
Abstract1�We investigate a program phenomenon, Address 
Correlation, which links addresses that reference the same data. 
This work shows that different addresses containing the same 
data can often be correlated at run-time to eliminate a load miss 
or a partial hit. For ten of the SPEC CPU2000 benchmarks, 57 to 
99% of all L1 data cache load misses, and 4 to 85% of all partial 
hits, can be supplied from a correlated address already found in 
the cache. Our source code-level analysis shows that semantically 
equivalent information, duplicated references, and frequent 
values are the major causes of address correlations. We also show 
that, on average, 68% of the potential correlated addresses that 
could supply data on a miss of an address containing the same 
value can be correlated at run time. These correlated addresses 
correspond to an average of 62% of all misses in the benchmark 
programs tested.  

I. INTRODUCTION 
As processor clock speeds have increased along with 

microarchitectural innovations, the gap between processor and 
memory performance has become a greater bottleneck. 
Mechanisms such as caches have been introduced to close this 
gap. While a conventional cache system relies heavily on the 
temporal and spatial locality that programs exhibit, a recently 
introduced observation, value locality, has proven to be a 
powerful supplement to the cache system effectiveness. Value 
locality [1] describes the recurrence of a previously seen value 
within a storage location. It allows the classical dataflow limit 
to be exceeded by executing instructions before their operand 
values are available.  

There have been several studies on exploiting different 
types of value locality, such as store value locality [2] and 
frequent value locality [3]. Store value locality introduced the 
concept of redundancy in data that was stored to memory. 
Frequent value locality showed that a few values appear very 
frequently in memory locations and are therefore involved in a 
large fraction of all memory accesses.  

Extending these two complementary studies, we propose a 
new technique, Address Correlation, which is based on the 
dynamic linking of addresses that store the same value. This 
run-time correlation can be used to improve the performance 
of on-chip data caches by forwarding data to the processor on 
a miss that is already resident in the cache at other correlated 
addresses.  Our results show that there is substantial potential 
for hiding memory latency by providing the data from a 
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correlated address instead of incurring a full miss penalty. We 
demonstrate that, in addition to reducing cache misses, address 
correlation can be effective in servicing partial hits2 faster. 

We also present a detailed source code-level analysis of 
programs to demonstrate the causes of address correlation. We 
find that semantically equivalent information, duplicated 
references, and frequent values are the major causes of the 
address correlations. Taking advantage of duplicated 
references has excellent potential to benefit object-oriented 
programs due to their extensive usage of aggregation classes. 

The remainder of this paper is organized as follows. Section 
II provides the background information and motivation for 
address correlation. Section III gives the detailed source code-
level analysis to help to better understand the sources of 
address correlation. In Section IV, we classify the address 
correlations. Section V presents some upper-bound 
performance results while we conclude in Section VI. A 
realistic hardware implementation that exploits this program 
behavior is beyond the scope of this paper, although it is 
currently under investigation. 

II. ADDRESS CORRELATION 
In this section, we present the profiling results that motivate 

the idea of address correlation and describe the basic operation 
of an address correlation system. We profiled selected 
MinneSPEC [4] CPU2000 benchmarks (with O3 optimization) 
to test the potential for a data miss to be found in another 
address residing in the cache. Our microarchitectural simulator 
is built on top of the SimpleScalar toolset [5], version 3.0.  
The processor/memory model used in this study is capable of 
issuing 8 instructions per cycle using out-of-order execution.  

In Figure 1, we show the percentage of all data misses and 
partial hits whose values can be found in other addresses in the 
L1 data cache. It can be seen that 57 to 99% of all data cache 
load misses can be serviced by correlated addresses, and that 4 
to 85% of all partial hits can be serviced faster using address 
correlation.  

The potential seen in Figure 1 for supplying data from 
another address in the L1 data cache on a miss or a partial hit 
of a requested address suggests that it may be useful to 
correlate the addresses that reference the same data. An 
address correlation system (ACS) that correlates these 
                                                           

2 A partial hit occurs when a request on an address is a hit in the cache, but 
the data at the address is not ready yet because it is in the process of being 
read by a previous miss in the same cache block. A partial hit can be as slow 
as a complete cache miss, depending on how close together the two accesses 
occur. 
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addresses at run-time makes it possible to hide the latency for 
many memory references. Run-time address correlation 
requires tracking the contents of the cache, the relationships 
between different locations in the cache, and the memory 
access history. 
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Fig. 1. The percentage of all load misses and partial hits whose values are 
found in other addresses. The L1 data cache is 32KB and 4-way associative. 

 
In our idealized implementation, the ACS stores the 

addresses evicted from the cache and their correlated 
addresses, which remain in the L1 data cache to supply data 
for the evicted addresses. The ACS provides information for 
an alternative data source on a cache miss or a partial hit. 
When a cache line is brought into the L1 data cache, all the 
addresses in that cache line are linked with the addresses of 
other cache lines according to their values. An address will 
never be linked with the addresses in the same cache line since 
they all will be evicted from the cache at the same time. If a 
new value is stored to an address, all the links to the updated 
address are removed and new links are generated for the 
address based on its new value. In order to study the upper-
bound potential of address correlation, we used an infinite 
table for storing the correlations between addresses at run-time. 
This configuration allows an unlimited number of correlations 
since there are no evictions from the correlation table.  

Although specific optimizations to efficiently design an 
ACS are not proposed here, we expect that this first 
understanding of why address correlation is possible, and 
investigating the sources of address correlation in application 
programs, will naturally lead to appropriate uses for this 
information.   

III. INVESTIGATING PROGRAM BEHAVIOR 
A better understanding of the sources of address correlation 

lies in the behavior of the application programs. Thus, in this 
section, we concentrate on analyzing the program source code 
in order to understand the relation between the correlated 
addresses, the load/store instructions that brought them into 
the cache, and the interaction between these instructions. 

A. Correlation between fields of structures 
In many instances of a programmer-defined structure, there 

often are fields that contain the same values. When a program 
creates a large array of these objects, the fields with the same 
data in different objects can be correlated. For example, 

consider a database of students in a high school. The Student 
entity may have attributes such as state, city, etc., which are 
likely store the same value for many of the students. 

The 181.mcf benchmark demonstrates this kind of behavior. 
In Figure 2, the arc_t structure contains a field called ident. 
Profiling results show that this ident field usually stores the 
same value in different instances of the arc_t type. These 
different addresses with the same ident values then can be 
correlated. Five percent of the misses found by correlation in 
181.mcf are due to the misses caused by loading ident. 

Fig. 2. The definitions of the arc_t structure and the node_t structure in 
181.mcf. 
 

Figure 3 demonstrates another example of a useful address 
correlation in 181.mcf. The correlation in this case can be 
found in fields of different structures. The potential field of 
node_t and the cost field of arc_t often store the same value. 
Therefore, in the function bea_compute_red_cost(), the 
variables arc->tail->potential, arc->head->potential and  
arc->cost, are all correlated with each other. We found that 
52% of the misses eliminated by address correlation in 
181.mcf are due to the misses caused by loading these fields. 

 

 Fig. 3. Example code segments from 181.mcf 
 
The actual value stored in these fields may vary during the 

program�s execution. However, during a given execution 
phase, the same value usually occupies most of the instances 
of the structures. For example, the value of ident contains only 
a limited number of defined constants, i.e., BASIC, FIXED, 
AT_LOWER, and AT_UPPER. 

B. Correlation between references to instances 
Consider a data structure that encapsulates instances of 

another basic structure. If an instance of the basic structure is 
duplicated in several instances of the encapsulating structure, 
we may find correlations between those references to the 
instance of the basic structure among all the instances of the 

typedef struct node { 
    cost_t potential;  
... 
} node_t; 

typedef struct arc { 
    node_t *tail, *head; 
    cost_t cost, org_cost; 
    long ident; 
... 
} arc_t; 

cost_t bea_compute_red_cost( arc_t *arc ) { 
  return arc->cost - arc->tail->potential + arc->head->potential; 
} 
(a) function compute_red_cost() 
 
arc_t *primal_bea_mpp( long m,  arc_t *arcs, arc_t *stop_arcs, 
                                         cost_t *red_cost_of_bea )  {�. 
  for( i = 2, next = 0; i <= B && i <= basket_size; i++ ) { 

......    red_cost = bea_compute_red_cost( arc );......  } 
 
  for( ; arc < stop_arcs; arc += nr_group ) { 

......    red_cost = bea_compute_red_cost( arc );......} 
�...} 
(b) A function calling compute_red_cost(). primal_bea_mpp() is a 
frequently used function and calls compute_red_cost() in two of its 
loops.



structure using it.  
An example of this behavior can be seen in Figure 4 for 

188.ammp, which is a computational chemistry application. 
This program uses structures to store molecular information. 
Since different molecules can contain the same atoms, a single 
atom structure may be referenced by several different 
molecule structures. The addresses that reference the same 
atom can be correlated when instances of molecules are 
formed. While accessing atom references, a miss on an 
address that references a specific atom may be eliminated by 
using the references to the same atom by other molecular 
structures that already reside in the cache.  

This type of correlation is especially useful for object-
oriented design. The idea of encapsulating structures can be 
extended to aggregation classes (the structure of a class whose 
encapsulated data includes references to instances of other 
classes), which play an essential role in class hierarchy design. 
The use of aggregation classes in object-oriented 
programming is likely to produce substantial address 
correlation. 

 
 
 
 
 
 
 
(a) Two different molecules using some of the same component atoms. 

(b) The user-defined type in 188.ammp for storing the angle information 
 
Fig. 4. In 188.ammp, the ANGLE structure, which consists of three atoms, is 
part of a molecule. Providing we have two different ANGLEs, as depicted in 
(a), to be stored in two instances of the ANGLE structure, say angle1 and 
angle2, we would find the values of references to angle1.atom1, angle1.atom3 
and angle2.atom1 to be the same. 
 

Fig. 5. An example from 188.ammp that traverses the ATOM linked list. 
 
Address correlation is sometimes useful when accessing 

recursive data structures such as linked list traversals. Figure 5 
shows a function called many times in 188.ammp. Given the 

serial number of an atom, this function returns the reference to 
the atom structure. We found that 43% of the misses 
eliminated by address correlation in 188.ammp are caused by 
the loading of ap->next at lines 8 and 9 (a single load 
instruction is generated by the compiler for these two 
statements). The misses caused by this load could be supplied 
64% of the time by another reference in the linked list3, 11% 
are supplied by the variable, lastmatched4, and the remaining 
25% are supplied by references from other structures 
embedding atoms.  

C. Correlations of frequent values 
Frequent values are another major source of correlations. 

Intuitively, the more copies of a value that exist in the cache, 
the more often useful correlations can be created. For example, 
zero is extensively used for variable initialization, for 
constants such as NULL or FALSE, to fill sparse matrices, 
and as the starting value of enumeration types. We expect to 
see a large portion of the correlated address to come from 
frequent values such as zero. 

IV. CLASSIFYING THE ADDRESS CORRELATIONS 
An address can be brought into the cache in two ways. One 

way is through explicit memory accesses where the address 
was the target of some load or store instruction. We call this 
type of address a requested address. The other way is that an 
address is put into the cache along with some requested 
address because the two addresses are located in the same 
cache line. We refer to these addresses as non-requested 
addresses. In this study, both types of addresses can be 
correlated. Based on the reason an address is in the cache, we 
can classify address correlations into two categories: 1) 
correlations between two requested addresses, and 2) 
correlations involving at least one non-requested address. 

The correlations containing at least one non-requested 
address are more likely to occur due to frequent or trivial 
values. In Figure 6, a hit in the ACS is categorized according 
to the types of the two correlated addresses and the value in 
these addresses. If a missed address can be supplied both by 
requested addresses and non-requested addresses, a requested 
address is employed. Zero is one of the frequent values 
appearing in the SPEC CPU2000 benchmarks. While it might 
not be the most frequently accessed or occurring value for all 
benchmarks, it provides good insight into the effect that 
frequent values may have on address correlation. 

Figure 6 shows that, on average, 12% of the misses serviced 
by address correlation are due to the value zero, when the 
correlated addresses are both requested addresses. On the 
other hand, 23% of the misses serviced by address correlation 
are due to the correlation of non-requested addresses that 
contain zero. Further investigation shows that, for six of the 

                                                           
3 The ATOM linked list in 188.ammp has an unusual design in that the last 

node references back to itself instead of NULL. This allows the next field of 
the last node in the linked list to be correlated with the next field of the 
second-to-the-last node. 

4 lastmatched is a static variable that stores the reference to the ATOM 
node that was the matched target in the previous call to this searching function. 

1  ATOM *a_m_serial(serial)  
2  int serial;  
  {  
3      static ATOM *ap = NULL;  
4      static ATOM *lastmatched = NULL;  
5      int i , n, a_number(); 
    ...... 
6      for( i=0; i< n; i++ ) {  
7         if(ap-> serial == serial) 

{lastmatched = ap; return ap;} 
8         if(ap == ap->next) ap = first ; 
9         else ap = ap->next;  
        }  
10      return NULL;  

} 
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benchmarks, 60% of the misses eliminated by address 
correlation are due to only four distinct values. 
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Fig. 6. To determine the importance of frequent values in address correlation, 
ACS hits are categorized into �0� and �others�. The value 0 is further divided 
into correlations between two requested addresses (requested), and 
correlations involving at least one non-requested address (non-requested). 

V. UPPER-BOUND POTENTIAL OF ADDRESS CORRELATION  
In this section, we present the upper-bound performance 

improvement made possible by address correlation. While all 
of the potential addresses that store the same data can be 
candidates to supply the data on a miss or a partial hit, all of 
them might not be correlated to the requested address. Our 
intent is to see if all the misses that can be found in other 
addresses inside the cache can be correlated at run-time, and 
thus can supply the data. This will give us the upper-bound 
potential that an address correlation mechanism can offer for 
exceeding the limits of locality. 

In Figure 7, we show the normalized L1 data cache miss 
counts for different cache sizes and the effect of address 
correlation on reducing the number of misses. The original 
superscalar processor with an 8KB, 4-way associative L1 data 
cache is used as the base for these comparisons. We see that 
address correlation can eliminate most of the misses in the L1 
data cache. That is, the data requested is usually already in the 
cache at other addresses.  
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Fig. 7. The normalized cache miss counts for varying L1 data cache sizes with 
and without address correlation (ac). The original (org) superscalar processor 
with an 8KB, 4-way associative L1 data cache is used as the base for these 
comparisons. 
 

While these results show the potential benefits of the 
address correlation mechanism, the important question is how 
successfully it can correlate addresses to supply the requested 
data from an alternative address. Figure 8 shows that, on 
average, 68% of the potential addresses that can supply the 
data on a miss can be correlated at run-time by an ACS 
mechanism and thus can supply the data on a miss of an 
address containing the same value. While Figure 1 showed 
that an average of 91% of the load misses can be found in 

other addresses residing in the cache, we see in Figure 8 that 
fewer misses can be eliminated at run-time by an ACS. 
Nevertheless, the reduction still is significant, ranging from 23 
to 99%, with an average of 62%.  
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Fig. 8. The percentage of L1 data cache misses eliminated at run-time by an 
ACS. The L1 data cache is 32KB with 4-way associativity. 

VI. CONCLUSION 
This paper has demonstrated a new approach for exploiting 

value locality. Based on the concepts of store value locality [2] 
and frequent value locality [3], we proposed a new technique, 
Address Correlation, to link different addresses that contain 
the same data. We showed that supplying the requested data 
from different addresses that contain the same data value can 
substantially reduce the data cache misses and can also service 
partial hits faster. Our detailed source code-level analysis of 
programs shows that semantically equivalent information, 
duplicated references, and frequent values are the major 
causes of the address correlations. Taking advantage of 
duplicated references has further potential to benefit objected-
oriented design with its extensive usage of aggregation classes.  

The next step of this study is to develop a feasible 
implementation of the ACS. According to our profiling results, 
a useful correlation can usually be found in cache lines that are 
physically close to each other. Furthermore, the number of 
addresses that can be usefully correlated is usually bounded. 
Our preliminary experiments show that an ACS with 1-2 
correlations for a value can usually provide comparable 
performance results to that of the upper bound study given in 
this paper. We anticipate that the number of addresses that 
have correlations also can be limited with an effective 
replacement policy. In addition, with an efficient algorithm for 
identifying these addresses, we can create the correlation with 
low hardware overhead and low searching latency. 
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