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Scattering at the Junction Formed by a
PEC Half-Plane and a Half-Plane with
Anisotropic Conductivity

RESIT SENDAG
A. HAMIT SERBEST

Department of Electrical and Electronics Engineering
Faculty of Engineering and Architecture

Cukurova University

Adana, Turkey

In this study, scattering of plane electromagnetic waves at the junction formed by a
PEC half-plane and a half-plane wiih anisotropic conductivity is investigated.
By using a Fourier transform technique, the problem is formulated into a matrix
Wicner—Hopf svstem, and a rigorous solution is obtained. Also, to show the effect of
planar physical discontinuity explicitly, four different special cases are considered
where the problems are reduced into pairs of simultancous Wiener—Hopf equations.
They are decoupled via polvnomial transformations and solved through the stendard
procedure. The diffraucted fields are expressed in a form suitable for GTD
applications.

Keywords diffraction. anisotropic conductivity. plane discontinuity

Introduction

The diffraction of electromagnetic waves by a half-plane or a plane discontinuity
composed of two half-planes with different physical properties has been studied by
many authors, and a short summary of the subject was given by Serbest (1997). In
some of these works, the electromagnetic property of an imperfectly conducting slab
1s specified by its scalar resistivity R = (1/o¢) with o being the conductivity and
¢t being the thickness, which is assumed to be small compared with the wavelength.
In the most general case, the surface resistivity may be anisotropic supporting elec-
tric current sheets in directions parallel to both normal and tangential axes of the
plane (Senior, 1978). For such a plane located at y = 0. a constant resistivity tensor
can be written in the following dyadic form:

=l

t
ty

>

=RIR+ R, )

Received 20 August 2000, accepted 21 January 2001.

The authors are thankful to the reviewers for their comments, which helped to improve
the paper.

Address correspondence to A. Hamit Serbest. Department of Electrical and Electronic

Engineering, Faculty of Engincering and Architecture. Cukurova University, Adana. Turkey.
01330. E-mail: serbest/ cu.edu.tr

- o . .
415 iotce: This matertal ma

! y
Oy <opyright law (Title 17 U.

e pr
S.C

ntected
odal




416 R. Sendag and A. H. Serbest

where X and Z denote the unit vectors in cartesian coordinate system. Here, R, and
R, represent

Ry =(lfon) and R, =(l/0.1) )

with o, and o. being the conductivities in the x and z directions, respectively.

Anisotropy is a characteristic and interesting feature of materials and it should
necessarily be taken into account in order to form a realistic mathematical model of
a matter. But, due to the mathematical complexity that is encountered with these
realistic models, the number of studies that have appeared in the open literature are
relatively few and the ones that have appeared correspond to some special cases. One
of the earliest studies about an anisotropically conducting surface was presented by
Hurd (1960), in which where he mentioned that the first two papers in this subject
were due to Toraldo di Francia (1956) and Karp (1957). In these papers, the surface
was taken as unidirectionally conducting, which has infinite and zero conductivities
along the axes perpendicular to each other. This is a special case of the anisotropic
conductance. An impedance-type anisotropy was considered for the half-plane case
by Hurd and Liineburg (1985). and Serbest, Biiylikaksoy, and Uzgoren (1991)
studied the discontinuity formed by two anisotropic impedance half-planes assuming
the plane to be PEC in one direction and with impedance discontinuity in the other
direction. Biiyiikaksoy, Serbest, and Kara (1996) also considered the half-plane with
anisotropic conductivity. Some practically more involved anisotropic half-planes
were considered by Rozov and Tretyakov (1981), (1984), and Rozov and Sochava
(1991).

In this work, scattering of plane electromagnetic waves at the junction
formed by a PEC half-plane and a half-plane with anisotropic conductivity is con-
sidered for the oblique incidence case. This junction will display the effects of the
conductance discontinuity mechanism along both axes of the plane. The structure of
the half-plane with anisotropic conductivity is simulated by standard resistive
boundary conditions, and the problem is formulated by the Fourier transform tech-
nique. The formal solution is derived for the diffraction problem by employing the
well-known Daniele-Khrapkov method (Bityiikaksoy, Serbest, 1993). While an
exact closed-form solution is obtained by factorizing a 2 x 2 Wiener-Hopf matrix.
not only that is it quite complicated algebraically, but it also contains several trans-
cendental functions need numerical consideration. Therefore, in the present investi-
gation, the rigorous solution of the general problem is obtained in a formal manner
that is too complicated to be used in engineering applications. This complexity is not
too surprising for this type of anisotropy. In order to obtain some explicit analytical
results with practical meaning, the mathematical model is simplified and four dif-
ferent special cases are examined to yield the effect of planar physical discontinuity.
These problems correspond to the cases where Ry and R, are taken as either zero or
infinitely large. As known, the conductivity being zero or infinite means physically a
perfectly conducting structure or a vanishing structure, respectively. All problems
related to these special cases are formulated into pairs of simultaneous Wiener—Hopf
equations that are decoupled via polynomial transformations and solved through the
standard procedure. They show the diffraction mechanisms of the surfaces with
conductance discontinuity along one direction, while in the other direction the
structure is either infinite or semi-infinite and perfectly conducting.
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Formulation of the Problem

The + =0 plane, of which the negative hylp (v <« 0) is a perfect electrical conductor

(PEC) and the positive half (x> () |y inisotropic conductivity (Figure 1), is
Huminated by a plane electromagnetic iy given as

Ef(x, ¥, z) = (Al\, ’”. A Yoo thsno,(xveos g, +y sin ¢,,)€ik: cosé?,,. (3)
Here k= (—k,, —k, k), with &k Sty cos ¢y, ky = ksin 9y singy, and k. =
keosty as the expressions of the Propapation vector, and k- 4 = 0 is satisfied.
The time dependence is assumed ta by U\ (i) and the z-dependence is assumed
Lo be exp (ik.z) of the incident field. which are common to all field quantities and will
be suppressed throughout the analysis y, (he above expressions 6, is the measure of
obliquity, with 8, = 7/2 corresponding (o (e incidence in a plane perpendicular to
the edge. & is the free-space wave Himber of the medium and o 1s the angular
frequency of the field. To make (he Medent and consequently the scattered field
the wave number is assumed to have a small

USS cise can be obtained by making fm(k) — 0

Fourier integrable with respect to .
POsilive imaginary part. Then the loss]
i the final expressions.

The half-plane  with anisotropy,: vonductivity is assumed to have finite
conductivity of Ry in the x-direction Ml ol R, in the z-direction, which can be
characterized by the following generyl &Illimlr()_pic resistivity conditions given by
Senior (1978):

Fx [E(x.+0) Ly n)]zo, x> 0. )

T [1 x E(x, +0)] =-Ri. l H(x,+0) - Hx, —0)]. x>0, ©)

Figure 1

. (ivnnn-l;y of the problem.
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whereﬁﬁ is defined with (1) and Vis the unit vector directed along the y-axis. Here

and H denote the total fields, which are written as the sum of the incident :
scattered field components

E(H) = E'(H') + ES(H')

for all y. As is known, to obtain the scattered fields, it is sufficient to consider
tangential components of the electric field. In order to be able to use the abe
boundary conditions, the tangential components of the magnetic field must a
be known. These components can be derived easily from E* and E? via Maxwe

equations, and in order to determine the representation for £,, divergence of |
displacement vector will be used.

For E and E:, which satisfy the reduced wave equation of the half-plane,
can assume the following integral representations:

E = [ Ao o o ey s,
L

ES = f Bu(e)e ™™ go 4 (gD Lz, «
L

where I'(a) = VN? —o? with N = /&% - ki =ksin6,. The square root functi
(@) is defined in the complex a-plane cut as shown in Figure 2, such that o) =

/
-N

Figure 2. Complex a-plane and position of integration line L, where the regularity band j
determined by Im(a) < Im(N) and Im(a) > Im(N cos &)
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The terms E;' and E.' are defined by

r i =ik xtik. .y
ELEL) = R(T YA\ e heEhr —y

I\
o

®)

EL(EY) = R(T)ALe™ ™k p20. ©)

In (8) and (9), the (+) and (—) signs in the exponentials are used for the reflection
terms in y > 0 half-space and for the transmission terms in y < 0 half-space,
respectively. R(T,) and R.(T.) denote the reflection (transmission) coefficients
re.ated to the x and z components of the electric field that would be reflected
(transmitted) if the whole plane y =0 were characterized by a constant surface
resistance R.

By using Maxwell's equations together with (6)-(7), H: and H} can now be
obtained easily for both y > 0 and y < 0. The spectral coefficients A, and B,, for
y 20, appearing in (6)—(7) are to be determined with the aid of the boundary con-
ditions. To obtain a unique solution, it is also necessary to take into account
the appropriate edge conditions as x — 0, which were recently given by Idemen
(2000 as E, = O(Inx). E, = O(Inx) , E. = O() and H, = O(x"'"*) . H, = O(x"'?%),
H. = o(1). These conditions define the behavior of the electromagnetic field at the
junction of a PEC half-plane and a resistive half-plane.

Now, by substituting the scattered field expressions into the boundary
conditions and inverting, the resulting integral equations

20k. —2N* 1 L h
wurA+(a) + l: woul” + —ia} Bile) = rle) - E’i(a -k’ (1)
2k~ — o) 2 /\_ L J

[——J;If‘— + R_] +{o) + B+(a) dy(a) — prp— (11)

are obtained since A,(a) = A_(a) = d\(a) and B.(a) = B_(a) = ®5(a). In the
above expressions,

1 2 i i i
h= m[(—/\z- — k)AL +k ok AL+ k kAL (12)
and
' ! A R S Y,
j= Koo {kok A\ — Kok AL+ (—2k; — k2) AL}, (13)

while @f.(a) and ®f.(x) are yet unknown functions regular in the half-
rlane Im(e) > Im(k,) and Im(o) < Im(N). respectively. The elimination of 4. (x)
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and B,(a) gives a matrix Wiener-Hopf equation written in the strip
Im(k ) < Im(a) < Im(N) as follows:

G(@)®" (@) = ' (a) + V(@) (14)
with
ok 2N L
woul wul’ R
G@={ —u“2)+i 2, ‘ (15)
wul R, wul
and

! T —h = '
Viy=[V,"] = [Zm'(ot — k)" 2mi(a ~ kx)] . "

Here, the superscript T denotes the transpose of the matrix and &Y (@), O (@)
and V(«) are column vectors. The terms ®Y(a), ®" (@) are unknown functions that

need to be determined and V(«) corresponds to the contributions of the incident and
reflected fields as given in (16).

Factorization of the Kernel Matrix

The factorization of the kernel matrix for the present diffraction problem is accom-
plished by employing the Daniele-Khrapkov method (Biiytikaksoy, & Serbest,
1993). Now, let the matrix G(x), given by (15), be written as

G(a) = BG(a), (17)

yielding G(x) in a form appropriate for Daniele-Khrapkov factorization with B
being a constant matrix
_| 0 VR
8| ik 0]

and

G = +a [0 16 )

Here 1 is the unit matrix and a,(a) = 1, a(@) = [wul(@)] ™, n(a) = 2ak.R,,
m(o)) = 2ak. Ry, £4(c) = —2Ry(k* — &), £5() = —2R,N?. Since B is a scalar
matrix, it is sufficient to consider only the factorization of G(x). By adding and

subtracting s(x), the trace of the matrix G(a), it will be written as follows in
Daniele—K hrapkov form:

6@ =@+ a @@, (18)
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where
ey mle)
J“”‘[n(a) —e(a>]
with
s@) = 1 - [pl(@)] R (K — ) + RN}
and

0(a) = R\N? = Ry(K* — o).
The eigenvalues of the matrix G(a) are
hi2(0) = s(e) & ar@)V (). (19)
where
fl@) = [RIN = Ry(K — o)]” — 4R R’ k2.
and f-om (19) the explicit expressions are obtained as
Ma(@) = 1 = fanT@] ™ [Re(K* =) + RIN)]

+ foul@]" [RiN? = Ry(k2 = )]’ +40?k2R Ry

Mow, instead of continuing the analysis for the general case, let us assume that
R|R, « 1, which will yield the following approximation:

A3 R Ry < [RIN? — Ra (K — a)]

and one can easily write

fl@) = Ry — &) with of = ——[(Ry — R)K® = Rik:]. 0)

1
R

So, the eigenvalues will be reduced to
@) = 1 = 2Ry (kK — &) wpT (@)™ 2n
and

ho(e) = 1 — 2R N [wul ()] . (22)

The first step of the solution requires the factorization of these eigenvalues as a
product of upper and lower split functions. For this purpose, let the eigenvalue in
(21) be written by simple manipulations as

2Ry - r
A](a) = ———=cot” 90 . (a)

e S 23
kZy x(&, a)x(&. ) @9

where
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1.2 = (= Sin00)/{(~Zo/4Ry) % [ (Zo/ Ry — cos? 6y
The function x(&, «) given in (23) is defined as

M)

@& ) = NTE@

= xV (& Q)x*(E o),

which is factorized in terms of Maliuzhinetz function (see Uzgoren, Biiyitkaksoy, &
Serbest, 1989) so that the factors of A,(«) are

A ey = —&Cot%' U.L JN_i}L '
kZ X E G )X 6, @)

In the same manner, A,(e) can be written as
hal@) = =2(Ry/Z,)sinbx (&, ),

and also the factors of i,(@) can easily be obtained as
Ay (@) = [=2(Ry/Zo) sin 6] P [x " (5. )]

Since f(«) appearing in (19) is a fourth-order polynomial, it is obvious that the
factor matrices will have an exponential behavior. The next step is. therefore, to
introduce a polynomial matrix in the form given by Daniele (1984) to cancel this
exponential growth. As known. the order of this polynomial matrix will be of the
order of \/f, and since it is a second-order polynomial for the problem under
consideration, it will involve only one unknown coefficient to be determined

with the aid of the regularity condition. So, the polynomial matrix P(e«) can be
taken as

P(a) = —Ry(e* + 85I + J(a) (24)

and the eigenvalues of P(«) are

At p2(@) = —Ry(e? + ) £ F(a) (25)

with &1 (@hpa(@) = 2RYE + ai)e’ — of), where of = (o — £4/2(8* +&2) and
aj is given by (20). The second step is to split the eigenvalues of the polynomial
matrix given in (25) as Api(a) =ry and X »(a) = ra® + ry, where r| = R|(k* — kf)—
Ry(k* + %), r = =2R,. and ry = Ry(k> = %) — R,(K* — &2).

Also, the factors of the eigenvalues can easily be obtained by taking the square
root of r; for A, and factorizing the simple polynomial for A, yield )\,f;'L(a) =
Jroand Ap(a) = (Vo + i) fra — i /F3). Note that for the factors of the
Apa(e), the numerical calculation of the constant 82 will define which factor
of Apy(@) is regular in the upper or lower half of the complex a-plane. The condition
for determining g° is the regularity condition given as E = E,. where

1 [ 1 a0
E== In——=d
2 /.oo om0
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and

1 1 A
L ey
P2 T A0

The integral E can be evaluated in terms of known functions, and E, can be
expressed as an elliptic integral of the first kind (Hurd & Liineburg, 1985). Then
the condition £ = E, translates into

iale
oy = ns R
w

where ns(x) = 1/sn(x) and sn(x) is the elliptic function. For any set of para-
meters, the integral E can be evaluated numerically and used to calculate ag

and consequently B. Now, the formal expressions of the factor matrices can be
wrilten as

G ((1): A'ILAQL 0 ]/R]]
k MitrprL1/R, 0

1 0 AMiryn 1 [¢ AipAp
X l: ] cosh [lln —IL—”—'i] + ———[ " ] sinh [lln ——l—li'ijl P, (o),
0 1 2 hprp]  JfLn —t 2 dahae

Myt
Gyla) = | —————Py(x
v(e) ")"p\UA'[IZU yle)
1 0 Murpoy 14
X ]cosh lln—l—L——p—'Li +—1—— " 1 sinh
0 1 2 A‘ZU)‘pIU \/T n —4£

Here, the factorization of the polynomial matrix

-lln)\lu)».p'luil .
_2 )‘ZUA-/JIU

P(a) = [(f; o e] = Py() P.(@)

is obtained with

Pule) = [afﬁ S(e +?xo)/ﬁ]
and
P (@) = [\65 S(ab_o_t/a”o/)a/ﬁ] .
Here
§* = ad — be = —ae/af
is given with a= R (K> —k}) — Ry(K* + B°). b=2kRy, ¢ =2k.R. d=-2R,

e = Ry(k* — B) - R (K — k3). Now, this completes the factorization of the
kernel matrix yielding a rigorous solution for the matrix Wiener-Hopf problem.
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Note that if the approximation shown in (20} is not done, it would be impossible to

obtain explicit expressions for the upper and lower functions which appear in the
formal solution.

Analysis of the Diffracted Field

The analysis of the scattered field requires one to know the spectral coefficients A(w)
and B, (a) appearing in (6)~(7). It is sufficient to determine these spectral coefficients
if ¢f () and #¥ () are known. Since the kernel matrix of the Wiener-Hopf problem
is factorized, the formal solution can easily be written by following the standard
procedure

Pule) = 5 S G G ]
The diffracted field will be obtained by the steepest descent method after writing the
spectral coefficients in terms of the upper regular functions.

In this section, four different special cases involving extreme, but practically
meaningful, resistance values are considered. One of the resistances on the x >
part of the plane is taken to be either zero or infinite, while the other is kept finite
and nonzero. For example, Ry or R, is taken as infinite, while the other is kept
finite and R, or R, is taken as zero while the other is again kept finite and different
than zero. Each of these problems is formulated into a pair of simultaneous Wiener—
Hopf equations that are decoupled via a polynomial transformation and solved
through the standard procedure, where the field expressions are derived in geome-
trical theory of diffraction (GTD) form. In the following, only the essential steps of

the solution will be shown by omitting the intermediate ones, and diffraction coeffi-
cients will be given for each case.

Case for Ry— = or Ry —

R, and R, are the resistances along the x-axis and the --axis, respectively, on the
X > 0 part of the Oxz-plane. If Ry or R, is infinitely large. the physical body along
the corresponding axis cn the x > 0 part of the plane will vanish. This will yield a
PEC half-plane along this axis on the x < 0 part of the plane, leaving a resistance
discontinuity along the other axes of the plane.

Now, when R, is taken to be infinitely large, it reduces the configuration
into two separate problems: a PEC half-plane along the z-axis and a resistance
discontinuity along the x-axis (Figure 3a). As a result of this approximation,

the original problem given by (10)~(11) yields two simultaneous Wiener-Hopf
equations:

k. 2N? 1y ,
z _ —[]Y =
ot ®! +{ w__—uF(a)+R1] ;=00 +V, (26)

and

[opl(@] ' [-2(k" — o) DV + 20k, 5] = 0% + V5. 27)
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(@) y PEC

[ 2|
Peq T ]

[~ o 7
v~ A 7
| ] 7
[ 777 7
L s / R
L~ gy 7 x
[~ 7L 7
r -z 7
L /
[ /
| /
4 7
[~ /

(b)

Figure 3. (a) Case R. — oo: PEC half-plane and resistance discontinuity along x-axis.
(7) Case R} — oc: PEC half-plane and resistance discontinuity along z-axis.
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Since both ®{ and ®} are regular functions in the upper half-plane, the combina-
tion of these two functions in (27) is also regular in the upper half-plane. Here, V,
and V¥, denote the elements of the column matrix V(a) given by (16).

Let

W(a) = —2(k* — )0} + 20k 0¥, (28)
so that (27) i1s reduced into the form
[onT(@)] ' (@) = o5 + V5.

As is seen, the polynomial transformation given in (28) reduced the simultaneous
system of equations in (26)-(27) into two scalar Wiener—Hopf equations. Therefore,
(27) will be solved first, to express <I>1U in terms of q>§’ . Then, (26) will also be reduced
to a scalar equation involving only ®Y and ®}. Then, performing the standard
Wiener-Hopf decomposition procedure, one obtains the solution as follows:

s 2
/ sin” 6, (k — k )k + ) .
o = : > — iRk k.
" 2micos’ 90[ TN ROV T o) —ky /Y ik

k . ,
S ey A i e PACH SPLCN SRV ROED

The function x(£, ) in (29) has the same form as the function appearing in (23),
which is factorized in terms of Maliuzhinetz function (Uzgéren, Biyiikaksoy, &
Serbest, 1989). Here, &, , denote

£ = (Zosin6p)/[(—Ry) £ R} — (Zy cos 6y)’] .

Since ®{ was expressed in terms of WY and @Y in (28), one can obtain the following
formula for <1>sz

¢u_ 65_9\/N_k\-VN+a+ oek: (I)U
' e k=) R —ad)

Now, using the expressions of the spectral coefficients, the diffracted fields can be
obtained by using steepest descent method, yielding the diffraction coefficients as

™™ Ry xU(€1, =N cos $)x" (5, =N cos ¢)
iWanZy (1 -cos)(l - cos ¢)

D (8, ¢y, ) =

. X'(E1. N cos gy)x" (62, N cos g)(1 — sin 6, cos ¢) sin ¢
(cos ¢ + cos ¢y) cos ¢y

Y (30)

&
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and
Db oy = o SmeTocoshy 1 cod
AT EIT iy S2sin gg(cos ¢ + cos @) (l—sin2900052¢)

X { — cosBy(cosby — sin by cosdy) — sinby sin ¢p(2 sin 6 sin ¢ + cos 90)}

_smeocosq)cosé)oDx(eo.%’d))’ 31

| — sin® By cos? ¢
with

Y == (1 —sin GO,COS %0). {—sinfp(1 + sin” ) + cos @y(sin G sin @y + cos 80)}
cos B sin ¢y
+ { — s By(cos By — sin By cos ¢y) — sin by sin ¢o(2 sin 6 sin ¢ + cos 60)}
cos ¢y
x (1 + sin 6, cos ¢g) sin Gy sin g

Now. similar to the previous case, the approximation for R, — oo (Figure 3b)
yields & PEC half-plane along the x > 0 part of the x-axis and a resistance disconti-
nuity along the z-axis. The diffraction coefficients are obtained in this case as

D_(6y, D ¢)__(’—in/4 stin(ﬁ XU(&‘—NCOSQS)XU(E.“NCOS(A))
A0, Po. @)= i«/ﬂzomsineo (cosg+cosdy)/T—Cosdy

X [—ZSin2 By sin gy — singy — sinfycosby sin” ¢y — sinf,cosf, sin¢0cos¢0}

(32)
and
D.(6y. b0, &) = — e~ \F cos Pp/1 — coscp'sind)
’ i2+/27 sinBy(cos @ + cos ¢y) sin ¢y
x {—sinfy — sinéy sin ¢y -+ sin B sin ¢ COS ¢y + oS g €O o |
_ 0% ) (6. 0. 9) 33)

sin” 90

with & = (—=2R,/Z,sin ), where the function x(§. ) has the same form as in (23).

Case for Ry=0, Ry 0 or R, =0, R, #90

As is obvious, a vanishing surface resistance corresponds to a perfectly conducting
structure. So, when R, or R, is equal to zero, it yields a PEC full plane along that
axis end gives a resistance discontinuity along the other axis.

MNow. letting R, — 0 (Figure 4a), the following can easily be obtained:

—2(k* — o’ :
—*(————a—l-%L CDIL' = <1>3L + Vs, Imik.} < Im{a} < Im{N} (34)
wul (o) R»
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with ®Y =0, By =0 and Ex=E.= — A’ exp(—ikyx + ikyy) . Wicner-Hopf
factorization gives

e ke x k) KL G
VN —k VN + ala = ki)

and the diffraction coefficient is obtained as

: kZ
V(@) = jo—tan’ 6
4mi

—infd sin ¢(cos’ B sindg) ™"

d s
D6, o, 9) = i1/ T —cosg/T—cosgy(cosd+ cos ¢p)

x {x" (& —N cosp)x" (&2, _ Ncosd)xL(Er. Ncosdp)x“(E2. N cosdo))

x {2 sin 6 sin” ¢y — cos” By + sin 6 cos 6y COS o — sin 6 cos By sin ¢y }
(35)

with

£, > = (4Rysin 90)/{20 T/ Z; — (4R, cos 6(,)—2] .

On the other hand, by letting Ry — 0 (Figure 4b), the following equation is
obtained:

2N e o = of h Im(k,} < Imia) < Im{N}  (36)
KZy 5 2= T onia — k)
with &€ = —kZy/2R;N. Then. after performing the Wiener-Hopf factorization, the
d‘ firaction coefficient is obtained as
2 sing : .
l)‘{g, . :—_.—(————__.__.———-—— t ’_N U ’,_‘V
+(60. $0. @) Wert (Cos¢+cos¢0)x (. —Ncosd)x (5, —Ncosdy)

N . .2 . .
% - {sin By + sinf sin” ¢ — §in B, sin by cos ¢y — coshycosdg .
Snfosin ¢0{ o b 0 b singy 0 b oS o}

(37)

Numerical Results and Concluding Remarks

SJome numerical results have been obtained for the diffracted fields where the
ambient medium is taken as free space and the incident plane wave electric field
strength is assumed to be 1 V/m. The diffracted field expressions involve the split
functions XU‘L(cx), which are written in terms of the Maliuzhinetz function, as was
done by Uzgdren, Biiyiikaksoy, Serbest, 1989. Then, the Maliuzhinetz function 1s
_easily computed by using the approximate formulas given by Volakis and Senior
(1985).

Figures 5 and 6 illustrate the variation of the amplitude of the x- and
z-components of 20 log o(1tglv/Np) with respect to the observation angle for various
values of the normalized resistance (R/Zo). The diffracted field expressions obtained
here are not uniform and, consequently, it is expected that the field will take very
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Figure 6. Continued.

large values in the transition regions. As is seen from the figures and also from the
analytical expressions, the transition boundaries are determined by the incidence
angle as (m — ¢y) and (7 + ¢y).

Figures 5a and 5b show the variation of the diffraction coefficients for the
normal incidence case, i.e., 6; = ¢, =mn/2. In Figure Sa, the behavior of D, is
shown for resistance discontinuity along the z-axis over a PEC full plane (R, = 0).
It should be noted that the behavior of D_ is the same for the resistance discontinuity
over a PEC half-plane located at the negative part of the x-axis (R; — 00). Also,
Figure 5b shows the diffraction coefficient D. for R; = 0 (PEC full plane along the
x-axis), which has the same variation for R, — oo, again corresponding to a PEC
half-plane located along the negative half of the x-axis. This result is not surprising
because no mutual effects are expected in the normal incidence case.

The variation of the diffraction coefficient D, with respect to the observation
angle is given in Figures 6a—6¢ for the incidence angles 6y = 45, ¢y = 60. Figure 6a
shows D, for R, =0, and it has been obtained that D, for R| = 0 have almost the
same behavior for all R/Z; values. The form of the variation of the diffraction
coefficients D, for R, — oo (Figure 6b) and D, for R; — oo are also the same,
but the magnitudes of the maximum and minimum points are different. Similarly,
D, for Ry — oo (Figure 6¢) and D. for R, > oc have the same behavior. This
consideration is repeated for the cases in which the incidence angles are 6, = 30,

-~
4
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¢ = 20 and 8y = 65, ¢y = 140 and the relations between the diffraction coefficients
for all cases are observed to be the same. In contrast to the normal incidence case,
mutual effects are of considerable importance for oblique incidence. Also, these
graphs show that the diffraction coefficients D, and D corresponding to a resistance
discontinuity on either a PEC full plane or a PEC half-plane have the same behavior
with respect to the observation angle.

It should be noted that the problem of diffraction from a discontinuity formed
by a PEC half-plane and an anisotropic resistive half-plane is considered for the first
time in this work. Although there are studies about anisotropic conducting struc-
tures which already appeared in the open literature (as in Hurd, 1960, and
[Eiyitkaksoy, Serbest. Kara, 1996; Rozov, Tretyakov, 1981, 1984), they involve
semi-infinite geometries, and it is not possible to reduce the geometrical configura-
tion considered in this work to a half-plane with anisotropic conductivity. Therefore,
there has been no opportunity to compare the results presented here with some
previously obtained results to validate the accuracy of the present high-frequency
solution. But both the analytical expressions and the numerical results are in agree-
ment with the expectations related to the problem, and these points are explained
above.

Finally, some additional remarks will be made that may be considered as a
verification of the solution presented here, even though they are necessary but not
sufficient conditions to establish the accuracy of the solution. In the normal incidence
case (8, = m/2) for both R} — o< and R, — o the z-component of the diffracted
electric field reduces in the E. polarization case to the following well-known result
for the PEC half-plane problem:

¢4 JTF cos o/ T +cosg P
V2 cos ¢ + cos ¢y Jkp
On the other hand, analytical results yield D, = 0 for R, =0 and D. =0 for

R, = 0 at all incidence angles. Therefore. the =-component and x-component of the
scattered field, respectively. involve only the reflected term as expected.

El=—
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