

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 468–480.
 Springer-Verlag Berlin Heidelberg 2002

Exploiting the Prefetching Effect
Provided by Executing Mispredicted Load Instructions

Resit Sendag1, David J. Lilja1, and Steven R. Kunkel2

1 Department of Electrical and Computer Engineering
Minnesota Supercomputing Institute

University of Minnesota
200 Union St. S.E., Minneapolis, MN 55455, USA

{rsgt, lilja}@ece.umn.edu
2 IBM, Rochester, MN, USA
srkunkel@us.ibm.com

Abstract. As the degree of instruction-level parallelism in superscalar
architectures increases, the gap between processor and memory
performance continues to grow requiring more aggressive techniques to
increase the performance of the memory system. We propose a new
technique, which is based on the wrong-path execution of loads far
beyond instruction fetch-limiting conditional branches, to exploit more
instruction-level parallelism by reducing the impact of memory delays.
We examine the effects of the execution of loads down the wrong
branch path on the performance of an aggressive issue processor. We
find that, by continuing to execute the loads issued in the mispredicted
path, even after the branch is resolved, we can actually reduce the cache
misses observed on the correctly executed path. This wrong-path
execution of loads can result in a speedup of up to 5% due to an indirect
prefetching effect that brings data or instruction blocks into the cache
for instructions subsequently issued on the correctly predicted path.
However, it also can increase the amount of memory traffic and can
pollute the cache. We propose the Wrong Path Cache (WPC) to
eliminate the cache pollution caused by the execution of loads down
mispredicted branch paths. For the configurations tested, fetching the
results of wrong path loads into a fully associative 8-entry WPC can
result in a 12% to 39% reduction in L1 data cache misses and in a
speedup of up to 37%, with an average speedup of 9%, over the
baseline processor.

1 Introduction

Several methods have been proposed to exploit more instruction-level parallelism in
superscalar processors and to hide the latency of the main memory accesses, including
speculative execution [1-7] and data prefetching [8-21]. To achieve high issue rates,
instructions must be fetched beyond the basic block-ending conditional branches. This

Exploiting the Prefetching Effect Provided by Executing Mispredicted Load Instructions 469

can be done by speculatively executing instructions beyond branches until the
branches are resolved. This speculative execution will allow many memory references
to be issued that turn out to be unnecessary since they are issued from the
mispredicted branch path. However, these incorrectly issued memory references may
produce an indirect prefetching effect by bringing data or instruction lines into the
cache that are needed later by instructions that are subsequently issued along correct
execution path. On the other hand, these incorrectly issued memory references will
increase the amount of memory traffic and can potentially pollute the cache with
unneeded cache blocks [2].

Existing processors with deep pipelines and wide issue units do allow memory
references to be issued speculatively down wrongly-predicted branch paths. In this
study, however, we go one step further and examine the effects of continuing to
execute the loads down the mispredicted branch path even after the branch is
resolved. That is, we allow all speculatively issued loads to access the memory system
if there is an available memory port. These instructions are marked as being from the
mispredicted branch path when they are issued so they can be squashed in the write-
back stage of the processor pipeline to prevent them from altering the target register
after they access the memory system. In this manner, the processor is allowed to
continue accessing memory with loads that are known to be from the wrong branch
path. No store instructions are allowed to alter the memory system, however, since
they are known to be invalid.

While this technique very aggressively issues load instructions to produce a
significant impact on cache behavior, it has very little impact on the implementation
of the processor’s pipeline and control logic. The execution of wrong-path loads can
make a significant performance improvement with very low overhead when there
exists a large disparity between the processor cycle time and the memory speed.
However, executing these loads can reduce performance in systems with small data
caches and low associativities due to cache pollution. This cache pollution occurs
when the wrong-path loads move blocks into the data cache that are never needed by
the correct execution path. It also is possible for the cache blocks fetched by the
wrong-path loads to evict blocks that still are required by the correct path.

 In order to eliminate the cache pollution caused by the execution of the wrong-
path loads, we propose the Wrong Path Cache (WPC). This small fully-associative
cache is accessed in parallel with the L1 cache. It buffers the values fetched by the
wrong-path loads plus the blocks evicted from the data cache. Our simulations show
that the WPC can be very effective in eliminating the pollution misses caused by the
execution of wrong path loads while simultaneously reducing the conflict misses that
occur in the L1 data cache.

The remainder of the paper is organized as follows -- Section 2 describes the
proposed wrong path cache. In Section 3, we present the details of the simulation
environment with the simulation results given in Section 4. Section 5 discusses some
related work with the conclusions given in Section 6.

2 Wrong Path Cache (WPC)

For small low-associativity data caches, the execution of loads down the incorrectly-
predicted branch path can reduce performance since the cache pollution caused by

470 R. Sendag, D.J. Lilja, and S.R. Kunkel

these wrong-path loads might offset the benefits of their indirect prefetching effect.
To eliminate the pollution caused by the indirect prefetching effect of the wrong-path
loads, we propose the Wrong Path Cache (WPC). The idea is simply to use a small
fully associative cache that is separate from the data cache to store the values returned
by loads that are executed down the incorrectly-predicted branch path. Note that the
WPC handles the loads that are known to be issued from the wrong path, that is, after
the branch result is known. The loads that are executed before the branch is resolved
are speculatively put in the L1 data cache.

If a wrong-path load causes a miss in the data cache, the required cache block is
brought into the WPC instead of the data cache. The WPC is queried in parallel with
the data cache. The block is transferred simultaneously to the processor and the data
cache when it is not in the data cache but it is in the WPC. When the address
requested by a wrong-path load is in neither the data cache nor the WPC, the next
cache level in the memory hierarchy is accessed. The required cache block is then
placed into the WPC only to eliminate the pollution in the data cache that could
otherwise be caused by the wrong-path loads. Note that misses due to loads on the
correct execution path, and misses due to the loads issued from the wrong path before
the branch is resolved, move the data into the data cache but not into the WPC.

The WPC also caches copies of blocks recently evicted by cache misses. That is, if
the data cache must evict a block to make room for a newly referenced block, the
evicted block is transferred to the WPC, as is done in the victim cache [9].

3 Experimental Setup

3.1 Microarchitecture

Our microarchitectural simulator is built on top of the SimpleScalar toolset [22],
version 3.0. The simulator is modified to compare the processor configurations
described in Section 3.2. The processor/memory model used in this study is an
aggressively pipelined processor capable of issuing 8 instructions per cycle with out-
of-order execution. It has a 128-entry reorder buffer with a 64-entry load/store buffer.
The store forwarding latency is increased to 3 cycles in order to compensate for the
added complexity of disambiguating loads and stores in a large execution window.
There is a 6-cycle branch misprediction penalty. The processor has 8 integer ALU
units, 2-integer MULT/DIV units, 4 load/store units, 6-FP Adders and 2-FP
MULT/DIV units. The latencies are: ALU=1 cycle, MULT=3 cycles, integer DIV=12
cycles, FP Adder=2 cycles, FP MULT=4 cycles, and FP DIV=12 cycles. All the
functional units, except the divide units, are fully pipelined to allow a new instruction
to initiate execution each cycle.

The processor has a first-level 32 KB, 2-way set associative instruction cache.
Various sizes of the L1 data cache (4KB, 8KB, 16KB, 32KB) with various
associativities (direct-mapped, 2-way, 4-way) are examined in the following
simulations. The first-level data cache is non-blocking with 4 ports. Both caches have
block sizes of 32 bytes and 1-cycle hit latency. Since the memory footprints of the
benchmark programs used in this paper are somewhat small, a relatively small 256K
4-way associative unified L2 cache is used for all of the experiments in order to
produce significant L2 cache activity. The L2 cache has 64-byte blocks and a hit

Exploiting the Prefetching Effect Provided by Executing Mispredicted Load Instructions 471

latency of 12 cycles. The round-trip main memory access latency is 200 cycles for all
of the experiments, unless otherwise specified. We model the bus latency to main
memory with a 10 cycle bus occupancy per request. Results are shown for bus
bandwidth of 8 bytes/cycle. The effect on the WPC performance of varying the cache
block size is examined in the simulations. There is a 64-entry 4-way set associative
instruction TLB and 128-entry 4-way set associative data TLB, each with a 30-cycle
miss penalty. For this study, we used the GAp branch predictor [24, 25]. The
predictor has a 4K-entry Pattern History Table (PHT) with 2-bit saturating counters.

3.2 Processor Configurations Tested

The following superscalar processor configurations are simulated to determine the
performance impact of executing wrong-path loads, and the performance
contributions of the Wrong Path Cache. The configurations, all, vc, and wpc, are
modifications of the SimpleScalar [22] baseline processor described above.

orig: This configuration is the SimpleScalar baseline processor. It is an 8-issue
processor with out-of-order execution and support for speculative execution of
instructions issued from a predicted branch path. Note that this processor can execute
loads from a mispredicted branch path. These loads can potentially change the
contents of the cache, although they cannot change the contents of any registers.
These wrong-path loads are allowed to access the cache memory system until the
branch result is known. After the branch is resolved, they are immediately squashed
and the processor state is restored to the state prior to the predicted branch. The
execution then is restarted down the correct path.

all: In this configuration, the processor allows as many fetched loads as possible to
access the memory system regardless of the predicted direction of conditional
branches. This configuration is a good test of how the execution of the loads down the
wrong branch path affects the memory system. Note that, in contrast to the orig
configuration, the loads down the mispredicted branch direction are allowed to
continue execution even after the branch is resolved. Wrong-path loads that are not
ready to be issued before the branch is resolved, either because they are waiting for
the effective address calculation or for an available memory port, are issued to the
memory system if they become ready after the branch is resolved, even though they
are known to be from the wrong path. Instead of being squashed after the branch is
resolved as in the orig configuration, they are allowed to access the memory.
However, they are squashed before being allowed to write to the destination register.
Note that a wrong-path load that is dependent upon another instruction that gets
flushed after the branch is resolved also is flushed in the same cycle. Wrong-path
stores are not allowed to execute and are squashed as soon as the branch result is
known.

orig_vc: This configuration is the orig configuration (the baseline processor) with
the addition of an 8-entry victim cache.

all_vc: This configuration is the all configuration with the addition of an 8-entry
victim cache. It is used to compare against the performance improvement made
possible by caching of the wrong-path loads in the WPC.

wpc: This configuration adds an 8-entry Wrong Path Cache (WPC) to the all
configuration.

472 R. Sendag, D.J. Lilja, and S.R. Kunkel

3.3 Benchmark Programs

The test suite used in this study consists of the combination of SPEC95 and
SPEC2000 benchmark programs. All benchmarks were compiled using gcc 2.6.3 at
optimization level O3 and each benchmark ran to completion. The SPEC2000
benchmarks are run with the MinneSPEC input data sets to limit their total simulation
time while maintaining the fundamental characteristics of the programs’ overall
behaviors [23].

4 Results

The simulation results are presented as follows. First, the performances of the
different configurations are compared using the speedups relative to the baseline
(orig) processor. Next, several important memory system parameters are varied to
determine the sensitivity of the WPC to these parameters. The impact of executing
wrong-path loads both with and without the WPC also is analyzed.

Having used small or reduced input sets to limit the simulation time, most of the
results are given for a relatively small L1 data cache to mimic more realistic
workloads with higher miss rates. The effect of different cache sizes is investigated in
Section 4.2. In this paper, our focus is on improving the performance of on-chip
direct-mapped data caches. Therefore, most of the comparisons for the WPC are made
against a victim cache [9]. We do investigate the impact of varying the L1
associativity in Section 4.2, however.

4.1 Performance Comparisons

4.1.1 Speedup Due to the WPC
Figure 1 shows the speedups obtained relative to the orig configuration when
executing each benchmark on the different configurations described in Section 3.2.
The WPC and the victim cache each have eight entries in those configurations that
include these structures.

Of all of the configurations, wpc, which executes loads down the wrong branch
path with an 8-entry WPC, gives the greatest speedup. From Figure 1, we can see that,
for small caches, the all configuration actually produces a slowdown due to the large
number of wrong-path loads polluting the L1 cache. However, by adding the WPC,
the new configuration, wpc, produces the best speedup compared to the other
configurations. In particular, wpc outperforms the orig_vc and all_vc configurations,
which use a simple victim cache to improve the performance of the baseline
processor. While both the WPC and the victim cache reduce the impact of conflict
misses in the data cache by storing recent evictions near the processor, the WPC goes
further by acting like a prefetch buffer and thus preventing pollution misses due to the
indirect prefetches caused by executing the wrong-path loads in the all configuration.

While we will study the effect of different cache parameters in later sections,
Figure 2 shows the speedup results for an 8KB L1 data cache with 4-way
associativity. When increasing the associativity of the L1 cache, the speedup obtained
by the orig_vc seen in Figure 1 disappears. However, the wpc still provides

Exploiting the Prefetching Effect Provided by Executing Mispredicted Load Instructions 473

significant speedup as the associativity increases and it substantially outperforms the
all_vc configuration. The mcf program shows generally poor cache behavior and
increasing the L1 associativity does not reduce its miss rate significantly. Therefore,
we see that the speedup produced by the wpc for mcf remains the same in Figures 1
and 2. As expected, a better cache with lower miss rates reduces the benefit of the
wpc. From Figure 2, we also see that the all configuration can produce some speedup.
There is still some slowdown for a few of the benchmarks due to pollution from the
wrong path execution of loads. However, the slowdown for the all configuration is
less than in Figure 1, where the cache is direct-mapped.

4.1.2 A Closer look at the WPC Speedups
The speedup results shown in Figures 1 and 2 can be explained at least partially by
examining what levels of the memory hierarchy service the memory accesses. Figure
3 shows that the great majority of all memory accesses in the benchmark programs
are serviced by the L1 cache, as is to be expected. While a relatively small fraction of
the memory accesses cause misses, these misses add a disproportionately large
amount of time to the memory access time. The values for memory accesses that miss
in the L1 cache must be obtained from one of three possible sources, the wrong-path
cache (WPC), the L2 cache, or the memory. Figure 3 shows that a substantial fraction
of the misses in these benchmark programs are serviced by the WPC. For example,
4% of all memory accesses issued by twolf are serviced by the WPC. However, this
fraction corresponds to 32% of the L1 misses generated by this program. Similarly,
3.3% of mcf's memory accesses, and 1.9% of equake's, are serviced by the WPC,
which corresponds to 21% and 29% of their L1 misses, respectively. Since the WPC
is accessed in parallel with the L1 cache, misses serviced by the WPC are serviced in
the same amount of time as a hit in the L1 cache, while accesses serviced by the L2
cache require 12 cycles and accesses that must go all the way to memory require 200

Fig. 1. The Wrong Path Cache (wpc) produces
consistently higher speedups than the victim
cache (vc) or the all configuration, which does
not have a WPC but does execute all ready
wrong–path loads if there is a free port to the
memory system. The data cache is 8KB direct-
mapped and has 32-byte blocks. All speedups
are relative to the baseline (orig)processor.

Fig. 2. With a data cache of 8KB with 4-way
associativity, the speedup obtained by orig_vc
disappears. However, wpc continues to
provide significant speedup and substantially
outperforms the all_vc configuration. The all
configuration also shows significant speedup
for some benchmarks. The data cache has 32-
byte blocks. All speedups are relative to the
baseline (orig) processor.

-5%

0%

5%

1 0%

1 5%

20%

25%

30%

35%

40%

or ig_vc

al l _vc

wpc

al l

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

or i g_vc

al l _vc

wpc

al l

474 R. Sendag, D.J. Lilja, and S.R. Kunkel

cycles. For most of these programs, we see that the WPC converts approximately 20-
35% of misses that would have been serviced by the L2 cache or the memory into
accesses that are equivalent to an L1 hit.

While the above discussion explains some of the speedups seen in Figures 1 and 2,
it does not completely explain the results. For instance, twolf has the largest fraction
of memory accesses serviced by the WPC in Figure 3. However, mcf, gzip, and
equake show better overall speedups. This difference in speedup is explained in
Figure 4. This figure shows which levels of the memory hierarchy service the
speculative loads issued on what is subsequently determined to be the wrong branch
path. Speculative loads that miss in both the L1 cache and the WPC are serviced
either by the L2 cache or by the memory. These values are placed in the WPC in the
hope that the values will be subsequently referenced by a load issued on the correct
branch path.

In Figure 4, we see that 30 percent of the wrong path accesses that miss in both the
L1 and the WPC are serviced by memory, which means that this percentage of the
blocks in the WPC are loaded from memory. So, from Figure 3 we can say that 30
percent of the correct path accesses that hit in the WPC for mcf would have been
serviced by the memory in a system without the WPC. That is, the WPC effectively
converts a large fraction of this program's L1 misses into the equivalent of an L1 hit.
In twolf, on the other hand, most of the hits to the WPC would have been hits in the
L2 cache in the absence of the WPC. We see in Figure 4 that less than 1% of the
wrong path accesses for twolf that miss both in the L1 and the WPC are serviced by
memory, while 99% of these misses are serviced by the L2 cache. That is, almost all
the data in the WPC comes from the L2 cache for twolf. Thus, the WPC does a better
job of hiding miss delays for mcf than for twolf, which explains why mcf obtains a
higher overall speedup with the WPC than does twolf. A similar argument explains
the speedup results observed in the remainder of the programs, as well.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M emor y

L2

WP C

L1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M emor y

L2

WP C

L1

Fig.3. The fraction of memory references on
the correct execution path that are serviced by
the L1 cache, the WPC, the L2 cache, and
memory. The L1 data cache is 8KB direct-
mapped and has 32-byte blocks.

Fig 4. The fraction of memory references on
the wrong execution path that are serviced by
the L1 cache, the WPC, the L2 cache, and
memory. The L1 data cache is 8KB direct-
mapped and has 32-byte blocks.

Exploiting the Prefetching Effect Provided by Executing Mispredicted Load Instructions 475

4.2 Sensitivity to Cache Parameters

There are several parameters that affect the performance of a cache memory system.
In this study, we examine the effects of the cache size, the associativity, and the cache
block size on the cache performance when allowing the execution of wrong-path
loads both with and without the WPC. Due to lack of space, the effects of memory
latency and the size of WPC are not given in this paper. See [26] for information on
the effects of these parameters.

Figure 5 shows that the relative benefit of the wpc decreases as the L1 cache size
increases. However, the WPC size is kept constant in these simulations so that the
relative size of the WPC to the data cache is reduced. With a smaller cache, wrong-
path loads cause more misses compared to configurations with larger caches. These
additional misses tend to prefetch data that is put into the WPC for use by
subsequently executed correct branch paths. The WPC eliminates the pollution in the
L1 data cache for the all configuration that would otherwise have occurred without
the WPC, which then makes these indirect prefetches useful for the correct branch
path execution.

While the WPC is a relatively small hardware structure, it does consume some chip
area. Figure 6 shows the performance obtained with an 8-entry WPC used in
conjunction with an 8KB L1 cache compared to the performance obtained with the
original processor configuration using a 16KB L1 cache or a 32KB L1 cache but
without a WPC. We find that, for all of the test programs, the small WPC with the
8KB cache exceeds the performance of the processor when the cache size is doubled,
but without the WPC. Furthermore, the WPC configuration exceeds the performance
obtained when the size of the L1 cache is quadrupled for all of the test programs
except gcc, li, vpr, and twolf. We conclude that this small WPC is an excellent use of
the chip area compared to simply increasing the L1 cache size.

0%

5%

1 0%

1 5%

20%

25%

30%

35%

40%

4K B

8K B

1 6K B

32K B

0%

5%

1 0%

1 5%

20%

25%

30%

35%

40%

2xcache

4xcache

wpc

Fig. 5. Speedup obtained with the wpc
configuration as the L1 cache size is varied.
The L1 data cache is direct-mapped with 32-
byte blocks. All speedups are relative to the
baseline (orig)processor.

Fig. 6. The speedup obtained with the WPC
compared to configurations with larger L1
caches but without a WPC. The base cache
size is 8KB and is direct-mapped with 32- byte
blocks.

476 R. Sendag, D.J. Lilja, and S.R. Kunkel

Figure 7 shows that executing the loads that are known to be down the wrong path
typically increases the number of L1 data cache references by about 15-25% for most
of the test programs. Furthermore, this figure shows that executing these wrong-path
loads increases the bus traffic (measured in bytes) between the L1 cache and the L2
cache by 5-23%, with an average increase of 11%. However, the WPC reduces the
total data cache miss ratio for loads on the correct path by up to 39%, as shown in
Figure 8.

Increasing the L1 cache associativity typically tends to reduce the number of L1
misses on both the correct path [8] and the wrong path. This reduction in misses
reduces the number of indirect prefetches issued from the wrong path, which then
reduces the impact of the WPC, as shown in Figure 9. The mcf program is the
exception since its overall cache behavior is less sensitive to the L1 associativity than
the other test programs.

0%

5%

10%

15%

20%

25%

30%

35%

L1

L1 -L2

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Fig. 7. The percentage increase in L1 cache
accesses and traffic between the L1 cache and
the L2 cache for the wpc configuration
compared to the orig configuration. The L1
cache is 8 KB, direct-mapped and has 32-byte
blocks.

Fig. 8. The reduction in data cache misses for
the wpc configuration compared to the orig
configuration. The L1 cache is 8 KB, direct-
mapped and has 32-byte blocks.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1-way

2-way

4-way

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

wpc8B

wpc32B

al l8B

al l32B

Fig. 9. The effect of the L1 cache associativity
on the speedup of the wpc configuration
compared to the orig configuration. The L1
cache size is 8 KB with 32-byte blocks.

Fig. 10. The effect of the cache block size on
the speedup of the all and wpc configurations
compared to the orig configuration. The L1
cache is direct-mapped and 8 KB. The WPC is
256B, i.e, 8–entries with 32-byte blocks
(wpc32B), or 32-entries with 8-byte blocks
(wpc8B).

Exploiting the Prefetching Effect Provided by Executing Mispredicted Load Instructions 477

As the block size of the data cache increases, the number of conflict misses also
tends to increase [8, 27]. Figure 10 shows that smaller cache blocks produce better
speedups for configurations without a WPC when wrong-path loads are allowed to
execute since larger blocks more often displace useful data in the L1 cache. However,
for the systems with a WPC, the increasing conflict misses in the data cache due to
the larger blocks increases the number of misses that hit in the WPC because of the
victim-caching behavior of the WPC. In addition, the indirect prefetches provide a
greater benefit for large blocks since the WPC eliminates their polluting effects. We
conclude that larger cache blocks work well with the WPC since the strengths and
weaknesses of larger blocks and the WPC are complementary.

5 Related Work

There have been several studies examining how speculation affects multiple issue
processors [1-7]. Farkas et al [1], for example, looked at the relative memory system
performance improvement available from techniques such as non-blocking loads,
hardware prefetching, and speculative execution, used both individually and in
combination. The effect of deep speculative execution on cache performance has been
studied by Pierce and Mudge [2]. Several other authors [3-7] examined speculation
and pre-execution in their studies Wallace et al. [4] introduced instruction recycling,
where previously executed wrong path instructions are injected back into the rename
stage instead of being discarded. This technique increases the supply of instructions to
the execution pipeline and decreases fetch latency.

Prefetching, which overlaps processor computations with data accesses, has been
shown to be one of several effective approaches that can be used to tolerate large
memory latencies. Prefetching can be hardware-based, software-directed, or a
combination of both [21]. Software prefetching relies on the compiler to perform
static program analysis and to selectively insert prefetch instructions into the
executable code [16-19]. Hardware-based prefetching, on the other hand, requires no
compiler support, but it does require some additional hardware connected to the cache
[8-15]. This type of prefetching is designed to be transparent to the processor.

Jouppi [9] proposed victim caching to tolerate conflict misses. While several other
prefetching schemes have been proposed, such as adaptive sequential prefetching
[11], prefetching with arbitrary strides [11, 14], fetch directed prefetching [13], and
selective prefetching [15], Pierce and Mudge [20] have proposed a scheme called
wrong path instruction prefetching. This mechanism combines next-line prefetching
with the prefetching of all instructions that are the targets of branch instructions
regardless of the predicted direction of conditional branches.

Most of the previous prefetching schemes require a significant amount of hardware
to implement. For instance, they require a prefetcher that prefetches the contents of
the missed address into the data cache or into an on-chip prefetch buffer. Furthermore,
a prefetch scheduler is needed to determine the right time to prefetch. On the other
hand, this work has shown that executing loads down the wrongly-predicted branch
paths can provide a form of indirect prefetching, at the potential expense of some
cache pollution. Our proposed Wrong Path Cache (WPC) is essentially a combination
of a very small prefetch buffer and a victim cache [9] to eliminate this pollution
effect.

478 R. Sendag, D.J. Lilja, and S.R. Kunkel

6 Conclusions

This study examined the performance effects of executing the load instructions that
are issued along the incorrectly predicted path of a conditional branch instruction.
While executing these wrong-path loads increases the total number of memory
references, we find that allowing these loads to continue executing, even after the
branch is resolved, can reduce the number of misses observed on the correct branch
path. Executing these wrong-path loads thus provides an indirect prefetching effect.
For small caches, however, this prefetching can pollute the cache causing an overall
slowdown in performance.

We proposed the Wrong Path Cache (WPC), which is a combination of a small
prefetch buffer and a victim cache, to eliminate the pollution caused by the execution
of the wrong-path loads. Simulation results show that, when using an 8 KB L1 data
cache, the execution of wrong-path loads without the WPC can result in a speedup of
up to 5%. Adding a fully-associative eight-entry WPC to an 8 KB direct-mapped L1
data cache, though, allows the execution of wrong path loads to produce speedups of
4% to 37% with an average speedup of 9%. The WPC also shows substantially higher
speedups compared to the baseline processor equipped with a victim cache of the
same size.

This study has shown that the execution of loads that are known to be from a
mispredicted branch path has significant potential for improving the performance of
aggressive processor designs. This effect is even more important as the disparity
between the processor cycle time and the memory speed continues to increase. The
Wrong Path Cache proposed in this paper is one possible structure for exploiting the
potential benefits of executing wrong-path load instructions.

Acknowledgement

This work was supported in by National Science Foundation grants EIA-9971666 and
CCR-9900605, of the IBM Corporation, of Compaq's Alpha Development Group, and
of the Minnesota Supercomputing Institute.

References

[1] K. I. Farkas, N. P. Jouppi, and P. Chow, “How Useful Are Non-Blocking Loads, Stream
Buffers, and Speculative Execution in Multiple Issue Processors?” Technical Report WRL
RR 94/8, Western Research Laboratory – Compaq, Palo Alto, CA, August 1994.

[2] J. Pierce and T. Mudge, “The effect of speculative execution on cache performance,”
IPPS 94, Int. Parallel Processing Symp., Cancun Mexico, pp. 172-179, Apr. 1994.

[3] G. Reinman, T. Austin, and B. Calder, “A Scalable Front-End Architecture for Fast
Instruction Delivery,” 26th International Symposium on Computer Architecture, pages
234-245, May 1999.

[4] S. Wallace, D. Tullsen, and B. Calder, “Instruction Recycling on a Multiple-Path
Processor,” 5th International Symposium On High Performance Computer Architecture,
pages 44-53, January 1999.

[5] G. Reinman and B. Calder, “Predictive Techniques for Aggressive Load Speculation,”
31st International Symposium on Microarchitecture, pages 127-137, December 1998.

Exploiting the Prefetching Effect Provided by Executing Mispredicted Load Instructions 479

[6] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, J. P. Shen,
“Speculative Precomputation: Long-range Prefetching of Delinquent Loads,” In 28th
International Symposium on Computer Architecture, July, 2001.

[7] J. Dundas and T. Mudge, “Improving data cache performance by pre-executing
instructions under a cache miss,” Proc. 1997 ACM Int. Conf. on Supercomputing, July
1997, pp. 68-75.

[8] A.J. Smith, “Cache Memories,” Computing Surveys, Vol. 14, No. 3, Sept. 1982, pp. 473-
530.

[9] N.P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-associative Cache and Prefetch Buffers,” Proc. 17th Annual International
Symposium on Computer Architecture, Seattle, WA, May 1990, pp. 364-373.

[10] F. Dahlgren, M. Dubois and P. Stenstrom, “Fixed and Adaptive Sequential Prefetching in
Shared-memory Multiprocessors,” Proc. First IEEE Symposium on High Performance
Computer Architecture, Raleigh, NC, Jan. 1995, pp. 68-77.

[11] T.F. Chen and J.L Baer, “Effective Hardware-Based Data Prefetching for High
Performance Processors,” IEEE Transactions on Computers, Vol. 44, No.5, May 1995,
pp. 609-623.

[12] D. Joseph and D. Grunwald, “Prefetching using markov predictors,” IEEE Transactions
on Computers, Vol. 48, No 2, 1999, pp 121-133.

[13] G. Reinman, B. Calder, and T. Austin, “Fetch Directed Instruction Prefetching,” In
proceedings of the 32nd International Symposium on Microarchitecture, November 1999.

[14] T.F. Chen and J.L Baer, “A Performance Study of Software and Hardware Data
Prefetching Schemes,” Proc. of the 21st Annual International Symposium on Computer
Architecture, Chicago, Il, April 1994, pp. 223-234.

[15] R. Pendse and H. Katta, “Selective Prefetching: Prefetching when only required,” Proc.
of the 42nd IEEE Midwest Symposium on Circuits and Systems, volume 2, 2000, pp. 866-
869.

[16] C-K. Luk and T. C. Mowry. “Compiler-based prefetching for recursive data structures,”
In Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 222--233, Oct. 1996.

[17] Bernstein, D., C. Doron and A. Freund, “Compiler Techniques for Data Prefetching on
the PowerPC,” Proc. International Conf. on Parallel Architectures and Compilation
Techniques, June 1995, pp. 19-26.

[18] E.H. Gornish, E.D. Granston and A.V. Veidenbaum, “Compiler-directed Data Prefetching
in Multiprocessors with Memory Hierarchies,” Proc. 1990 International Conference on
Supercomputing, Amsterdam, Netherlands, June 1990, pp. 354-368.

[19] M.H. Lipasti, W.J. Schmidt, S.R. Kunkel and R.R. Roediger, “SPAID: Software
Prefetching in Pointer and Call-Intensive Environments,” Proc. 28th Annual International
Symposium on Microarchitecture, Ann Arbor, MI, November 1995, pp. 231-236.

[20] J. Pierce and T. Mudge, “Wrong-Path Instruction Prefetching,” Proc. of 29th Annual
IEEE/ACM Symp. Microarchitecture (MICRO-29), Dec. 1996, pp. 165-175.

[21] S. P. VanderWiel and D. J. Lilja, “Data Prefetch Mechanisms,” ACM Computing
Surveys, Vol. 32, Issue 2, June 2000, pp. 174-199.

[22] D.C. Burger, T.M. Austin, and S. Bennett, “Evaluating future Microprocessors: The
SimpleScalar Tool Set,” Technical Report CS-TR-96-1308, University of Wisconsin-
Madison, July 1996.

[23] AJ KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja, “Adapting the SPEC 2000
Benchmark Suite for Simulation-Based Computer Architecture Research,” Workload
Characterization of Emerging Computer Applications, L. Kurian John and A. M.
Grizzaffi Maynard (eds.), Kluwer Academic Publishers, pp 83-100, (2001).

[24] S-T Pan, K. So, and J.T. Rahmeh, “Improving the Accuracy of Dynamic Branch
Prediction Using Branch Correlation,” Proc. of the 5th International Conference on
Architectural Support for Programming Languages and Operating Systems, 1992, pp. 76-
84.

480 R. Sendag, D.J. Lilja, and S.R. Kunkel

[25] T.Y. Yeh and Y. N. Patt, “A Comparison of Dynamic Branch Predictors that Use Two
Levels of Branch History,” Proc. of the International Symposium on Computer
Architecture, 1993, pp. 257--267.

[26] R. Sendag, D. J. Lilja, and S. R. Kunkel, “Exploiting the Prefetching Effect provided by
Executing Misprediced Load Instructions,” Laboratory for Advanced Research in
Computing Technology and Compilers, Technical Report No. ARCTIC 02-05, May 2002.

[27] D. A. Patterson and J. L. Hennessy: Computer Architecture: A Quantitative Approach, 2nd
edition, Morgan Kaufmann press, 1995, pp. 393-395.

	1 Introduction
	2 Wrong Path Cache (WPC)
	3 Experimental Setup
	3.1 Microarchitecture
	3.2 Processor Configurations Tested
	3.3 Benchmark Programs

	4 Results
	4.1 Performance Comparisons
	4.1.1 Speedup Due to the WPC
	4.1.2 A Closer look at the WPC Speedups

	4.2 Sensitivity to Cache Parameters

	5 Related Work
	6 Conclusions
	Acknowledgement

	References

