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Abstract – Software simulators remain several orders of 

magnitude slower than the modern microprocessor architectures 
they simulate. Although various reduced-time simulation tools are 
available to accurately help pick truncated benchmark simulation, 
they either come with a need for offline analysis of the benchmarks 
initially or require many iterative runs of the benchmark. In this 
paper, we present a novel sampling simulation method, which only 
requires a single run of the benchmark to achieve a desired 
confidence interval, with no offline analysis and gives comparable 
results in accuracy and sample sizes to current simulation 
methodologies. Our method is a novel configuration independent 
approach that incorporates an Autoregressive (AR) model using the 
squared coefficient of variance (SCV) of Cycles per Instruction 
(CPI). Using the sampled SCVs of past intervals of a benchmark, 
the model computes the required number of samples for the next 
interval through a derived relationship between number of samples 
and the SCVs of the CPI distribution. Our implementation of the AR 
model achieves an actual average error of only 0.76% on CPI with a 
99.7% confidence interval of ±0.3% for all SPEC2K benchmarks 
while simulating, in detail, an average of 40 million instructions per 
benchmark. 

I.  INTRODUCTION 
Since the speed of most cycle-accurate, execution-driven 

simulators is several orders of magnitude slower than silicon 
and since architects simulate programs that are intended to run 
on real machines, simulating all benchmarks in a suite to 
completion is virtually impossible. To minimize simulation 
time, architects typically simulate only a subset of benchmarks 
or use reduced-time simulation techniques. Reduced-time 
simulation techniques try to minimize simulation time while 
still achieving results that are representative of the complete 
program execution. Current reduced-time simulation 
techniques include finding and simulating representative 
sections of a program [2,3,4,5,8], random or periodic sampling 
of the program’s execution streams [6,7], methods that use a 
combination of both [9], and reduced input set simulation 
[17,18]. SimPoint [3,4,5] and SMARTS [7] are the most 
notable and popular of these techniques. Although these 
sampling-based techniques are very accurate, they require 
several profiling runs before simulation to properly configure 
the sampling algorithm. In this paper, we propose a novel 
sampling simulation method that eliminates the need for 
offline analysis or multiple iterative runs with an 
Autoregressive (AR) model that adapts to the changing 
behavior of the benchmark. The proposed AR model predicts 

the size of the next interval and the required number of 
samples within that interval through a derived relationship 
between the number of samples and the Squared Coefficient of 
Variance (SCV) of the Cycles per Instruction (CPI) 
distribution in past intervals. Our adaptive sampling technique 
requires only a single simulation run to achieve a desired 
confidence and maintains the same level of accuracy compared 
to current sampling-based techniques. 

The contributions of this paper are as follows: 

1. It analyzes the SCVs of CPI distributions in varying and 
fixed size intervals of SPEC2K benchmark programs and 
evaluates the correlation between past and current interval 
SCVs.  

2. It presents a dynamically adaptive sampling simulation 
technique based on an AR model, which does not require 
offline analysis or multiple runs of the benchmarks. 

The remainder of the paper is organized as follows. Section 
II describes the problem tackled; Section III presents the AR 
framework and its implementation. Section IV outlines the 
evaluation methodology while Section V evaluates the 
effectiveness of the AR framework. Section VI describes some 
related work and we conclude in Section VII. 

II.  SAMPLING WITH AN ERROR BOUND 
Although current sampling-based simulation tools are highly 

accurate, they come with an overhead of offline analysis before 
actual simulation or need to iteratively re-run simulations until 
a desired level of confidence in the estimation is obtained.  It is 
therefore desirable to have an adaptive sampling framework 
that does not require offline analysis and can complete an 
entire benchmark’s simulation within a single iteration. 
Borrowing ideas from statistics, in this paper, we develop such 
a framework. This section introduces the proposed AR 
framework and the theory behind it. Based on sampling theory, 
the derived equations in this section show that the minimum 
number of samples needed to achieve a desired confidence and 
limit the sampling error within a desired tolerance level, is 
linearly proportional to the squared coefficient of variance 
(SCV) of the CPI distribution. However, SCVs are not known 
until after sampling is done. 
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Our AR framework uses an Autoregressive model to predict 
future SCVs based on previously sampled SCVs during a 
benchmark’s simulation. We then compute the number of 
samples needed to achieve the desired confidence in an AR 
predicted interval of the benchmark. The remainder of this 
section discusses why an AR model can be used for dynamic 
sampling microarchitecture simulation, and describes the 
implementation of the AR framework. 

A.  Bounding Sampling Errors in CPI Estimation 
CPI is defined as the average number of cycles needed to 

commit one instruction. Suppose a program’s execution stream 
is divided into non-overlapping observation intervals (B) of 
fixed sampling units. A sampling unit is defined as a fixed 
length of consecutive instructions in a program’s execution 
stream. Assume that there are m sampling units in an interval, 
where Xi (i = 1,2… m) is the CPI of the ith sampling unit. 
Hence the average CPI of an interval can be given by,  

ࡵࡼ࡯  ൌ  ૚࢓ ∑ ୀ૚࢏࢓࢏ࢄ   

In order to estimate the CPI of an interval, suppose we 
periodically sample n sampling units out of a total m sampling 
units. Let Xj (j = 1,2… n) denote the CPI of the jth sampling 
unit. Therefore, the estimated CPI, CPI’, for the same interval 
can be given by, 

Ԣࡵࡼ࡯                 ൌ  ૚࢔ ∑ ୀ૚࢏࢔࢐ࢄ                .. (1) 

For a sufficiently large sample size (n > 30), it can be shown 
that CPI’ is an unbiased estimator of CPI [13]. The estimator 
can also be shown to be consistent i.e. as n → m, CPI’ → CPI.   

 
The objective of this paper is to bound the relative error | ࡵࡼ࡯ࡵࡼ࡯ି′ࡵࡼ࡯ | within a desired error tolerance level, i.e. 

࢘ࡼ         ቄ| ࡵࡼ࡯ࡵࡼ࡯ ᇲିࡵࡼ࡯ | ൐ ቅߝ  ൑  (2) ..          ࣁ 

Eq.(2) states that the relative error in CPI estimation can be 
bounded by ε with a probability of (1-η). The main question to 
be asked is – What is the minimum number of sampling units 
required to be sampled to maintain the desired accuracy? 

B.  Optimal Sampling Probability 
The central limit theorem states that as sample size n → ∞, 

the average of the sampled data approaches the population 
mean, regardless of the population distribution. Based on this 
theory, Eq. (2) can be rewritten as [14]:  

࢘ࡼ    ቄቚࡵࡼ࡯ᇲି ࡵࡼ࡯ࡵࡼ࡯ ቚ ൐ ቅߝ  ൎ ૛ ቆ૚ െ ࢶ  ቀ࣌࢔√.ࣆ.ࢿ ቁቇ  ൑  (3) ..  ࣁ 

where µ is the population mean and σ is the standard 
deviation of the CPI distribution in an interval. Φ(.) is the 

cumulative distribution function of a standard normal 
distribution i.e. N(0,1). Therefore, we can use Eq.(3) to 
calculate the required number of sampling units to maintain the 
desired error tolerance [14], 

൒ ࢔      ᇱ࢔ ൌ  ቀ઴ష૚ሺ૚ିિ/૛ሻઽ ቁ૛ כ  ቀࣆ࣌ቁ૛ ൌ ࢠ כ  (4) ..    ࡿ

where ࢠ ൌ ቀࢶష૚ሺ૚ିિ/૛ሻઽ ቁ૛
and ࡿ ൌ  ቀࣆ࣌ቁ૛

 is the squared 
coefficient of variance (SCV) of the CPI distribution in an 
interval. Eq.(4) shows a relation between minimum number of 
sampling units needed, to the estimation accuracy and the 
variability in CPI. It shows that the minimum number of 
sampling units, n’, is linearly proportional to the SCV, S, of the 
CPI distribution in a given interval. Although Eq.(4) works 
well for estimating CPI, it also means that we need to know the 
actual SCV of each interval, which is not available to us at 
runtime. To overcome this problem, we use an Autoregressive 
(AR) model to predict this parameter of each interval based on 
previously sampled intervals. 

III. ADAPTIVE SAMPLING USING AUTOREGRESSION 
When implementing a regression model, there is a choice 

between using a simple linear regression model that would use 
one or more independent variables to predict a dependant 
variable versus using an autoregressive model that regresses 
upon itself [15]. We empirically tested an extensive set of 
parameters, including but not limited to past observations of 
sampled standard deviation, variance, SCV, number of 
samples, error in estimating past intervals’ SCVs, on simple 
linear regression and autoregression models. We also tested 
these models using one or more independent variables as well 
as taking into account single or higher order interactions. We 
observed that, empirically, an Autoregressive Model, used on 
the Squared Coefficients of Variance (SCV) and taking into 
account second order interactions, fits best into our 
requirements of small sample sizes and tight confidence 
intervals.  

A.  Correlation between intervals 
Prediction only works when there is strong correlation 

between past and future values of a parameter. In Figure 1, we 
show the scatter plots for SPEC2K benchmark 177.mesa to 
show the relation between current and past 1, 10, and 20 
intervals respectively. The scatter plots of 177.mesa are 
consistent with most of the SPEC2K benchmarks. We 
observed that the correlation coefficients between current and 
past 1, 10, and 20 intervals was 0.513, 0.708, and 0.708 
respectively (values close to 1 show highest correlation). From 
Figure 1, we see that the SCV correlation between the current 
and immediately past interval (top graph) is not as highly 
correlated as those between the current and past 10 or 20 
intervals. Therefore, implementing an Autoregressive (AR) 
model that uses just the past interval for a next interval 
prediction would not be as accurate as using past 10 or 20 
intervals.  
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Figure1: Correlation between SCVs of past 1, 10, and 20 intervals 
on the CPI Distribution for 177.mesa for B = 100. 

 

B.  The AR Model 
A simple regression model is a compact mathematical 

representation of the relationship between a response variable x 
and input parameters y in a given design space [14]. When the 
model’s dependent and independent variables are the same i.e. 
when the past values of a variable are used to predict the 
present value, the model becomes an Autoregressive (AR) 
model. In this section, we explain the AR model we used for 
CPI estimation. The same procedure is used for interval size 
estimation, which is briefly summarized at the end of the 
section.  

Let us assume that S(k) is the SCV of the CPI distribution 
for the kth interval and S’(k) is the SCV of the sampled CPI 
distribution for the same interval. Then, we can relate S(k) and 
S’(k) as follows: 

ሻ࢑ᇱሺࡿ          ൌ ሻ࢑ሺࡿ  േ   ሻ              .. (5)࢑ሺࢆ

where Z(k) denotes the error in estimating the actual SCV of 
an interval. Using the AR(u) model, S’(k) can be expressed as: 

ሻ࢑Ԣሺࡿ       ൌ  ∑ ࢑ᇱሺࡿሻ࢏ᇱሺࢇ െ ሻ࢏ േ ୀ૚࢏࢛ሻ࢑ᇱሺࢋ      .. (6) 

where u is the number of past interval the AR model takes 
into account to predict the next interval’s SCV, a(i), {i= 1,2 … 
u} are the AR model parameters, and e’(k) is the uncorrelated 
error (also known as the prediction error). The model 
parameters a(i), {i= 1,2 … u} can be determined by solving a 
set of linear equations using the Yule-Walker approach [15,16] 

making it suitable for run-time CPI estimation and interval size 
prediction as it would not increase simulation time. Using this 
AR model, at the end of the (k- 1)th  interval, we predict the 
SCV of the kth interval using the SCV values of the previously 
sampled u intervals as follows: 

ሻ࢑ሺ"ࡿ         ൌ  ∑ ࢑ᇱሺࡿሻ࢏ᇱሺࢇ െ ୀ૚࢏࢛ሻ࢏          .. (7) 

If we combine Eq. (5), (6) and (7), we get  

ሻ࢑ሺ"ࡿ         ൌ ሻ࢑ሺࡿ േ ሻ࢑ሺࢆ േ  ሻ         .. (8)࢑Ԣሺࢋ

Eq.(8) shows that there are two types of errors occurring 
when we predict the SCV of the next interval using the 
sampled SCVs of the previous u intervals. The first is the 
estimation error Z(k) introduced from sampling and the second 
is the prediction error e’(k) introduced by the prediction model. 
Given the predicted SCV for the next interval, we can now 
calculate the minimum number of sampling units that need to 
be sampled using Eq. (4). 

C.  AR Model with higher order interactions 
Eq. (6) shows the simple AR model with an order u, where u 

signifies the number of past intervals used to predict the next 
interval. It is also possible that the regressor variables interact 
with each other i.e. the variable from one interval k has a more 
pronounced interaction with its immediately adjacent interval 
(k-1) than other intervals. In such cases, the model given by the 
simple AR model can be inefficient in capturing this relation. 
Hence, it becomes necessary to introduce terms that explicitly 
model these two-factor interactions. This can be introduced in 
the simple AR model in the following manner, 

ሻ࢑ሺ"ࡿ   ൌ  ෍ .ሻ࢏ᇱሺࢇ ࢑ᇱሺࡿ െ ሻ࢏ ൅ ෍  ෍ ,࢏ᇱሺࢇ .ሻ࢐ ࢑ᇱሺࡿ െ .ሻ࢏ ࢑ᇱሺࡿ െ ࢛   ሻ࢐
ା૚࢏ୀ࢐

࢛
ୀ૚࢏ . . ሺ9ሻ࢛

ୀ૚࢏  

where the first term, in Eq.(9), accounts for simple 
autoregression while the second term takes into account the 
second order interactions between two adjacent intervals, when 
calculating the predicted SCV for the next interval. In our 
empirical tests, we found that second order interactions were 
sufficient to achieve highly accurate predictions with minimal 
complexity overhead. Eq. (9) can be written in matrix terms as 
follows, 

"ࡿ            ൌ .Ԣࡿ ࢼ ൅ ࣕ                 .. (10) 

where ߚ denotes the regression coefficients vector, ܵ ′ 
denotes the model matrix and ࣕ is known as the residual error 
(due to lack of fit). The model matrix has columns 
corresponding to the regressor variables ܵ ′ଵ, ܵ ′ଶ, … , ܵ ′௞ିଵ, 
columns for the order of interaction, and a column of 1’s 
defines the intercept. The coefficients can then be estimated by  

ࢼ            ൌ ሺࡿԢࢀ. .Ԣሻି૚ࡿ .ࢀԢࡿ  (11) ..            "ࡿ

where suffix T denotes the transpose of matrix S’. 
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D.  The AR Algorithm 

In this section, we discuss the details of the AR algorithm. 
Figure 2 shows a flowchart of the AR framework. 

1. We start by setting the error tolerance level (ε), the 
probability (η) of maintaining that level, and the AR model 
order (u). The size of the interval (m) can either be fixed or 
we can use the AR model to predict it as well.  

2. Based on η and ε, z is calculated using Eq. (4).  

3. To initialize the AR(u) model, we uniformly sample the first 
u intervals with an initial sample size n_init and collect the 
SCV values for those intervals. 

4. Once the AR model has been initialized, the model predicts 
the SCV value of future intervals based on the past u 
intervals’ SCV values and the 2nd order interactions between 
them given by Eq. (9). 

5. With the predicted SCV value of the next interval, the 
minimum number of samples required for that interval is 
calculated using Eq.(4)  i.e. n’ = z*S. 

6. The next interval is then periodically sampled with the 
resultant n samples and the sampled SCV of that interval is 
calculated. This sampled SCV is then used by the AR model 
to calculate the next interval’s SCV along with past (u-1) 
intervals. 

Once the sample size has been predicted for the next 
interval, we use a similar AR model to predict the size of the 
next interval m(k). This prediction is made based on the past 
interval sizes seen by the AR(u) model. So, let m(k) denote the 
size of the kth interval, then using the AR(u) model, we have  ࢓"ሺ࢑ሻ ൌ  ∑ ᇱ࢓ሻ࢏ᇱሺ࢈  ൅ ∑ ୀ૚࢏࢛  ∑ ,࢏ᇱሺ࢈ .ሻ࢐ ࢑ᇱሺ࢓ െ .ሻ࢏ ࢑Ԣሺ࢓ െ ୀ૚࢏࢛ା૚࢏ୀ࢐࢛ሻ࢐  . . ሺ૚૛ሻ  

where, ܾ′ሺ݅ሻand ܾ′ሺ݅, ݆ሻ are AR model parameters for first 
and second order interactions respectively and ݉"ሺ݇ሻ denotes 
the predicted interval size of the kth interval. Using the above 
AR prediction model, we can then predict ݉"ሺ݇ሻ.  

Now that we have both the sample size (calculated from the 
predicted SCV) and interval size for the next interval, we can 
go ahead and periodically sample the next interval. 

 
E. Constructing Confidence Interval from multiple intervals 

In statistical sampling, confidence intervals give an 
estimated range of values which is likely to include an 
unknown population parameter . The standard formula to 
calculate a 100(1-α)% confidence interval for the sample mean 
of a normal population is given by, 

ᇱࢄ           േ  ቀࢻࢠ/૛.ࢄ.ࢂᇱ√࢔ ቁ                      .. (13) 

where X’ is the sample mean, ݖఈ/ଶ is the critical value of the 
standard normal distribution, V is the sample variance and n is 

the sample size. The above formula works well when we 
randomly or systematically sample a normal population. 
However, in our case, we are dividing the population into 
intervals which become our new sub-populations. In order to 
calculate the variance of the samples taken from these sub-
populations and then apply it towards our aggregate 
population, we need to calculate variance V in a manner similar 
to stratified sampling. Calculating variance in stratified 
sampling for all strata or sub-populations is given by, 

ࢂ          ൌ  ∑ ૛ࡺ૛ࢎࡺ . ሺ૚ െ .ሻࢎࢌ ୀ૚ࢎ࢑ࢎ࢔૛ࢎࡿ           .. (14) 

where ݊௛ is the sample size of the hth strata or interval, ௛ܰ is 
the hth  interval size, N is the population size,  ௛݂ ൌ  ݊௛ ௛ܰൗ , 
and ܵ௛ଶ is the variance for that interval. The confidence interval 
for our aggregate population is then computed by substituting 
Eq.(14) into Eq.(13). 

 

 

Figure 2: The AR framework Flowchart 
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IV.  EXPERIMENT METHODOLOGY 
In order to demonstrate the effectiveness of the AR 

framework, we tested the entire SPEC2K benchmark suite in 
our evaluation. We simulated CPI values obtained over small 
intervals of each benchmark using the reference input sets. 
Further, we implemented the AR framework in two modes: 
Mode-1 used the AR model (Eq.(9)) to predict the SCVs of the 
next interval alone while dividing the benchmarks into equal 
interval sizes. Mode-2 used the AR model to predict the SCVs 
of the next interval (Eq.(9)) and the size of that interval 
(Eq.(12)). Table I gives the various configurations analyzed in 
both Mode-1 and Mode-2 of the AR framework. Although we 
experimented with various model orders (u) and error bounds 
(ε), in this paper, we only present the results for u=20 and 
ε=3%. 

In our analysis, we also compare the AR framework with the 
widely used SMARTS framework [7]. The details of the 
microarchitecture configurations used for our evaluation are 
shown in Table II. The CPI data used, for both AR and 
SMARTS frameworks, has perfect warming of all architectural 
and microarchitectural states. Different warming 
methodologies can be used for both AR and SMARTS 
frameworks, which is outside the scope of this paper. Finally, 
we used a sample unit size of 1000 instructions for both the 
AR and SMARTS frameworks. 

 

Table I: AR parameters for Mode-1 and Mode-2 

Parameter Mode – 1 Mode – 2 

Model Order (u) 10, 15, 20 10, 15, 20 
No. of Intervals (B) Fixed (100, 1000, 10,000) Predicted 
Error Tolerance (ε) 20%, 10%, 3% 20%, 10%, 3% 
Probability (η) 99.7% 99.7% 

 

Table II: Processor Configuration used in simulation 

Parameter Config #1 Config #2 
Decode, Issue, Commit Width 4-way 8-way 

Branch Predictor, BHT Entries Combined, 4K Combined, 16K 

ROB/LSQ Entries 32/16 128/64 

Int/FP ALUs (Mult/Div Units) 2/2(1/1) 6/6(4/4) 

L1-D Size (KB), Assoc, Lat(cycles) 32, 2-way, 1 128, 2-way, 1 

L2 Size (KB), Assoc, Lat(cycles) 256, 4-way, 10 1024, 4-way, 15 

Memory Lat(cycles) 150, 10 300, 20 

 

V.  AR FRAMEWORK EVALUATION AND RESULTS 
Figure 3 shows the accuracy of the AR model in predicting 

the next interval SCV compared to the actual SCV of that 
interval. We can see that the predicted and actual SCVs of an 
interval overlap, which shows that the AR model is very 

successful in predicting future SCV values.  In the remainder 
of this section, we discuss the effectiveness of the AR 
framework for CPI estimation for the SPEC2k benchmarks and 
the number of samples the AR framework needed. We also 
study the effects of varying the AR parameters used for both 
Mode-1 and Mode-2. At the end, we compare the AR and the 
SMARTS frameworks. 

A.  Mode–1: Predicting SCVs (S) with fixed intervals 
In Mode-1 of the AR framework, we use the AR model to 

predict the SCV (S) of the next interval (k) while keeping the 
interval size (m) fixed. We periodically sampled 0.1% of each 
of the initial ‘u’ intervals as it empirically gave the best trade-
off between sample sizes (n) taken versus error in CPI 
estimation (e). Figure 4 shows the number of samples taken for 
each SPEC2K benchmark to achieve an error bound of ±3% 
with 99.7% confidence. On average, the AR model sampled 
40K sampling units or 40 million instructions for all SPEC2K 
benchmarks. Figure 5 shows the percentage error in the CPI 
estimation from using the AR framework. The error bars show 
the confidence intervals for each benchmark. We can see that 
all SPEC2K benchmarks stay well within 3% error bound with 
an average actual error of only 0.58%. Since actual errors are 
not a good estimate of how the framework performs, 
confidence intervals are also calculated. Our results show that 
the worse-case confidence interval for 99.7% confidence level 
is ±0.5%, while the average confidence interval for all SPEC2k 
benchmarks is ±0.2%.  

B.  Mode–2: Predicting Interval size and SCV (m, S) 

The AR framework’s Mode-2 uses two separate AR models; 
one to predict the interval size (m) and the other to predict the 
SCV (S) of that interval (k). Since we predict the interval size 
along with SCV, we also need to set initial interval sizes to 
warm the AR model. In our empirical tests, we found that an 
initial interval size of 0.5% of the total benchmark length, 
while periodically sampling 0.1% of the interval, gave the best 
balance between number of samples (n) and error (e). In Figure 
4, we see that the most SPEC2k benchmarks required small 
sample sizes of 30k sampling units or 30 million instructions. 
The only exception is 176.gcc-1 on Config #2, which needed 
172k samples to achieve a 99.7% confidence of ±3%. In Figure 
5, we see that all SPEC2K benchmarks stay within 3% error 
with an average error of 0.7%. Confidence intervals for 99.7% 
confidence were calculated for all simulations and we noted 
that the confidence intervals achieved were ±0.5% in the worst 
case while the average converged around ±0.3%.  

While not shown in the graphs, we observed that the most 
reasonable balance (between the number of samples taken (n) 
versus a corresponding low error (e) with tight confidence 
interval) was achieved with AR model order (u) set to 10 or 20 
while setting the acceptable error bound (ε) at 3% for both AR 
modes. We also observed that the number of samples taken by 
either AR modes decreases linearly for larger error bounds (ε). 
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Figure 3 : Predicted SCV vs. Sampled SCV vs. Actual SCV for SPEC2K benchmark 177.mesa. AR Mode-1 (u = 20, e = 3%, B = 100). 

 
Figure 4: Number of samples taken by SMARTS vs. AR. SPEC2K Benchmarks for both Config #1 and #2. u=20, ε=3%, η = 99.7%. 

 

 

Figure 5: Error in CPI estimation for SMARTS vs. AR. SPEC2K Benchmarks for both Config #1 and #2. u=20, ε=3%, η= 99.7%. The error 
bar for each benchmark - configuration combination shows the confidence interval for that combination. 
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Figure 6: Number of Iterations taken by SMARTS for SPEC2K Benchmarks to achieve a ±3% confidence interval for both configurations 
(n_init = 10k). 

C. Consistency in CPI Estimation for Varying Processor 
Configurations 
In Figures 4 and 5, we have shown AR results for two 

different processor configurations. We see that the AR 
framework is, for most benchmarks, very consistent between 
the two configurations for both the number of samples (n) 
taken as well as the error in CPI estimation (e). The average 
difference in the number of samples taken is around 15k 
samples or 15 million instructions while the average difference 
in CPI error is observed to be only 0.07%. 

D.  AR Modes versus SMARTS 
When we compare the two AR Modes, we see that, on 

average, both AR modes take similar number of samples for all 
SPEC2K benchmarks, although Mode-1 tends to take more 
samples than Mode-2. The reason behind this increased 
number of samples is that Mode-1 cannot intuitively vary the 
size of the interval (m) which, in turn, causes the increase in 
number of samples taken. Further, errors (e) for both modes 
stay within ±3%. Overall, Mode-2 gives the best trade-off 
between sample size (n) and error (e). Confidence intervals for 
Mode-1 stays within ±0.2% as against the ±0.3% range of 
Mode-2 which can be explained as an effect of Mode-1 taking 
more samples. In summary, both AR framework modes do 
extremely well in terms of number of samples taken and 
relative error in CPI estimation, while achieving a very tight 
confidence interval with a single iteration run. 

Figures 4 and 5 also show the results of comparing the AR 
framework with SMARTS in terms of number of samples 
taken and error in CPI estimation. As we know, SMARTS 
iteratively samples a benchmark till the desired confidence is 
reached. A major disadvantage of SMARTS is that, most 
times, it ends up collecting redundant measurements over 
multiple iterations. This is evident from Figure 6 that shows 
the number of iterations taken by SMARTS to achieve a ±3% 
error with 99.7% confidence. Simulations were started with 
initial sample sizes ‘n_init’ of 10000 sampling unit (SMARTS 
recommended) for both Config #1 and Config #2. From Figure 
6 we see that 7 and 10 of the 16 benchmarks shown required 
two or more iterations to achieve the ±3% confidence interval 
for Config #1 and Config #2 respectively. This highlights the 

second disadvantage of using the SMARTS framework – 
researchers need to iteratively increase the number of samples 
per iteration, which can be a painstaking and cumbersome task. 
The AR framework, on the other hand, requires only a single 
run of the benchmarks to achieve a desired confidence. When 
comparing the number of samples taken by both AR and 
SMARTS, we see that both AR modes take comparable 
number of samples to SMARTS (Figure 4). Finally, while the 
error in CPI estimation for both AR modes and SMARTS stay 
well within ±3%, as shown in Figure 5, the confidence 
intervals achieved by AR framework, are ±0.5% in the worst 
case (while the average is within ±0.2%) in comparison to the 
±3% achieved by SMARTS. Hence, the overall accuracy for 
the AR framework is better than that of SMARTS.  

VI.  RELATED WORK 
 Reduced simulation time techniques such as population 
sampling and reduced input sets try to minimize the simulation 
time, but still achieve results that are representative of 
the complete execution of the program. One approach for 
finding representative samples is SimPoint [3,4,5], which uses 
basic block vectors combined with K-means [3,4] clustering to 
accurately identify similar intervals within a large application 
and strategically chooses sample intervals that are highly 
representative of the entire benchmark. Only simulating these 
sample intervals greatly reduces the simulation time, but still 
yields accurate results. The main disadvantage of SimPoint is 
that it requires an offline analysis before it can start detailed 
simulation. For benchmarks that take hours to run on a real 
machine or benchmarks that may be infrequently used, i.e. the 
cost of the profiling runs are amortized across just a few 
simulations, the cost of profiling may completely offset the 
reduction in simulation time. SMARTS [7] is another 
simulation-time reducing approach, which employs statistical 
sampling theory in order to select an appropriate number of 
program subsets representative of the entire program. This 
approach uses inferential statistics, which provides methods to 
estimate parameters of a large population from a representative 
subset. SMARTS employs systematic sampling while the most 
basic sample design is simple random sampling [6]. The main 
disadvantage of SMARTS is that it does not take advantage of 
the often repetitive behavior seen in benchmarks and hence can 
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end up collecting many redundant measurements. 
Another disadvantage of SMARTS is that, most times, the 
desired confidence is not achieved in the first simulation run 
which ultimately increase simulation time. In this paper, our 
main objective was to remove the need offline analysis or 
multiple runs to achieve a confidence level. 

 Reduced input sets [17,18] have two advantages over 
other simulation techniques. First, the benchmark runs to 
completion, which means that the simulator executes all pieces 
of the program. Second, using reduced input sets typically does 
not require any changes to the simulator. KleinOsowski and 
Lilja [17] created the MinneSPEC reduced input set for 
the SPEC2k benchmarks. The input sets were reduced by 
modifying command-line parameters, truncating the input set, 
or creating a completely new input set. Alameldeen et al. [18] 
created reduced input sets for TPC-C based on the metric of 
transaction throughput. The key conclusion from these 
two studies is that creating a reduced input sets is a very time-
consuming and user-intensive task, especially so since reduced 
input sets need to be re-created for each new suite. 

Other suggested approaches include using cluster sampling 
through predictive mechanisms for predicting future phases in 
a program’s dynamic instruction stream [10], stratified 
sampling [11] with offline analysis [8] and a combination of 
both i.e. using phase-based small sample simulations [9]. Yi et 
al. [12] characterized and compared most of the 
aforementioned simulation techniques. Their results showed 
that, the truncated execution techniques and reduced input sets 
had very poor accuracy, as compared to the reference input set. 
Overall, both SimPoint and SMARTS are very accurate 
techniques. 

VII.  CONCLUSION 
This paper presents a novel configuration-independent 

simulation-time reducing approach that adaptively samples 
intervals in a benchmark using an Autoregressive model (AR) 
on the Squared Coefficient of Variance (SCV) of the Cycles 
per Instruction (CPI) distribution. Using the SCV’s of past 
intervals, the AR model calculates the required number of 
samples for the current interval. Unlike current reduced-time 
simulation techniques, the AR framework requires only a 
single run of the benchmark to achieve a desired confidence in 
Cycles per Instruction (CPI) estimation and requires no offline 
analysis. Our results show that the AR framework performs as 
well as SMARTS while providing more accurate results.   
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