No opportunity for instruction level parallelism

e Instruction in iteration x all executed before iteration x+1 begins

e |f no address conflicts between loads and stores can move
independent instructions from loop x+1 to loop x

Unrolled Loop

Unrolled Loop Detail

1d4 r32=[r5],4;; //cycle
1d4 r33=[r5],4;; //cycle
1d4 r34=[r5],4 //cycle
add r36=r32,r9;; //cycle
1d4 r35=[r5],4 //cycle
add r37=r33,r9 //cycle
st4 [r6]=r36,4;; //cycle
1d4 r36=[r5],4 //cycle
add r38=r34,r9 //cycle
st4 [r6]=r37,4;; //cycle
add r39=r35,r9 //cycle
st4 [r6]=r38,4;; //cycle
add r40=r36,r9 //cycle
st4 [r6]=r39,4;; //cycle
st4 [r6]=r40,4;; //cycle

~NOoO O 0o~ DWW WWNDNEO

e Completes 5 iterations in 7 cycles
—Compared with 20 cycles in original code
e Assumes two memory ports
—Load and store can be done in parallel




Software Pipeline Example Diagram

Support For Software Pipelining

e s Bl = Automatic register renaming
Cycle 0 : . . . .
yee R —Fixed size are of predicate and fp register file (p16-
Cycle 1 e Prolog P32, fr32-fr127) and programmable size area of gp
register file (max r32-r127) capable of rotation
Cycle 2 add 1dd —Loop using r32 on first iteration automatically uses
= T 1T 1 " "~"""""""""- r33 on second
& | Cyclel std | add M4 Predicati
Kernel * Predication
Cycle d std | add 1dd —Each instruction in loop predicated on rotating
cvdes 0 T lal |\ predicate register
e
Y L At || it — Determines whether pipeline is in prolog, kernel or epilog
Cycle 6 std | add Epilog e Special loop termination instructions
e —Branch instructions that cause registers to rotate and
e . I loop counter to decrement
IA-64 Register Set IA-64 Registers (1)
Gensral lag:sl.e:]sNaTs FIQ.::HQ'IJQIHUBQE‘S][EIS Pradicates ?:;zmch rag:sl.ar; Apﬁglcahon reg:sl.?]ls ° General Reglsters
T s ﬁﬁ b { ool _Kkho | — 128 gp 64 bit registers
g| ° T ve | , x| — r0-r31 static
§ L N IME ] — s S — references interpreted literally
:;ZE' E] :g;E] . i B —r32-r127 can be used as rotating registers for software pipeline
E‘ | | I i g ::: Instruction pontar al‘Z‘I or reQISter StaCk
g R A B T I e | v — References are virtual
%' . e 8 e = =28 EgFgL%G — Hardware may rename dynamically
o L : ' Curmntframs marier 227 [ CTLG = Floating Point Registers
wE=——8 e ] e — 128 fp 82 bit registers
Ussrmask e o) — Will hold IEEE 745 double extended format
e[ TRAT ] — frO-fr31 static, fr32-fr127 can be rotated for pipeline
oerormance montoy A0 _FPSE ] = Predicate registers
Pronessorvientiers R s — 64 1 bit registers used as predicates
2ﬁﬂ:}?E‘ ﬂ:jﬁ'E =4[ PFS — pr0 always 1 to allow unpredicated instructions
[ v, o aee[ EC ] — prl-prl5 static, pr16-pr63 can be rotated
N — ] E— P




IA-64 Registers (2)

e Branch registers
— 8 64 bit registers

Instruction pointer
— Bundle address of currently executing instruction
Current frame marker
— State info relating to current general register stack frame

— Rotation info for fr and pr
— User mask
— Set of single bit values

— Allignment traps, performance monitors, fp register usage

monitoring

Performance monitoring data registers
— Support performance monitoring hardware

Application registers

— Special purpose registers

Register Stack

= Avoids unnecessary movement of data at procedure call
& return

e Provides procedure with new frame up to 96 registers
on entry
—r32-r127

e Compiler specifies required number
— Local
— output

* Registers renamed so local registers from previous
frame hidden

e Output registers from calling procedure now have
numbers starting r32

« Physical registers r32-r127 allocated in circular buffer to
virtual registers

e Hardware moves register contents between registers
and memory if more registers needed

Register Stack Behaviour

Instroction Execntion

Caller's frame {procA)

call

Callee’s frame {procB)
after call

alloc

Caller’s fmme (procB )
affier alloc

Teturn

Caller's frame {pocA)
aller wium

Swocked General
Registers

Laowal A I Output A|
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Register Formats
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BSPSTORE [ pointer [ |

1 63
RMNAT | | BSE MaT Colkection |

ves [l =] |

EC
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[
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Itanium Organization

e Superscalar features
—Six wide, ten stage deep hardware pipeline
—Dynamic prefetch
—branch prediction
—register scoreboard to optimise for compile time
nondeterminism
» EPIC features
—Hardware support for predicated execution
—Control and data speculation
—Software pipelining

Itanium Processor Diagram
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