
Adaptive Simulation Sampling Using An
Autoregressive Framework

 Sharookh Daruwalla Resit Sendag Joshua Yi
Department of Computer Science Department of Electrical & Computer Engineering Networking & Computer Systems Group

 Portland State University University of Rhode Island Freescale Semiconductor Inc.
 Portland OR, U.S.A. Kingston, RI, U.S.A. Austin, TX, U.S.A.
 sharookh@cecs.pdx.edu sendag@ele.uri.edu joshua.yi@freescale.com

Abstract – Software simulators remain several orders of

magnitude slower than the modern microprocessor architectures
they simulate. Although various reduced-time simulation tools are
available to accurately help pick truncated benchmark simulation,
they either come with a need for offline analysis of the benchmarks
initially or require many iterative runs of the benchmark. In this
paper, we present a novel sampling simulation method, which only
requires a single run of the benchmark to achieve a desired
confidence interval, with no offline analysis and gives comparable
results in accuracy and sample sizes to current simulation
methodologies. Our method is a novel configuration independent
approach that incorporates an Autoregressive (AR) model using the
squared coefficient of variance (SCV) of Cycles per Instruction
(CPI). Using the sampled SCVs of past intervals of a benchmark,
the model computes the required number of samples for the next
interval through a derived relationship between number of samples
and the SCVs of the CPI distribution. Our implementation of the AR
model achieves an actual average error of only 0.76% on CPI with a
99.7% confidence interval of ±0.3% for all SPEC2K benchmarks
while simulating, in detail, an average of 40 million instructions per
benchmark.

I. INTRODUCTION
Since the speed of most cycle-accurate, execution-driven

simulators is several orders of magnitude slower than silicon
and since architects simulate programs that are intended to run
on real machines, simulating all benchmarks in a suite to
completion is virtually impossible. To minimize simulation
time, architects typically simulate only a subset of benchmarks
or use reduced-time simulation techniques. Reduced-time
simulation techniques try to minimize simulation time while
still achieving results that are representative of the complete
program execution. Current reduced-time simulation
techniques include finding and simulating representative
sections of a program [2,3,4,5,8], random or periodic sampling
of the program’s execution streams [6,7], methods that use a
combination of both [9], and reduced input set simulation
[17,18]. SimPoint [3,4,5] and SMARTS [7] are the most
notable and popular of these techniques. Although these
sampling-based techniques are very accurate, they require
several profiling runs before simulation to properly configure
the sampling algorithm. In this paper, we propose a novel
sampling simulation method that eliminates the need for
offline analysis or multiple iterative runs with an
Autoregressive (AR) model that adapts to the changing
behavior of the benchmark. The proposed AR model predicts

the size of the next interval and the required number of
samples within that interval through a derived relationship
between the number of samples and the Squared Coefficient of
Variance (SCV) of the Cycles per Instruction (CPI)
distribution in past intervals. Our adaptive sampling technique
requires only a single simulation run to achieve a desired
confidence and maintains the same level of accuracy compared
to current sampling-based techniques.

The contributions of this paper are as follows:

1. It analyzes the SCVs of CPI distributions in varying and
fixed size intervals of SPEC2K benchmark programs and
evaluates the correlation between past and current interval
SCVs.

2. It presents a dynamically adaptive sampling simulation
technique based on an AR model, which does not require
offline analysis or multiple runs of the benchmarks.

The remainder of the paper is organized as follows. Section
II describes the problem tackled; Section III presents the AR
framework and its implementation. Section IV outlines the
evaluation methodology while Section V evaluates the
effectiveness of the AR framework. Section VI describes some
related work and we conclude in Section VII.

II. SAMPLING WITH AN ERROR BOUND
Although current sampling-based simulation tools are highly

accurate, they come with an overhead of offline analysis before
actual simulation or need to iteratively re-run simulations until
a desired level of confidence in the estimation is obtained. It is
therefore desirable to have an adaptive sampling framework
that does not require offline analysis and can complete an
entire benchmark’s simulation within a single iteration.
Borrowing ideas from statistics, in this paper, we develop such
a framework. This section introduces the proposed AR
framework and the theory behind it. Based on sampling theory,
the derived equations in this section show that the minimum
number of samples needed to achieve a desired confidence and
limit the sampling error within a desired tolerance level, is
linearly proportional to the squared coefficient of variance
(SCV) of the CPI distribution. However, SCVs are not known
until after sampling is done.

This work was supported in part by National Science Foundation Grant CCF-0541162.

978-1-4244-4501-1/09/$25.00 ©2009 IEEE 59
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 4, 2009 at 01:59 from IEEE Xplore. Restrictions apply.

Our AR framework uses an Autoregressive model to predict
future SCVs based on previously sampled SCVs during a
benchmark’s simulation. We then compute the number of
samples needed to achieve the desired confidence in an AR
predicted interval of the benchmark. The remainder of this
section discusses why an AR model can be used for dynamic
sampling microarchitecture simulation, and describes the
implementation of the AR framework.

A. Bounding Sampling Errors in CPI Estimation
CPI is defined as the average number of cycles needed to

commit one instruction. Suppose a program’s execution stream
is divided into non-overlapping observation intervals (B) of
fixed sampling units. A sampling unit is defined as a fixed
length of consecutive instructions in a program’s execution
stream. Assume that there are m sampling units in an interval,
where Xi (i = 1,2… m) is the CPI of the ith sampling unit.
Hence the average CPI of an interval can be given by,

ࡵࡼ࡯ ൌ ૚࢓ ∑ ୀ૚࢏࢓࢏ࢄ

In order to estimate the CPI of an interval, suppose we
periodically sample n sampling units out of a total m sampling
units. Let Xj (j = 1,2… n) denote the CPI of the jth sampling
unit. Therefore, the estimated CPI, CPI’, for the same interval
can be given by,

Ԣࡵࡼ࡯ ൌ ૚࢔ ∑ ୀ૚࢏࢔࢐ࢄ .. (1)

For a sufficiently large sample size (n > 30), it can be shown
that CPI’ is an unbiased estimator of CPI [13]. The estimator
can also be shown to be consistent i.e. as n → m, CPI’ → CPI.

The objective of this paper is to bound the relative error | ࡵࡼ࡯ࡵࡼ࡯ି′ࡵࡼ࡯ | within a desired error tolerance level, i.e.

࢘ࡼ ቄ| ࡵࡼ࡯ࡵࡼ࡯ ᇲିࡵࡼ࡯ | ൐ ቅߝ ൑ (2) .. ࣁ

Eq.(2) states that the relative error in CPI estimation can be
bounded by ε with a probability of (1-η). The main question to
be asked is – What is the minimum number of sampling units
required to be sampled to maintain the desired accuracy?

B. Optimal Sampling Probability
The central limit theorem states that as sample size n → ∞,

the average of the sampled data approaches the population
mean, regardless of the population distribution. Based on this
theory, Eq. (2) can be rewritten as [14]:

࢘ࡼ ቄቚࡵࡼ࡯ᇲି ࡵࡼ࡯ࡵࡼ࡯ ቚ ൐ ቅߝ ൎ ૛ ቆ૚ െ ࢶ ቀ࣌࢔√.ࣆ.ࢿ ቁቇ ൑ (3) .. ࣁ

where µ is the population mean and σ is the standard
deviation of the CPI distribution in an interval. Φ(.) is the

cumulative distribution function of a standard normal
distribution i.e. N(0,1). Therefore, we can use Eq.(3) to
calculate the required number of sampling units to maintain the
desired error tolerance [14],

൒ ࢔ ᇱ࢔ ൌ ቀ઴ష૚ሺ૚ିિ/૛ሻઽ ቁ૛ כ ቀࣆ࣌ቁ૛ ൌ ࢠ כ (4) .. ࡿ

where ࢠ ൌ ቀࢶష૚ሺ૚ିિ/૛ሻઽ ቁ૛
and ࡿ ൌ ቀࣆ࣌ቁ૛

 is the squared
coefficient of variance (SCV) of the CPI distribution in an
interval. Eq.(4) shows a relation between minimum number of
sampling units needed, to the estimation accuracy and the
variability in CPI. It shows that the minimum number of
sampling units, n’, is linearly proportional to the SCV, S, of the
CPI distribution in a given interval. Although Eq.(4) works
well for estimating CPI, it also means that we need to know the
actual SCV of each interval, which is not available to us at
runtime. To overcome this problem, we use an Autoregressive
(AR) model to predict this parameter of each interval based on
previously sampled intervals.

III. ADAPTIVE SAMPLING USING AUTOREGRESSION
When implementing a regression model, there is a choice

between using a simple linear regression model that would use
one or more independent variables to predict a dependant
variable versus using an autoregressive model that regresses
upon itself [15]. We empirically tested an extensive set of
parameters, including but not limited to past observations of
sampled standard deviation, variance, SCV, number of
samples, error in estimating past intervals’ SCVs, on simple
linear regression and autoregression models. We also tested
these models using one or more independent variables as well
as taking into account single or higher order interactions. We
observed that, empirically, an Autoregressive Model, used on
the Squared Coefficients of Variance (SCV) and taking into
account second order interactions, fits best into our
requirements of small sample sizes and tight confidence
intervals.

A. Correlation between intervals
Prediction only works when there is strong correlation

between past and future values of a parameter. In Figure 1, we
show the scatter plots for SPEC2K benchmark 177.mesa to
show the relation between current and past 1, 10, and 20
intervals respectively. The scatter plots of 177.mesa are
consistent with most of the SPEC2K benchmarks. We
observed that the correlation coefficients between current and
past 1, 10, and 20 intervals was 0.513, 0.708, and 0.708
respectively (values close to 1 show highest correlation). From
Figure 1, we see that the SCV correlation between the current
and immediately past interval (top graph) is not as highly
correlated as those between the current and past 10 or 20
intervals. Therefore, implementing an Autoregressive (AR)
model that uses just the past interval for a next interval
prediction would not be as accurate as using past 10 or 20
intervals.

60
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 4, 2009 at 01:59 from IEEE Xplore. Restrictions apply.

Figure1: Correlation between SCVs of past 1, 10, and 20 intervals
on the CPI Distribution for 177.mesa for B = 100.

B. The AR Model
A simple regression model is a compact mathematical

representation of the relationship between a response variable x
and input parameters y in a given design space [14]. When the
model’s dependent and independent variables are the same i.e.
when the past values of a variable are used to predict the
present value, the model becomes an Autoregressive (AR)
model. In this section, we explain the AR model we used for
CPI estimation. The same procedure is used for interval size
estimation, which is briefly summarized at the end of the
section.

Let us assume that S(k) is the SCV of the CPI distribution
for the kth interval and S’(k) is the SCV of the sampled CPI
distribution for the same interval. Then, we can relate S(k) and
S’(k) as follows:

ሻ࢑ᇱሺࡿ ൌ ሻ࢑ሺࡿ േ ሻ .. (5)࢑ሺࢆ

where Z(k) denotes the error in estimating the actual SCV of
an interval. Using the AR(u) model, S’(k) can be expressed as:

ሻ࢑Ԣሺࡿ ൌ ∑ ࢑ᇱሺࡿሻ࢏ᇱሺࢇ െ ሻ࢏ േ ୀ૚࢏࢛ሻ࢑ᇱሺࢋ .. (6)

where u is the number of past interval the AR model takes
into account to predict the next interval’s SCV, a(i), {i= 1,2 …
u} are the AR model parameters, and e’(k) is the uncorrelated
error (also known as the prediction error). The model
parameters a(i), {i= 1,2 … u} can be determined by solving a
set of linear equations using the Yule-Walker approach [15,16]

making it suitable for run-time CPI estimation and interval size
prediction as it would not increase simulation time. Using this
AR model, at the end of the (k- 1)th interval, we predict the
SCV of the kth interval using the SCV values of the previously
sampled u intervals as follows:

ሻ࢑ሺ"ࡿ ൌ ∑ ࢑ᇱሺࡿሻ࢏ᇱሺࢇ െ ୀ૚࢏࢛ሻ࢏ .. (7)

If we combine Eq. (5), (6) and (7), we get

ሻ࢑ሺ"ࡿ ൌ ሻ࢑ሺࡿ േ ሻ࢑ሺࢆ േ ሻ .. (8)࢑Ԣሺࢋ

Eq.(8) shows that there are two types of errors occurring
when we predict the SCV of the next interval using the
sampled SCVs of the previous u intervals. The first is the
estimation error Z(k) introduced from sampling and the second
is the prediction error e’(k) introduced by the prediction model.
Given the predicted SCV for the next interval, we can now
calculate the minimum number of sampling units that need to
be sampled using Eq. (4).

C. AR Model with higher order interactions
Eq. (6) shows the simple AR model with an order u, where u

signifies the number of past intervals used to predict the next
interval. It is also possible that the regressor variables interact
with each other i.e. the variable from one interval k has a more
pronounced interaction with its immediately adjacent interval
(k-1) than other intervals. In such cases, the model given by the
simple AR model can be inefficient in capturing this relation.
Hence, it becomes necessary to introduce terms that explicitly
model these two-factor interactions. This can be introduced in
the simple AR model in the following manner,

ሻ࢑ሺ"ࡿ ൌ ෍ .ሻ࢏ᇱሺࢇ ࢑ᇱሺࡿ െ ሻ࢏ ൅ ෍ ෍ ,࢏ᇱሺࢇ .ሻ࢐ ࢑ᇱሺࡿ െ .ሻ࢏ ࢑ᇱሺࡿ െ ࢛ ሻ࢐
ା૚࢏ୀ࢐

࢛
ୀ૚࢏ . . ሺ9ሻ࢛

ୀ૚࢏

where the first term, in Eq.(9), accounts for simple
autoregression while the second term takes into account the
second order interactions between two adjacent intervals, when
calculating the predicted SCV for the next interval. In our
empirical tests, we found that second order interactions were
sufficient to achieve highly accurate predictions with minimal
complexity overhead. Eq. (9) can be written in matrix terms as
follows,

"ࡿ ൌ .Ԣࡿ ࢼ ൅ ࣕ .. (10)

where ߚ denotes the regression coefficients vector, ܵ ′
denotes the model matrix and ࣕ is known as the residual error
(due to lack of fit). The model matrix has columns
corresponding to the regressor variables ܵ ′ଵ, ܵ ′ଶ, … , ܵ ′௞ିଵ,
columns for the order of interaction, and a column of 1’s
defines the intercept. The coefficients can then be estimated by

ࢼ ൌ ሺࡿԢࢀ. .Ԣሻି૚ࡿ .ࢀԢࡿ (11) .. "ࡿ

where suffix T denotes the transpose of matrix S’.

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00 1.25 1.50

SC
V

(k
+1

)

SCV(k)

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00 1.25 1.50

SC
V

(k
+1

0)

SCV(k)

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00 1.25 1.50

SC
V

(k
+2

0)

SCV(k)

61
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 4, 2009 at 01:59 from IEEE Xplore. Restrictions apply.

D. The AR Algorithm

In this section, we discuss the details of the AR algorithm.
Figure 2 shows a flowchart of the AR framework.

1. We start by setting the error tolerance level (ε), the
probability (η) of maintaining that level, and the AR model
order (u). The size of the interval (m) can either be fixed or
we can use the AR model to predict it as well.

2. Based on η and ε, z is calculated using Eq. (4).

3. To initialize the AR(u) model, we uniformly sample the first
u intervals with an initial sample size n_init and collect the
SCV values for those intervals.

4. Once the AR model has been initialized, the model predicts
the SCV value of future intervals based on the past u
intervals’ SCV values and the 2nd order interactions between
them given by Eq. (9).

5. With the predicted SCV value of the next interval, the
minimum number of samples required for that interval is
calculated using Eq.(4) i.e. n’ = z*S.

6. The next interval is then periodically sampled with the
resultant n samples and the sampled SCV of that interval is
calculated. This sampled SCV is then used by the AR model
to calculate the next interval’s SCV along with past (u-1)
intervals.

Once the sample size has been predicted for the next
interval, we use a similar AR model to predict the size of the
next interval m(k). This prediction is made based on the past
interval sizes seen by the AR(u) model. So, let m(k) denote the
size of the kth interval, then using the AR(u) model, we have ࢓"ሺ࢑ሻ ൌ ∑ ᇱ࢓ሻ࢏ᇱሺ࢈ ൅ ∑ ୀ૚࢏࢛ ∑ ,࢏ᇱሺ࢈ .ሻ࢐ ࢑ᇱሺ࢓ െ .ሻ࢏ ࢑Ԣሺ࢓ െ ୀ૚࢏࢛ା૚࢏ୀ࢐࢛ሻ࢐ . . ሺ૚૛ሻ

where, ܾ′ሺ݅ሻand ܾ′ሺ݅, ݆ሻ are AR model parameters for first
and second order interactions respectively and ݉"ሺ݇ሻ denotes
the predicted interval size of the kth interval. Using the above
AR prediction model, we can then predict ݉"ሺ݇ሻ.

Now that we have both the sample size (calculated from the
predicted SCV) and interval size for the next interval, we can
go ahead and periodically sample the next interval.

E. Constructing Confidence Interval from multiple intervals

In statistical sampling, confidence intervals give an
estimated range of values which is likely to include an
unknown population parameter . The standard formula to
calculate a 100(1-α)% confidence interval for the sample mean
of a normal population is given by,

ᇱࢄ േ ቀࢻࢠ/૛.ࢄ.ࢂᇱ√࢔ ቁ .. (13)

where X’ is the sample mean, ݖఈ/ଶ is the critical value of the
standard normal distribution, V is the sample variance and n is

the sample size. The above formula works well when we
randomly or systematically sample a normal population.
However, in our case, we are dividing the population into
intervals which become our new sub-populations. In order to
calculate the variance of the samples taken from these sub-
populations and then apply it towards our aggregate
population, we need to calculate variance V in a manner similar
to stratified sampling. Calculating variance in stratified
sampling for all strata or sub-populations is given by,

ࢂ ൌ ∑ ૛ࡺ૛ࢎࡺ . ሺ૚ െ .ሻࢎࢌ ୀ૚ࢎ࢑ࢎ࢔૛ࢎࡿ .. (14)

where ݊௛ is the sample size of the hth strata or interval, ௛ܰ is
the hth interval size, N is the population size, ௛݂ ൌ ݊௛ ௛ܰൗ ,
and ܵ௛ଶ is the variance for that interval. The confidence interval
for our aggregate population is then computed by substituting
Eq.(14) into Eq.(13).

Figure 2: The AR framework Flowchart

62
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 4, 2009 at 01:59 from IEEE Xplore. Restrictions apply.

IV. EXPERIMENT METHODOLOGY
In order to demonstrate the effectiveness of the AR

framework, we tested the entire SPEC2K benchmark suite in
our evaluation. We simulated CPI values obtained over small
intervals of each benchmark using the reference input sets.
Further, we implemented the AR framework in two modes:
Mode-1 used the AR model (Eq.(9)) to predict the SCVs of the
next interval alone while dividing the benchmarks into equal
interval sizes. Mode-2 used the AR model to predict the SCVs
of the next interval (Eq.(9)) and the size of that interval
(Eq.(12)). Table I gives the various configurations analyzed in
both Mode-1 and Mode-2 of the AR framework. Although we
experimented with various model orders (u) and error bounds
(ε), in this paper, we only present the results for u=20 and
ε=3%.

In our analysis, we also compare the AR framework with the
widely used SMARTS framework [7]. The details of the
microarchitecture configurations used for our evaluation are
shown in Table II. The CPI data used, for both AR and
SMARTS frameworks, has perfect warming of all architectural
and microarchitectural states. Different warming
methodologies can be used for both AR and SMARTS
frameworks, which is outside the scope of this paper. Finally,
we used a sample unit size of 1000 instructions for both the
AR and SMARTS frameworks.

Table I: AR parameters for Mode-1 and Mode-2

Parameter Mode – 1 Mode – 2

Model Order (u) 10, 15, 20 10, 15, 20
No. of Intervals (B) Fixed (100, 1000, 10,000) Predicted
Error Tolerance (ε) 20%, 10%, 3% 20%, 10%, 3%
Probability (η) 99.7% 99.7%

Table II: Processor Configuration used in simulation

Parameter Config #1 Config #2
Decode, Issue, Commit Width 4-way 8-way

Branch Predictor, BHT Entries Combined, 4K Combined, 16K

ROB/LSQ Entries 32/16 128/64

Int/FP ALUs (Mult/Div Units) 2/2(1/1) 6/6(4/4)

L1-D Size (KB), Assoc, Lat(cycles) 32, 2-way, 1 128, 2-way, 1

L2 Size (KB), Assoc, Lat(cycles) 256, 4-way, 10 1024, 4-way, 15

Memory Lat(cycles) 150, 10 300, 20

V. AR FRAMEWORK EVALUATION AND RESULTS
Figure 3 shows the accuracy of the AR model in predicting

the next interval SCV compared to the actual SCV of that
interval. We can see that the predicted and actual SCVs of an
interval overlap, which shows that the AR model is very

successful in predicting future SCV values. In the remainder
of this section, we discuss the effectiveness of the AR
framework for CPI estimation for the SPEC2k benchmarks and
the number of samples the AR framework needed. We also
study the effects of varying the AR parameters used for both
Mode-1 and Mode-2. At the end, we compare the AR and the
SMARTS frameworks.

A. Mode–1: Predicting SCVs (S) with fixed intervals
In Mode-1 of the AR framework, we use the AR model to

predict the SCV (S) of the next interval (k) while keeping the
interval size (m) fixed. We periodically sampled 0.1% of each
of the initial ‘u’ intervals as it empirically gave the best trade-
off between sample sizes (n) taken versus error in CPI
estimation (e). Figure 4 shows the number of samples taken for
each SPEC2K benchmark to achieve an error bound of ±3%
with 99.7% confidence. On average, the AR model sampled
40K sampling units or 40 million instructions for all SPEC2K
benchmarks. Figure 5 shows the percentage error in the CPI
estimation from using the AR framework. The error bars show
the confidence intervals for each benchmark. We can see that
all SPEC2K benchmarks stay well within 3% error bound with
an average actual error of only 0.58%. Since actual errors are
not a good estimate of how the framework performs,
confidence intervals are also calculated. Our results show that
the worse-case confidence interval for 99.7% confidence level
is ±0.5%, while the average confidence interval for all SPEC2k
benchmarks is ±0.2%.

B. Mode–2: Predicting Interval size and SCV (m, S)

The AR framework’s Mode-2 uses two separate AR models;
one to predict the interval size (m) and the other to predict the
SCV (S) of that interval (k). Since we predict the interval size
along with SCV, we also need to set initial interval sizes to
warm the AR model. In our empirical tests, we found that an
initial interval size of 0.5% of the total benchmark length,
while periodically sampling 0.1% of the interval, gave the best
balance between number of samples (n) and error (e). In Figure
4, we see that the most SPEC2k benchmarks required small
sample sizes of 30k sampling units or 30 million instructions.
The only exception is 176.gcc-1 on Config #2, which needed
172k samples to achieve a 99.7% confidence of ±3%. In Figure
5, we see that all SPEC2K benchmarks stay within 3% error
with an average error of 0.7%. Confidence intervals for 99.7%
confidence were calculated for all simulations and we noted
that the confidence intervals achieved were ±0.5% in the worst
case while the average converged around ±0.3%.

While not shown in the graphs, we observed that the most
reasonable balance (between the number of samples taken (n)
versus a corresponding low error (e) with tight confidence
interval) was achieved with AR model order (u) set to 10 or 20
while setting the acceptable error bound (ε) at 3% for both AR
modes. We also observed that the number of samples taken by
either AR modes decreases linearly for larger error bounds (ε).

63
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 4, 2009 at 01:59 from IEEE Xplore. Restrictions apply.

Figure 3 : Predicted SCV vs. Sampled SCV vs. Actual SCV for SPEC2K benchmark 177.mesa. AR Mode-1 (u = 20, e = 3%, B = 100).

Figure 4: Number of samples taken by SMARTS vs. AR. SPEC2K Benchmarks for both Config #1 and #2. u=20, ε=3%, η = 99.7%.

Figure 5: Error in CPI estimation for SMARTS vs. AR. SPEC2K Benchmarks for both Config #1 and #2. u=20, ε=3%, η= 99.7%. The error
bar for each benchmark - configuration combination shows the confidence interval for that combination.

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60 70 80 90

SC
V

Interval

Predicted SCV

Sampled SCV

Complete Interval SCV

Prediction Begins

0

50000

100000

150000

200000

N
um

be
r

of
 S

am
pl

es

SPEC2k Benchmarks

Config #1 SMARTS Config #1 AR Mode1 Config #1 AR Mode2 Config #2 SMARTS Config #2 AR Mode1 Config #2 AR Mode2

0.00

1.00

2.00

3.00

4.00

5.00

%
 E

rr
or

SPEC2k Benchmarks

Config #1 SMARTS Config #1 AR Mode1 Config #1 AR Mode2 Config #2 SMARTS Config #2 AR Mode1 Config #2 AR Mode2

64
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 4, 2009 at 01:59 from IEEE Xplore. Restrictions apply.

Figure 6: Number of Iterations taken by SMARTS for SPEC2K Benchmarks to achieve a ±3% confidence interval for both configurations
(n_init = 10k).

C. Consistency in CPI Estimation for Varying Processor
Configurations
In Figures 4 and 5, we have shown AR results for two

different processor configurations. We see that the AR
framework is, for most benchmarks, very consistent between
the two configurations for both the number of samples (n)
taken as well as the error in CPI estimation (e). The average
difference in the number of samples taken is around 15k
samples or 15 million instructions while the average difference
in CPI error is observed to be only 0.07%.

D. AR Modes versus SMARTS
When we compare the two AR Modes, we see that, on

average, both AR modes take similar number of samples for all
SPEC2K benchmarks, although Mode-1 tends to take more
samples than Mode-2. The reason behind this increased
number of samples is that Mode-1 cannot intuitively vary the
size of the interval (m) which, in turn, causes the increase in
number of samples taken. Further, errors (e) for both modes
stay within ±3%. Overall, Mode-2 gives the best trade-off
between sample size (n) and error (e). Confidence intervals for
Mode-1 stays within ±0.2% as against the ±0.3% range of
Mode-2 which can be explained as an effect of Mode-1 taking
more samples. In summary, both AR framework modes do
extremely well in terms of number of samples taken and
relative error in CPI estimation, while achieving a very tight
confidence interval with a single iteration run.

Figures 4 and 5 also show the results of comparing the AR
framework with SMARTS in terms of number of samples
taken and error in CPI estimation. As we know, SMARTS
iteratively samples a benchmark till the desired confidence is
reached. A major disadvantage of SMARTS is that, most
times, it ends up collecting redundant measurements over
multiple iterations. This is evident from Figure 6 that shows
the number of iterations taken by SMARTS to achieve a ±3%
error with 99.7% confidence. Simulations were started with
initial sample sizes ‘n_init’ of 10000 sampling unit (SMARTS
recommended) for both Config #1 and Config #2. From Figure
6 we see that 7 and 10 of the 16 benchmarks shown required
two or more iterations to achieve the ±3% confidence interval
for Config #1 and Config #2 respectively. This highlights the

second disadvantage of using the SMARTS framework –
researchers need to iteratively increase the number of samples
per iteration, which can be a painstaking and cumbersome task.
The AR framework, on the other hand, requires only a single
run of the benchmarks to achieve a desired confidence. When
comparing the number of samples taken by both AR and
SMARTS, we see that both AR modes take comparable
number of samples to SMARTS (Figure 4). Finally, while the
error in CPI estimation for both AR modes and SMARTS stay
well within ±3%, as shown in Figure 5, the confidence
intervals achieved by AR framework, are ±0.5% in the worst
case (while the average is within ±0.2%) in comparison to the
±3% achieved by SMARTS. Hence, the overall accuracy for
the AR framework is better than that of SMARTS.

VI. RELATED WORK
 Reduced simulation time techniques such as population
sampling and reduced input sets try to minimize the simulation
time, but still achieve results that are representative of
the complete execution of the program. One approach for
finding representative samples is SimPoint [3,4,5], which uses
basic block vectors combined with K-means [3,4] clustering to
accurately identify similar intervals within a large application
and strategically chooses sample intervals that are highly
representative of the entire benchmark. Only simulating these
sample intervals greatly reduces the simulation time, but still
yields accurate results. The main disadvantage of SimPoint is
that it requires an offline analysis before it can start detailed
simulation. For benchmarks that take hours to run on a real
machine or benchmarks that may be infrequently used, i.e. the
cost of the profiling runs are amortized across just a few
simulations, the cost of profiling may completely offset the
reduction in simulation time. SMARTS [7] is another
simulation-time reducing approach, which employs statistical
sampling theory in order to select an appropriate number of
program subsets representative of the entire program. This
approach uses inferential statistics, which provides methods to
estimate parameters of a large population from a representative
subset. SMARTS employs systematic sampling while the most
basic sample design is simple random sampling [6]. The main
disadvantage of SMARTS is that it does not take advantage of
the often repetitive behavior seen in benchmarks and hence can

0

1

2

3

4
N

um
be

r
of

 It
er

at
io

ns

CPU2k Benchmarks
Config #1 Config #2

65
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 4, 2009 at 01:59 from IEEE Xplore. Restrictions apply.

end up collecting many redundant measurements.
Another disadvantage of SMARTS is that, most times, the
desired confidence is not achieved in the first simulation run
which ultimately increase simulation time. In this paper, our
main objective was to remove the need offline analysis or
multiple runs to achieve a confidence level.

 Reduced input sets [17,18] have two advantages over
other simulation techniques. First, the benchmark runs to
completion, which means that the simulator executes all pieces
of the program. Second, using reduced input sets typically does
not require any changes to the simulator. KleinOsowski and
Lilja [17] created the MinneSPEC reduced input set for
the SPEC2k benchmarks. The input sets were reduced by
modifying command-line parameters, truncating the input set,
or creating a completely new input set. Alameldeen et al. [18]
created reduced input sets for TPC-C based on the metric of
transaction throughput. The key conclusion from these
two studies is that creating a reduced input sets is a very time-
consuming and user-intensive task, especially so since reduced
input sets need to be re-created for each new suite.

Other suggested approaches include using cluster sampling
through predictive mechanisms for predicting future phases in
a program’s dynamic instruction stream [10], stratified
sampling [11] with offline analysis [8] and a combination of
both i.e. using phase-based small sample simulations [9]. Yi et
al. [12] characterized and compared most of the
aforementioned simulation techniques. Their results showed
that, the truncated execution techniques and reduced input sets
had very poor accuracy, as compared to the reference input set.
Overall, both SimPoint and SMARTS are very accurate
techniques.

VII. CONCLUSION
This paper presents a novel configuration-independent

simulation-time reducing approach that adaptively samples
intervals in a benchmark using an Autoregressive model (AR)
on the Squared Coefficient of Variance (SCV) of the Cycles
per Instruction (CPI) distribution. Using the SCV’s of past
intervals, the AR model calculates the required number of
samples for the current interval. Unlike current reduced-time
simulation techniques, the AR framework requires only a
single run of the benchmark to achieve a desired confidence in
Cycles per Instruction (CPI) estimation and requires no offline
analysis. Our results show that the AR framework performs as
well as SMARTS while providing more accurate results.

REFERENCES

[1] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.

Technical Report CS-TR-97-1342, University of Wisconsin, Madison,
June 1997.

[2] T. Sherwood and B. Calder. Time varying behavior of programs.
Technical Report UCSD-CS99-630, UC San Diego, August 1999.

[3] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution
analysis to find periodic behavior and simulation points in applications.
In International Conference on Parallel Architectures and Compilation
Techniques, September 2001.

[4] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In 10th International
Conference on Architectural Support for Programming, October 2002.

[5] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B.
Calder. Using SimPoint for Accurate and Efficient Simulation. ACM
SIGMETRICS the International Conference on Measurement and
Modeling of Computer Systems, June 2003.

[6] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss for
effective trace sampling of superscalar processors. In Proceedings of
the 1996 International Conference on Computer Design (ICCD),
October 1996.

[7] T. Wenisch, R. Wunderlich, B. Falsafi and J. Hoe, SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical
Sampling, In Proceedings of the 31th Annual International symposium
on Computer Architecture, IEEE Computer Society, 2003.

[8] S. V. Kodakara, J. Kim, W. Hsu, D. J. Lilja, P. Yew. PASS: Program
Structure Aware Stratified Sampling for Statistically selecting
instruction traces and simulation points. Technical report TR 05-044,
University of Minnesota, December 2005.

[9] J. L. Kihm, S. D. Strom, D. A. Connors. Phase-Guided Small-Sample
Simulation. In Proceedings of the International Symposium on
Performance and Analysis of System Software, April 2007

[10] E. Duesterwald, C. Cascaval, S. Dwarkadas, "Characterizing and
Predicting Program Behavior and its Variability," pact, p. 220, 12th
International Conference on Parallel Architectures and Compilation
Techniques (PACT'03), 2003.

[11] R.E. Wunderlich et al., "An Evaluation of Stratified Sampling of
Microarchitecture Simulations," 3rd Ann. Workshop Duplicating,
Deconstructing, and Debunking (WDDD 04), 2004, pp. 13–18;
h t t p : / www. ec e . wi sc . ed u / ~wddd/2004/WDDD2004_proceedings.
pdf.

[12] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins,
Characterizing and Comparing Prevailing Simulation Techniques, IEEE
International Symposium on High-Performance Computer Architecture
(HPCA-11), pp. 266-277, Feb. 2005.

[13] B. Choi, J. Park, Z. Zhang, ``Adaptive Random Sampling for Traffic
Load Measurement,'' IEEE International Conference on
Communications (ICC'03), Anchorage, Alaska, May, 2003.

[14] D. A. Berry and B. W. Lindgren, “Statistics theory and Methods”, 2nd
ed., Duxbury Press, ITP, 1996.

[15] J. M. Gottman, “Time-series analysis”, Cambridge UniversityPress,
1981.

[16] G. Eshel, “The Yule-Walker Equations for AR coefficients”,
http://minerva.simons-rock.edu/~geshel/geos31415/YW.pdf

[17] A. KleinOsowski and D. Lilja, “MinneSPEC: A New SPEC Benchmark
Workload for Simulation-Based Computer Architecture Research,”
Computer Architecture Letters, Vol. 1, June 2002.

[18] A. Alameldeen, M. Martin, C. Mauer, K. Moore, M. Xu, D. Sorin, M.
Hill and D. Wood, “Simulating a $2M Commercial Server on a $2K
PC,” IEEE Computer, Vol. 36, No. 2, February 2003, Pages 50-57.

66
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 4, 2009 at 01:59 from IEEE Xplore. Restrictions apply.

