
Abstract1�We investigate a program phenomenon, Address
Correlation, which links addresses that reference the same data.
This work shows that different addresses containing the same
data can often be correlated at run-time to eliminate a load miss
or a partial hit. For ten of the SPEC CPU2000 benchmarks, 57 to
99% of all L1 data cache load misses, and 4 to 85% of all partial
hits, can be supplied from a correlated address already found in
the cache. Our source code-level analysis shows that semantically
equivalent information, duplicated references, and frequent
values are the major causes of address correlations. We also show
that, on average, 68% of the potential correlated addresses that
could supply data on a miss of an address containing the same
value can be correlated at run time. These correlated addresses
correspond to an average of 62% of all misses in the benchmark
programs tested.

I. INTRODUCTION
As processor clock speeds have increased along with

microarchitectural innovations, the gap between processor and
memory performance has become a greater bottleneck.
Mechanisms such as caches have been introduced to close this
gap. While a conventional cache system relies heavily on the
temporal and spatial locality that programs exhibit, a recently
introduced observation, value locality, has proven to be a
powerful supplement to the cache system effectiveness. Value
locality [1] describes the recurrence of a previously seen value
within a storage location. It allows the classical dataflow limit
to be exceeded by executing instructions before their operand
values are available.

There have been several studies on exploiting different
types of value locality, such as store value locality [2] and
frequent value locality [3]. Store value locality introduced the
concept of redundancy in data that was stored to memory.
Frequent value locality showed that a few values appear very
frequently in memory locations and are therefore involved in a
large fraction of all memory accesses.

Extending these two complementary studies, we propose a
new technique, Address Correlation, which is based on the
dynamic linking of addresses that store the same value. This
run-time correlation can be used to improve the performance
of on-chip data caches by forwarding data to the processor on
a miss that is already resident in the cache at other correlated
addresses. Our results show that there is substantial potential
for hiding memory latency by providing the data from a

1 This work was supported in part by National Science Foundation grants
EIA-9971666 and CCR-9900605, the IBM Corporation, Compaq�s Alpha
development group, and the Minnesota Supercomputing Institute.

Manuscript submitted: 27 Mar. 2003. Manuscript accepted: 13 May 2003.
Final manuscript received: 23 May 2003.

correlated address instead of incurring a full miss penalty. We
demonstrate that, in addition to reducing cache misses, address
correlation can be effective in servicing partial hits2 faster.

We also present a detailed source code-level analysis of
programs to demonstrate the causes of address correlation. We
find that semantically equivalent information, duplicated
references, and frequent values are the major causes of the
address correlations. Taking advantage of duplicated
references has excellent potential to benefit object-oriented
programs due to their extensive usage of aggregation classes.

The remainder of this paper is organized as follows. Section
II provides the background information and motivation for
address correlation. Section III gives the detailed source code-
level analysis to help to better understand the sources of
address correlation. In Section IV, we classify the address
correlations. Section V presents some upper-bound
performance results while we conclude in Section VI. A
realistic hardware implementation that exploits this program
behavior is beyond the scope of this paper, although it is
currently under investigation.

II. ADDRESS CORRELATION
In this section, we present the profiling results that motivate

the idea of address correlation and describe the basic operation
of an address correlation system. We profiled selected
MinneSPEC [4] CPU2000 benchmarks (with O3 optimization)
to test the potential for a data miss to be found in another
address residing in the cache. Our microarchitectural simulator
is built on top of the SimpleScalar toolset [5], version 3.0.
The processor/memory model used in this study is capable of
issuing 8 instructions per cycle using out-of-order execution.

In Figure 1, we show the percentage of all data misses and
partial hits whose values can be found in other addresses in the
L1 data cache. It can be seen that 57 to 99% of all data cache
load misses can be serviced by correlated addresses, and that 4
to 85% of all partial hits can be serviced faster using address
correlation.

The potential seen in Figure 1 for supplying data from
another address in the L1 data cache on a miss or a partial hit
of a requested address suggests that it may be useful to
correlate the addresses that reference the same data. An
address correlation system (ACS) that correlates these

2 A partial hit occurs when a request on an address is a hit in the cache, but
the data at the address is not ready yet because it is in the process of being
read by a previous miss in the same cache block. A partial hit can be as slow
as a complete cache miss, depending on how close together the two accesses
occur.

Address Correlation: Exceeding the Limits of Locality
Resit Sendag, Peng-fei Chuang, and David J. Lilja

Department of Electrical and Computer Engineering
Minnesota Supercomputing Institute

University of Minnesota, Minneapolis, MN 55455
E-mail: {rsgt, pengfei, lilja}@ece.umn.edu

addresses at run-time makes it possible to hide the latency for
many memory references. Run-time address correlation
requires tracking the contents of the cache, the relationships
between different locations in the cache, and the memory
access history.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

16
4.g

zip

17
5.v

pr-
Rou

te

17
5.v

pr-
Place

17
7.m

es
a

17
9.a

rt

18
1.m

cf

18
3.e

qu
ak

e

18
8.a

mmp

19
7.p

ars
er

25
5.v

ort
ex

30
0.t

wolf

load miss

partial hit

Fig. 1. The percentage of all load misses and partial hits whose values are
found in other addresses. The L1 data cache is 32KB and 4-way associative.

In our idealized implementation, the ACS stores the

addresses evicted from the cache and their correlated
addresses, which remain in the L1 data cache to supply data
for the evicted addresses. The ACS provides information for
an alternative data source on a cache miss or a partial hit.
When a cache line is brought into the L1 data cache, all the
addresses in that cache line are linked with the addresses of
other cache lines according to their values. An address will
never be linked with the addresses in the same cache line since
they all will be evicted from the cache at the same time. If a
new value is stored to an address, all the links to the updated
address are removed and new links are generated for the
address based on its new value. In order to study the upper-
bound potential of address correlation, we used an infinite
table for storing the correlations between addresses at run-time.
This configuration allows an unlimited number of correlations
since there are no evictions from the correlation table.

Although specific optimizations to efficiently design an
ACS are not proposed here, we expect that this first
understanding of why address correlation is possible, and
investigating the sources of address correlation in application
programs, will naturally lead to appropriate uses for this
information.

III. INVESTIGATING PROGRAM BEHAVIOR
A better understanding of the sources of address correlation

lies in the behavior of the application programs. Thus, in this
section, we concentrate on analyzing the program source code
in order to understand the relation between the correlated
addresses, the load/store instructions that brought them into
the cache, and the interaction between these instructions.

A. Correlation between fields of structures
In many instances of a programmer-defined structure, there

often are fields that contain the same values. When a program
creates a large array of these objects, the fields with the same
data in different objects can be correlated. For example,

consider a database of students in a high school. The Student
entity may have attributes such as state, city, etc., which are
likely store the same value for many of the students.

The 181.mcf benchmark demonstrates this kind of behavior.
In Figure 2, the arc_t structure contains a field called ident.
Profiling results show that this ident field usually stores the
same value in different instances of the arc_t type. These
different addresses with the same ident values then can be
correlated. Five percent of the misses found by correlation in
181.mcf are due to the misses caused by loading ident.

Fig. 2. The definitions of the arc_t structure and the node_t structure in
181.mcf.

Figure 3 demonstrates another example of a useful address
correlation in 181.mcf. The correlation in this case can be
found in fields of different structures. The potential field of
node_t and the cost field of arc_t often store the same value.
Therefore, in the function bea_compute_red_cost(), the
variables arc->tail->potential, arc->head->potential and
arc->cost, are all correlated with each other. We found that
52% of the misses eliminated by address correlation in
181.mcf are due to the misses caused by loading these fields.

 Fig. 3. Example code segments from 181.mcf

The actual value stored in these fields may vary during the

program�s execution. However, during a given execution
phase, the same value usually occupies most of the instances
of the structures. For example, the value of ident contains only
a limited number of defined constants, i.e., BASIC, FIXED,
AT_LOWER, and AT_UPPER.

B. Correlation between references to instances
Consider a data structure that encapsulates instances of

another basic structure. If an instance of the basic structure is
duplicated in several instances of the encapsulating structure,
we may find correlations between those references to the
instance of the basic structure among all the instances of the

typedef struct node {
 cost_t potential;
...
} node_t;

typedef struct arc {
 node_t *tail, *head;
 cost_t cost, org_cost;
 long ident;
...
} arc_t;

cost_t bea_compute_red_cost(arc_t *arc) {
 return arc->cost - arc->tail->potential + arc->head->potential;
}
(a) function compute_red_cost()

arc_t *primal_bea_mpp(long m, arc_t *arcs, arc_t *stop_arcs,
 cost_t *red_cost_of_bea) {�.
 for(i = 2, next = 0; i <= B && i <= basket_size; i++) {

...... red_cost = bea_compute_red_cost(arc);...... }

 for(; arc < stop_arcs; arc += nr_group) {

...... red_cost = bea_compute_red_cost(arc);......}
�...}
(b) A function calling compute_red_cost(). primal_bea_mpp() is a
frequently used function and calls compute_red_cost() in two of its
loops.

structure using it.
An example of this behavior can be seen in Figure 4 for

188.ammp, which is a computational chemistry application.
This program uses structures to store molecular information.
Since different molecules can contain the same atoms, a single
atom structure may be referenced by several different
molecule structures. The addresses that reference the same
atom can be correlated when instances of molecules are
formed. While accessing atom references, a miss on an
address that references a specific atom may be eliminated by
using the references to the same atom by other molecular
structures that already reside in the cache.

This type of correlation is especially useful for object-
oriented design. The idea of encapsulating structures can be
extended to aggregation classes (the structure of a class whose
encapsulated data includes references to instances of other
classes), which play an essential role in class hierarchy design.
The use of aggregation classes in object-oriented
programming is likely to produce substantial address
correlation.

(a) Two different molecules using some of the same component atoms.

(b) The user-defined type in 188.ammp for storing the angle information

Fig. 4. In 188.ammp, the ANGLE structure, which consists of three atoms, is
part of a molecule. Providing we have two different ANGLEs, as depicted in
(a), to be stored in two instances of the ANGLE structure, say angle1 and
angle2, we would find the values of references to angle1.atom1, angle1.atom3
and angle2.atom1 to be the same.

Fig. 5. An example from 188.ammp that traverses the ATOM linked list.

Address correlation is sometimes useful when accessing

recursive data structures such as linked list traversals. Figure 5
shows a function called many times in 188.ammp. Given the

serial number of an atom, this function returns the reference to
the atom structure. We found that 43% of the misses
eliminated by address correlation in 188.ammp are caused by
the loading of ap->next at lines 8 and 9 (a single load
instruction is generated by the compiler for these two
statements). The misses caused by this load could be supplied
64% of the time by another reference in the linked list3, 11%
are supplied by the variable, lastmatched4, and the remaining
25% are supplied by references from other structures
embedding atoms.

C. Correlations of frequent values
Frequent values are another major source of correlations.

Intuitively, the more copies of a value that exist in the cache,
the more often useful correlations can be created. For example,
zero is extensively used for variable initialization, for
constants such as NULL or FALSE, to fill sparse matrices,
and as the starting value of enumeration types. We expect to
see a large portion of the correlated address to come from
frequent values such as zero.

IV. CLASSIFYING THE ADDRESS CORRELATIONS
An address can be brought into the cache in two ways. One

way is through explicit memory accesses where the address
was the target of some load or store instruction. We call this
type of address a requested address. The other way is that an
address is put into the cache along with some requested
address because the two addresses are located in the same
cache line. We refer to these addresses as non-requested
addresses. In this study, both types of addresses can be
correlated. Based on the reason an address is in the cache, we
can classify address correlations into two categories: 1)
correlations between two requested addresses, and 2)
correlations involving at least one non-requested address.

The correlations containing at least one non-requested
address are more likely to occur due to frequent or trivial
values. In Figure 6, a hit in the ACS is categorized according
to the types of the two correlated addresses and the value in
these addresses. If a missed address can be supplied both by
requested addresses and non-requested addresses, a requested
address is employed. Zero is one of the frequent values
appearing in the SPEC CPU2000 benchmarks. While it might
not be the most frequently accessed or occurring value for all
benchmarks, it provides good insight into the effect that
frequent values may have on address correlation.

Figure 6 shows that, on average, 12% of the misses serviced
by address correlation are due to the value zero, when the
correlated addresses are both requested addresses. On the
other hand, 23% of the misses serviced by address correlation
are due to the correlation of non-requested addresses that
contain zero. Further investigation shows that, for six of the

3 The ATOM linked list in 188.ammp has an unusual design in that the last

node references back to itself instead of NULL. This allows the next field of
the last node in the linked list to be correlated with the next field of the
second-to-the-last node.

4 lastmatched is a static variable that stores the reference to the ATOM
node that was the matched target in the previous call to this searching function.

1 ATOM *a_m_serial(serial)
2 int serial;
 {
3 static ATOM *ap = NULL;
4 static ATOM *lastmatched = NULL;
5 int i , n, a_number();

6 for(i=0; i< n; i++) {
7 if(ap-> serial == serial)

{lastmatched = ap; return ap;}
8 if(ap == ap->next) ap = first ;
9 else ap = ap->next;
 }
10 return NULL;

}

Atom
A

Atom
B

Atom
A

atom1

atom2

atom3

typedef struct{
 ATOM *atom1,
 *atom2,*atom3;

} ANGLE;

Atom
A

Atom
C

Atom
D

atom1

atom2

atom3

benchmarks, 60% of the misses eliminated by address
correlation are due to only four distinct values.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

16
4.g

zip

17
5.v

pr-
Rou

te

17
5.v

pr-
Pla

ce

17
7.m

esa

18
1.m

cf

18
3.e

qu
ak

e

18
8.a

mmp

19
7.p

ars
er

25
5.v

ort
ex

30
0.t

wolf

other values

non-requested (0)

requested (0)

Fig. 6. To determine the importance of frequent values in address correlation,
ACS hits are categorized into �0� and �others�. The value 0 is further divided
into correlations between two requested addresses (requested), and
correlations involving at least one non-requested address (non-requested).

V. UPPER-BOUND POTENTIAL OF ADDRESS CORRELATION
In this section, we present the upper-bound performance

improvement made possible by address correlation. While all
of the potential addresses that store the same data can be
candidates to supply the data on a miss or a partial hit, all of
them might not be correlated to the requested address. Our
intent is to see if all the misses that can be found in other
addresses inside the cache can be correlated at run-time, and
thus can supply the data. This will give us the upper-bound
potential that an address correlation mechanism can offer for
exceeding the limits of locality.

In Figure 7, we show the normalized L1 data cache miss
counts for different cache sizes and the effect of address
correlation on reducing the number of misses. The original
superscalar processor with an 8KB, 4-way associative L1 data
cache is used as the base for these comparisons. We see that
address correlation can eliminate most of the misses in the L1
data cache. That is, the data requested is usually already in the
cache at other addresses.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

16
4.g

zip

17
5.v

pr-
Route

17
5.v

pr-
Place

17
7.m

es
a

17
9.a

rt

18
1.m

cf

18
3.e

qu
ak

e

18
8.a

mmp

19
7.p

ars
er

25
5.v

ort
ex

30
0.t

wolf

8k_org

16k_org

32k_org

8k_ac

16k_ac

32k_ac

Fig. 7. The normalized cache miss counts for varying L1 data cache sizes with
and without address correlation (ac). The original (org) superscalar processor
with an 8KB, 4-way associative L1 data cache is used as the base for these
comparisons.

While these results show the potential benefits of the
address correlation mechanism, the important question is how
successfully it can correlate addresses to supply the requested
data from an alternative address. Figure 8 shows that, on
average, 68% of the potential addresses that can supply the
data on a miss can be correlated at run-time by an ACS
mechanism and thus can supply the data on a miss of an
address containing the same value. While Figure 1 showed
that an average of 91% of the load misses can be found in

other addresses residing in the cache, we see in Figure 8 that
fewer misses can be eliminated at run-time by an ACS.
Nevertheless, the reduction still is significant, ranging from 23
to 99%, with an average of 62%.

0
10
20
30
40
50
60
70
80
90

100

164
.gzip

175
.vp

r-R
ou

te

175
.vp

r-P
lac

e

177
.m

es
a

181
.m

cf

183
.equa

ke

188
.ammp

197
.parse

r

255
.vo

rte
x

300
.tw

olf

Fig. 8. The percentage of L1 data cache misses eliminated at run-time by an
ACS. The L1 data cache is 32KB with 4-way associativity.

VI. CONCLUSION
This paper has demonstrated a new approach for exploiting

value locality. Based on the concepts of store value locality [2]
and frequent value locality [3], we proposed a new technique,
Address Correlation, to link different addresses that contain
the same data. We showed that supplying the requested data
from different addresses that contain the same data value can
substantially reduce the data cache misses and can also service
partial hits faster. Our detailed source code-level analysis of
programs shows that semantically equivalent information,
duplicated references, and frequent values are the major
causes of the address correlations. Taking advantage of
duplicated references has further potential to benefit objected-
oriented design with its extensive usage of aggregation classes.

The next step of this study is to develop a feasible
implementation of the ACS. According to our profiling results,
a useful correlation can usually be found in cache lines that are
physically close to each other. Furthermore, the number of
addresses that can be usefully correlated is usually bounded.
Our preliminary experiments show that an ACS with 1-2
correlations for a value can usually provide comparable
performance results to that of the upper bound study given in
this paper. We anticipate that the number of addresses that
have correlations also can be limited with an effective
replacement policy. In addition, with an efficient algorithm for
identifying these addresses, we can create the correlation with
low hardware overhead and low searching latency.

REFERENCES
[1] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, �Value Locality and Load

Value Prediction,� International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 138-147, 1996.

[2] K. M. Lepak, G. B. Bell, and M. H. Lipasti, �Silent Stores and Store Value
Locality,� IEEE Transactions on Computers, Vol. 50, No. 11, 2001.

[3] Y. Zhang, J. Yang, and R. Gupta, �Frequent Value Locality and Value-
centric Data Cache Design,� International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 150-159,
2000.

[4] AJ KleinOsowski and D. J. Lilja, �MinneSPEC: A New SPEC Benchmark
Workload for Simulation-Based Computer Architecture Research,�
Computer Architecture Letters, Volume 1, May 2002.

[5] D.C. Burger, T.M. Austin, and S. Bennett, Evaluating Future
Microprocessors: The SimpleScalar Tool Set, Technical Report CS-TR-96-
1308, University of Wisconsin-Madison, July 1996.

