

Array Tracking Prefetcher for Indirect Accesses
Mustafa Cavus

Department of Electrical, Computer, and
Biomedical Engineering

University of Rhode Island
Kingston, RI, USA
mcavus@uri.edu

Resit Sendag
Department of Electrical, Computer, and

Biomedical Engineering
University of Rhode Island

Kingston, RI, USA
sendag@uri.edu

Joshua J. Yi
Dechert LLP

Austin, TX, USA
joshua.yi@dechert.com

Abstract—Indirect memory accesses have irregular access

patterns and concomitantly poor spatial locality. To address this
problem, we propose the Array Tracking Prefetcher which tracks
array-based indirect memory accesses using a novel combination
of software and hardware. Our results show that ATP yields
average speedup of 1.60 over the baseline single-core without
prefetching. By contrast, the speedup for conventional software
and hardware-based prefetching, is 1.49 and 1.16, respectively.
For four-cores, the average speedups for ATP, software, and
hardware are 1.49, 1.38, and 1.11, respectively.

I. BACKGROUND AND INTRODUCTION
The execution of data structures such as sparse matrices and

graphs frequently result in indirect memory accesses which have
irregular access patterns and thus poor cache spatial locality.
These data structures are often implemented as nested arrays,
e.g., A[B[i]]. A hardware stream prefetcher can easily
prefetch entries of array B because its entries are sequentially
accessed. By contrast, because there may be no pattern to the
values stored in array B, accesses to array A are likely to be
irregular, which obviates the efficacy of a stream prefetcher
which depends on accesses having spatial locality.

Software prefetching can hide the memory latencies of
indirect memory accesses. See, e.g., [1] (describing a compiler-
based system to generate software prefetches for indirect
memory accesses). Software prefetching requires additional
instructions, e.g., the prefetching instructions themselves,
instructions for address calculation and border checking, etc.

In addition to instruction overhead, the benefit of software
prefetching is further limited by dependencies related to prefetch
address calculation and lack of run-time information needed for
optimal placing of prefetch instructions. For a set of memory-
bound benchmarks (described in Section III) with indirect
accesses, we observe that the effect of prefetching distance (i.e.,
how far in advance of the memory access the prefetch
instruction is issued) on software prefetching speedup is very
significant. On average, resulting speedups vary from 1.14
(worst) to 1.49 (best). Finally, it is also important to remember
that the optimal prefetch distance for a given application may
change based on running the application on a different
underlying architecture [1], which further underscores the
necessity of run-time information to optimally place the prefetch
instruction.

Hardware prefetchers, by comparison, do not require
executing additional instructions in order to compute and issue
prefetches but, as described above, they can easily prefetch
sequentially-accessed array entries. But, in order to capture
irregular access patterns, hardware prefetchers generally require
very complex mechanisms to be able to capture irregular access

patterns. See, e.g., Hashemi et al. [2] (describing continuous
runahead execution). Yu et al. [3] proposed a relatively less
complex pure hardware mechanism called Indirect Memory
Prefetcher (IMP) which was designed to capture a few different
indirect memory access patterns (e.g., A[B[i]] and
A[B[C[i]]]).

Code snippets 1-3 below illustrate the limitations of
hardware prefetching and concomitantly the advantages of
software prefetching. We use IMP as an exemplary hardware
prefetcher given its efficacy and relatively low complexity.
Code Snippet 1 depicts an indirect memory access where the
index array, i.e. B, is a multidimensional array. This type of code
appears in benchmarks such as PageRank (PR) and Triangle
Count (TC).

A hardware prefetcher like IMP can capture this indirect
memory access by prefetching A[B[i][j+D]] where D is the
distance. Even when M (the maximum number of iterations for
the inner loop) is very small, IMP can still capture this indirect
memory access and issue prefetches, but it may not be able to
fully hide the memory latency of these indirect memory accesses
because the distance between the prefetch instruction and the
memory access is too small. But, in this case, increasing the
distance actually results in a performance decrease because
inner loop is too short. Software prefetchers solve this problem
by prefetching memory accesses for the next iteration in the
outer loop, e.g., A[B[i+4][j]]; hardware prefetchers,
however, have trouble detecting this behavior.

Code Snippet 1: Two-dimensional array in a nested loop.
Code snippet 2 depicts an indirect memory access that

requires additional arithmetic/logical operations to compute the
memory address. More specifically, the index to array A
requires both a logical AND and a right-shift. This type of code
appears in benchmarks such as HashJoin ph2 (hj2).

Code Snippet 2: Index requires arithmetic/logical computations.

Code Snippet 3: Code requires simultaneous tracking of multiple indirect
accesses of varying depth using the same index array.

for (i = 0; i < N; i++)

 for (j = 0; j < M; j++)

 load A[B[i][j]]

for (i = 0; i < N; i++)

 load A[(B[i]&0x3f)>>2]

for (i = 0; i < N; i++)

 load A[B[C[i]]]

 load D[C[i]]

Most hardware prefetchers such as IMP are unable to capture
these memory accesses because they require more than one
arithmetic/logical operations; only very expensive hardware
prefetchers, e.g., continuous runahead execution [2], can
successfully prefetch this type of indirect memory access but
only when runahead is sufficiently far and dependency chain can
be successfully detected. But if this code snippet only required
one operation, most hardware prefetchers could capture them by
calculating a virtual base address or virtual element size.

Finally, when multiple indirect accesses of varying depth
appear at the same time as in Code snippet 3, it complicates
hardware tracking. We observe that IMP is not successful to
capture the full behavior. IMP was able to detect and prefetch
for B[C[i]] and D[C[i]], but not for A[B[C[i]]].
However, IMP is able to track either A[B[C[i]]] or
D[C[i]], if they do not exist at the same time.

By contrast, software prefetching can accurately prefetch
these memory accesses with some programmer effort. But this
type of memory access has a significant overhead because
requires performing the arithmetic/logical operations, which
have a read-after-write dependence between them, for each
prefetch. Furthermore, due to lack of run-time information, the
best prefetching distance is hard to predict.

Because software and hardware prefetchers have different
strengths and weaknesses, in this paper, we propose a prefetch
mechanism that attempts to combine the strengths of each. More
specifically, we propose the Array Tracking Prefetcher (ATP)
which tracks array-based indirect memory accesses such as
A[B[i]], A[B[C[i]]], A[B[i][j]], and
A[func(B[i])] where func() comprises some arithmetic
and binary operations, and combinations of these individual
indirect memory access types. To enable the compiler to extract
indirect access information from a loop, ATP relies on the
programmer to mark the corresponding loop. And rather than
using software to insert prefetching instructions, ATP uses
special instructions to pass hints the hardware mechanism.
These special instructions only execute outside of the loop, so
they do not result in significant instruction overhead. Providing
hints to the hardware mechanism is better than a pure hardware
mechanism because the hardware mechanism can configure
itself based on the behavior of the software. This can
significantly reduce the training time. Furthermore, it enables
the hardware mechanism to effectively prefetch a wide variety
of indirect access behaviors as it does not need to detect these
behaviors itself.

During execution of the loop, ATP calculates size of the
array type (i.e., the prefetching stride) and base address of the
required arrays, e.g., Address of A[0]for a A[B[i]]. After
calculating the strides and base addresses, ATP starts generating
prefetch addresses for forthcoming indirect memory addresses
based on the calculated base address and stride.

ATP also includes a mechanism to dynamically change the
prefetch distance in order to adapt to specific run-time behavior
to achieve better timeliness and performance. ATP selects the
best distance after a period of cycles and uses the selected
distance for the next period.

Across a set of memory-bound benchmarks, for a single-core
architecture, ATP achieved an average speedup of 1.60X (with
a maximum of 3.27X) over the no prefetching baseline. By
comparison, (manually inserted) software prefetching had an

average speedup of 1.49X while hardware prefetching (IMP)
had an average speedup of 1.16X. For a 4-core architecture, ATP
had an average speedup of 1.49X (up to 3.04X) while software
prefetching and IMP had average speedups of 1.38X and 1.11X,
respectively.

II. ARRAY TRACKING PREFETCHER
ATP consists of a software and a hardware component. The

software component is responsible to detect indirect access
related information within a loop and pass it to hardware. The
hardware component uses this information to initialize the ATP,
which will in turn compute indirect prefetch addresses and issue
prefetch requests at run-time.

A. Software Component
The software component of the ATP extracts information

related to indirect memory accesses within a loop. This loop can
either be marked by the programmer as shown in the Code
snippet 4 or can be automatically identified using a compiler
pass similar to the approach in [1]. The extracted indirect-access
information is provided to the hardware through special
instructions (e.g., see Code snippet 6), called Array Tracking
Instructions (ATIs).

Code Snippet 4: Marking the loop for indirect prefetching

Code Snippet 5: Instructions inside the marked loop.

Code Snippet 6: ATIs generated from graph in Figure 3

Figure 1: Dependency graph generated from the Code Snippet 5.

 Array Tracking Instructions (ATIs): Each ATI is packed
into a single Array Tracking Execute (ATE) instruction, which
can be recognized in the processor pipeline. When a core
identifies an ATE instruction, the core removes it from the
pipeline and forwards it to the ATP. It is important to note that
the number of executed ATE instructions is insignificant since
they appear only once per the main loop where indirect access
traversals occur. There are four types of ATIs: 1) ATCL (or ATE
x3) clears all ATP tables. It does not have any operands. 2)
ATAR (or ATE x0) inserts entries into ATP’s Array Table (AT).

#at_indacc_loop

for (i = 0; i < N; i++)

 sum += A[B[i]];

4005a0: movslq (%rax), %rcx

4005a3: add $0x4, %rax

4005a7: add (%rsp, %rcx, 4), %edx

4005aa: cmp %rsi, %rax

4005ad: jne 4005a0

atar $0x4005a0

atar $0x4005a7

atrl $0x4005a0, $0x4005a7, 0

It has a single operand: the address1 (PC) of the load instruction
that accesses the base2 or the target array involved in indirect
accesses. 3) ATRL (or ATE x1) inserts relation (e.g, between
target array A and base array B in an A[B[i]] structure)
information to the ATP’s Indirect Relation Table (IRT). It has
three operands: the first two are the PCs (offsets) of the load
instructions accessing the base and target arrays, respectively.
The third operand (1-bit) specifies the type of the relation. 0
(zero) is used for regular A[B[i]] type accesses and 1 is used
when the index array is a 2D array, such as B in A[B[i][j]].
Finally, 4) ATOP (or ATE x2) is used for complex structures
when the indexes to the target array is computed by a function
that uses the base array as an argument (e.g.,
A[func(B[i])]). ATOP inserts these operations to ATP’s
Operation Table (OT). ATOP has two operands. The first
operand is the operation type (e.g, NOT, ADD, etc.). The second
operand specifies the data for the operation. If there are more
than one operation, more than one ATOP instruction are created.
For example, A[(B[i]-1)&0xF], requires two consecutive
ATOP instructions. The first ATOP instruction always follows an
ATRL. The first ATOP instruction’s first operand is implicitly
specified as the base array value (e.g., B[i]). The second ATOP
uses the result of first ATOP as its first operand.

ATE instructions are 6-bytes long: Two bytes are reserved
for the opcode, 2-bits specifies type of the ATI instruction, and
the remainder are for the operands as discussed above.

 Generating ATIs: Generation of ATIs consists of two
stages. First, a dependency graph of the instructions inside the
marked loop (in Code Snippet 5) is generated as shown in Figure
1 and then ATIs are generated based on this graph. Once the
dependency graph is generated, a software pass visits all nodes
to generate ATIs. For all nodes which belong to a load
instruction, an ATAR instruction is generated. Then, ATRL
instructions (and ATOP instructions if required) are generated
based on the connections of the nodes. Code snippet 6 shows the
ATIs generated from the graph in Figure 1. These instructions
are placed above the entry point of the loop. Additionally, an

 Figure 2: An overview of ATP

1 16-bit offset from ATAR’s own address (PC) is sufficient.

ATCL instruction will be inserted to the start of the loop
(preceding other ATIs) to clear the ATP tables before the
execution of the loop has completed.

B. Hardware Component
An overview of ATP hardware mechanism is shown in

Figure 2. ATP consists of an ATI queue (ATQ), an Access
Tracker Unit (ATU), a Base Calculator (BC), a Prefetch
Calculator (PFC), and a Distance Selector (DS).

After an ATE instruction has been identified in the processor
pipeline, it is forwarded to the ATP hardware. A sub-opcode
field identifies individual ATI instructions. Each ATI instruction
is inserted into the ATQ, which is a FIFO queue with head and
tail pointers. ATQ is simply the interface between the processor
pipeline and the ATP hardware. ATP processes ATI instructions
in-order from the ATQ.

ATU and Processing of ATI instructions: Each valid ATI
in the ATQ is processed in-order from ATQ’s head to tail. In
general, ATIs are used to initialize/program the ATU tables.
ATU consists of three important tables, the Array Table (AT),
the Indirect Relation Table (IRT) and the Operation Table (OT).

An ATCL instruction resets all ATU tables, namely valid bits
are set to zero in AT, IRT and OT tables. We explain how ATI
instructions initialize or program ATU tables using the example
in Figure 3, which shows the final status of AT, IRT and OT
tables after they are initialized for A[(B[i]&0x7F)*7]
structure. The indirect access structure in this example generates
two ATAR instructions, one for array A and one for array B. The
ATAR instructions updates the AT table. Each ATAR instruction
reserves the next available entry in the AT. It specifies a load PC
that is involved in reading an array element (and involved in
indirect access). The fields in the AT is shown in Figure 3.
Initially, trigger-bit and depth field of the AT is 1. Trigger type,
indirect map, and root fields are all initially 0s.
 For the example in Figure 3, following the two ATAR
instructions is an ATRL instruction specifying the relation
between arrays A and B. Each of the PCs specified by ATRL
have already been placed in the AT due to prior ATAR
instructions. When an ATRL instruction is executed, it allocates
an entry in the IRT, locates the index array’s PC (B) in the AT
and updates the indirect map field of the AT entry with the index
of the IRT entry it allocated. Then, it locates the target array PC
(A) in the AT and saves its index in the destination field in the
IRT entry. Indirect map field of the AT is a bitmap (each bit
refers to an index of IRT entry) specifying if an IRT entry in
relation to the array in the current AT entry exists. 00 means no
relation exists and thus array in that AT entry is not used as an
index for any target array. In Figure 3, AT’s entry 1 for array B
has a non-zero indirect map, 10, suggesting the 0th entry in the
IRT table provides in its destination field a pointer to the target
array (in the AT) for which array B used as index for. If all
indirect maps are 0, ATP acts as a stream prefetcher. This will
happen when no ATRL instruction is observed for ATAR
instructions.

Level of an indirect access depends on the number of indirect
accesses made in a chain starting with the access to the index
array. AT has a field, depth, monitoring this level. ATRL updates
the depth field of the base array (B) by checking if it is less than

2 We use base and index array interchangeably to mean the same thing.

the depth of the target array, A. If so, it sets the depth of array B
to be one more than its target array (in this example, 2). The
index array has the highest depth and a target array which is not
an index to another target array has the lowest depth, 1. Depth is
used for prefetch address calculation as described in Section
II.C.

Finally, ATRL is followed by ATOP instructions since base
array is not directly used as index for the target array. The first
ATOP is an AND with data 0x7f and the second ATOP is a
MUL with 7 as its data. ATOP instructions can only follow an
ATRL or another ATOP instruction. ATOP sets to 1 the op bit
of the IRT entry it corresponds to denoting that base array must
undergo an operation before used as index for target array. Op
idx field specify the index of the OT that corresponds to the
operation specified by ATOP. If ATOP is followed by another
ATOP, the next bit field of the last ATOP is set to 1.
 Once the last ATOP have been processed, ATU has
completed initialization and ATP is ready to move to the size
and base calculation stage. It is important to note that with
sequence of ATIs, ATU can keep track of multiple indirect array
access structures with various levels of complexity,
simultaneously, which is a significant improvement compared
to the state-of-the-art indirect hardware prefetcher, IMP.

Size and Base Calculator Unit (SBCU): Before
prefetching can start for indirect accesses, the stride of the
trigger arrays and, the element sizes and base addresses of the
target arrays must be known. ATP employs a single mechanism
to compute sizes and base addresses.

 Size Calculation: For each committed load instruction, if
its PC is found in the AT table, and if the size bit is 0, SBCU
starts the process for size computation. First, the stride between
two accesses of the trigger array is computed. SBCU unit uses a
stream register to keep track of trigger array accesses. A stream
register consists of a valid bit, an index to the AT (holding the
trigger array), last address, stride and confidence fields. If the
observed stride (difference between addresses of two
consecutive accesses) repeats, confidence counter is
incremented. If confidence reaches a certain threshold, the
detected stride is saved in the AT entry corresponding to the
trigger array and its size bit is set. The stream register is then
released to be used by other trigger arrays.
 The size calculation for a non-trigger array uses a different
method. If the size bit is not set for a non-trigger array in the AT,
SBCU employs a size calculation register (SCR) for that AT
entry, which monitors the values read by index arrays and the
resulting addresses of the non-trigger array. SCR consists of a
valid bit, two AT index fields, two address fields, two computed

index (idx) fields, confidence and size fields. SCR holds the AT
index or indexes that hold the index array/s for the target array
(the non-trigger array). For each committed load, if the index
arrays were accessed, the values read from these arrays are
recorded in the computed index field (idx) of the SCR and if the
OT has any entry for that index array, the operation/s are
performed on these values to compute the final index (idx1)
for the target array and computed index field of SCR is updated.
When an access to the non-trigger array is observed (after access
to its index array), its address (addr1) is recorded in the SCR.
Once SCR observes two addresses (addr1 and addr2) and
two indexes (idx1 and idx2), the size of non-trigger array is
computed using Equation 1. The size computation is repeated
multiple times until a certain confidence threshold is reached.
After size is computed, its recorded in the AT entry
corresponding to the non-trigger array, and SCR is released.

 𝑆𝑖𝑧𝑒(𝐴) = 𝐴𝑑𝑑𝑟(𝐴[𝐵[𝑖+1])−𝐴𝑑𝑑𝑟(𝐴[𝐵[𝑖]])
𝐵[𝑖+1]−𝐵[𝑖]

 (1)

Base Address Calculation: Finally, before indirect
prefetching can be performed for target arrays, their base
addresses must be computed. SBCU assigns a base address
calculation register (BACR) to a non-trigger type entry of a
destination array if the base address of it is not yet calculated but
the size of it is already known. The value of the idx field in
BACR is set to the index of the AT entry which it is assigned
for. Like the SCR, BACR also has a field for the indirect map
which shows the entries of source (index) arrays in the AT.

 After BACR is assigned to an entry in the AT, SBCU
monitors the accesses requested for any of the source arrays by
checking its indirect map field. When SBCU is notified by an
access of a source array, it stores the value of the accessed data
in BACR after performing the required operations in the OT if
any operation exists between the source array and the destination
array (value).
 Once an access to the destination array (addr) is seen by
SBCU, it calculates the base address based on Equation 2 (here
B[i] is the value and Addr(A[B[i]]) is the addr). If
the same base address is computed multiple times to satisfy a
confidence threshold, SBCU sets the base address field of the
corresponding entry in the AT and releases the BACR.
 𝐴𝑑𝑑𝑟(𝐴>𝐵>𝑖@@) = B𝑎𝑠𝑒𝐴𝑑𝑑𝑟(𝐴) + (𝐵>𝑖@ u 𝑆𝑖𝑧𝑒(𝐴)) (2)

C. Prefetch Triggering and Calculation
As shown in Figure 2, ATP employs a Prefetch Calculation

Unit (PCU) to calculate prefetch addresses when triggered.
Whenever ATU observes a trigger access, it notifies PCU with

Array Table (AT)

 Indirect Relation Table (IRT) Operation Table (OT) ATI instructions

Figure 3: Array Table, Indirect Relation Table, and Operation Table are initialized for a A[(B[i]&0x7F)*7] structure where A is an array of 8-byte
double values and B is an array of 4-byte integer values.

atar PC_A
atar PC_B
atrl PC_A, PC_B, 0
atop fAND, 0x7f
atop fMUL, 0x7

the index of corresponding AT entry to begin prefetch
calculation process. Prefetch calculation in ATP is performed in
two steps: 1) prefetch initialization and 2) prefetch address
calculation and issuing of prefetches.

Due to space limitation, in this section, we only explain the
PCU operation for a 3-level indirect access structure
A[B[C[i]]]. As ATU signals PCU for prefetching operation
on an access to the trigger array C, PCU triggers initialization
phase and first allocates an entry for C in the Prefetch
Calculation Buffer (PCB). PCB is a temporary buffer that keeps
detailed information about the entries of potential prefetches and
it is cleared after all computed prefetches are issued. Since C is
the trigger array, by following the indirect map fields in the AT,
its target array B and then A are also inserted into the PCB and
they are linked to their sources in the PCB entries.

After the initialization is done, PCU starts calculation of
prefetch addresses for each entry. To calculate the prefetch
address for any non-trigger array, PCU needs to read a value
from the source array. In an A[B[C[i]]] structure, assuming
we want to calculate a prefetch address for
A[B[C[i+distance]]] triggered by an access to C[i], we
need to read the value of C[i+distance] and then
B[C[i+distance]] to be able to calculate the prefetch
address for A[B[C[i+distance]]]. To be able to find
these values in the cache when needed, they need to be
prefetched ahead (the source values). So for an A[B[C[i]]]
structure, PCU follows the following steps for address
calculation and to perform prefetching:
1. Compute the prefetch address for C[i+3*distance] (depth of C is

3 in this structure) using Equation 3 and issue the prefetch.
2. Calculate the prefetch address for B[C[i+2*distance]] (depth of
B is 2 in this structure):

a. Compute the address for C[i+2*distance] using Equation
3 and read its value from the L1 cache.

b. Compute the prefetch address for B[C[i+2*distance]]
using Equation 2 and issue the prefetch.

3. Calculate the prefetch address for A[B[C[i+1*distance]]]
(depth of A is 1 in this structure):

a. Compute the address for C[i+1*distance] using Equation
3 and read its value from the L1 cache.

b. Compute the address for B[C[i+1*distance]] using
Equation 2 and read its value from the L1 cache.

c. Compute the prefetch address for
A[B[C[i+1*distance]]] using Equation 2 and issue the
prefetch.

𝑃𝑓𝐴𝑑𝑑𝑟 = 𝐶𝑢𝑟𝑟𝐴𝑑𝑑𝑟 + (𝑆𝑖𝑧𝑒 × 𝐷𝑒𝑝𝑡ℎ × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) (3)

 Prefetch address calculation depends on reading source
array values from the L1 cache. We assume ATP has dedicated
ports to access the data TLB and the L1 cache. If in any of the
steps above, the source values cannot be read due to a data TLB
or an L1 cache miss, the process of prefetch calculation and
issuing is aborted until another access to the trigger array occur
and PCU is notified for initialization. The distance value is read
from the Distance Selection Unit (DSU) as explained in Section
II.D. An access to a trigger array initiates as many prefetches as
there are levels in the indirect structure unless the prefetch
address computation fails due to cache misses. The computed
prefetch addresses are placed into an 8-entry prefetch request
queue (PRQ) before they are issued to the L1 cache.

 PCU operation (both initialization and prefetch calculation)
is similar to the above for A[func(B[i])] structure but
different for a A[B[i][j]] structure, where trigger is a 2D
array. Initialization for A[B[i][j]] is involved with the root
address fields of the target arrays in the AT and prefetch
addresses are computed using Equation 4. Due to space
limitations, the details are not presented.

𝑃𝑓𝑅𝑜𝑜𝑡𝐴𝑑𝑑𝑟 = 𝑅𝑜𝑜𝑡𝐴𝑑𝑑𝑟 + (𝑆𝑖𝑧𝑒 × 𝐷𝑒𝑝𝑡ℎ × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

𝑃𝑓𝐴𝑑𝑑𝑟 = 𝑀𝑒𝑚[𝑃𝑓𝑅𝑜𝑜𝑡𝐴𝑑𝑑𝑟] + (𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑀𝑒𝑚[𝑅𝑜𝑜𝑡𝐴𝑑𝑑𝑟]) (�)

D. Distance Selection Unit
Distance Selection Unit (DSU) enables ATP to adjust the

prefetch distance (in terms of how many array elements ahead)
dynamically to be timely accurate on different applications and
configurations.

Each power of 2 prefetch distance from 1 to 16 is competed
during a test period and at the end of this period, the distance
that takes the smallest number of cycles to complete the same
number of loop iterations is picked as the distance for the acting
period that comes after the testing period. The acting period is a
fixed 50 times larger than the testing period. After acting period
another testing period follows. In testing period, each prefetch
distance is run for a fixed number of loop iterations (64 in our
experiments of which the first 32 are used for warm-up and next
32 are used for performance measurement) in a round robin
fashion and the number of cycles is counted. DSU employs two
32-bit cycle counters. min_count holds the smallest cycle
count and run_count holds the cycle count for the currently
tested distance. After each distance has completed its test, if
run_count < min_count, min_count is set to
run_count and a 3-bit best_dist register is updated. After
all distances are tested, best_dist indexes a table of 2-bit
confidence counters and increments the count for that distance.
DSU repeats this process until any of the distance’s confidence
reaches to a threshold which is 2 in our implementation. Using
a threshold less then 2 decreases the performance of some
applications due to aggressive decisions. Using a threshold
above 2 proved useless and increases the duration of the testing
phase which also decreases the performance. Once the decision
is made, the chosen distance is set to be used in the acting period
and the testing period cycle counters are set to 0.
 In multi-core architectures, distance selection is performed
separately on each core. We observe that best distances vary for
each core running a multi-threaded application due to the
sharing of last-level cache and memory bandwidth.

III. METHODOLOGY

A. Simulation Environment
 We implemented ATP on the gem5 using System

Emulation mode and generated the results using the x86 out-of-
order CPU model. Table 1 shows the configuration of each core
while Table 2 shows the ATP configuration. We inserted ATI
instructions at the beginning of the loop and implemented ATP
to prefetch for the L1 cache in order to provide for a direct
comparison with IMP [3], which prefetches for the L1 cache.
Each L1 is equipped with an 8-enty prefetch request queue in
our evaluation.

Table 1: Simulator Configurations
ISA 64-bit x86
Architecture 4-Issue, out-order, 2GHz
LQ/SQ Entries 64/36
ROB Entries 168
Br. Pred. Tournament BP
L1 Cache Private, 8-way 32KB, mshrs: 4, latency: 4
L2 Cache Private, 8-way 256KB, mshrs: 16, latency: 12
L3 Cache Shared, 16-way, 1MB per core, mshrs: 16, latency: 32
Memory 8GB DRAM

We faithfully implemented IMP (attached to each L1 cache)

on our baseline architecture. Similar as in [3], our IMP
implementation used a 16-entry Prefetch Table and a 4-entry
Indirect Pattern Detector with 4-base address length and 4 shift
values. Total hardware budget for the IMP implementation was
8032 bits (1004 bytes) per core, almost four times the size of
our proposed ATP (see Table 2). To evaluate the performance
of software prefetching, we inserted software prefetching
instructions inside the loops containing the indirect memory
accesses. For both IMP and software prefetching, we measured
the speedup for various prefetch distances but only report the
results for the best performing distance.

For each benchmark, we fast-forward to the beginning of the
loop containing indirect memory accesses and the simulate
100M instructions; for multi-core simulations, each core
simulates at least 100M instructions.
 We use the number of cycles per loop-iteration as the
performance metric as it eliminates additional overhead due to
software prefetching. As such, it provides an apples-to-apples
comparison between hardware and software prefetching.

Table 2: Hardware budget of ATP on single-core architecture.

In
str

.
Q

ue
ue

A
rr

ay

Ta
bl

e

Re
la

tio
n

Ta
bl

e

O
pe

ra
tio

n
Ta

bl
e

Pr
ef

et
ch

Ta

bl
e

St
re

am

Re
g.

Si
ze

 C
al

c.

Re
g.

Ba
se

 A
dr

.
Re

g.

D
ist

. S
el

.
U

ni
t

Entries 4 4 4 2 4 1 1 1 -
Entry size

(bits) 80 268 6 39 69 101 172 105 118

Total Size: 2266 bits (~284 bytes)

B. Benchmarks
 We used seven benchmarks to evaluate the performance of

ATP. Each benchmark contains indirect memory accesses inside
their performance critical loop.

Integer Sort (IS) and Conjugate Gradient (CG) are from the
NAS Parallel Benchmarks suite [4]. IS represents computational
fluid dynamics programs and uses a bucket sort algorithm to sort
integer values while CG represents unstructured grid
computations and use eigenvalue estimation on sparse matrices.
IS and CG have simple A[B[i]] access behavior.

Both Pagerank (PR) and Triangle Counting (TC) are from
the CRONOSuite benchmark suite [6]. PR is a graph algorithm
that ranks a website based on the rank of the websites that link
to it [5] while TC counts the number of triangles in a graph and
is used by graph algorithms such as clustering coefficients [7].
PR and TC have simple A[B[i][j]] access behavior.

Hash Join [8] hashes the keys stored in an array and uses the
hashed values to access another array. Each bucket in the hash
table consists of a linked list. We used two different variations
of this benchmark: (1) Hash Join 2EPB (HJ2) has only one node

per bucket and (2). Hash Join 8EPB (HJ8) has three nodes per
bucket; as such it performs memory accesses for the additional
nodes. Hash Join is a kernel representative of database
applications.

Graph500 [9] (g500) runs a breadth first search (BSF)
algorithm over a graph data structure. It performs indirect
memory accesses while accessing neighbor vertices.
 Histogram (Histo) calculates the distribution of numerical
data and is from the Parboil benchmark suite [10].

IV. RESULTS
This section presents the performance of ATP, software

prefetching (SWPF), and IMP, which is a pure hardware
prefetching mechanism. We measure the performance of ATP,
SWPF, and IMP for single and multi-core architectures. It is
important to note that the results are biased in favor of
SWPF because we presented the best speedup achieved by
SWPF after carefully inserting prefetches and many profiling
runs to obtain the best performing prefetch distances.

A. Single-Core Performance of ATP
Figure 4 shows the speedup of SWPF, IMP, and ATP over

the no-prefetching baseline architecture. The average (geometric
mean) speedup of ATP is 1.60 which outperforms both SWPF
(1.49) and IMP (1.16). For IS, SPWF and ATP both outperform
IMP, while ATP and IMP outperform SPWF for CG. As
described in § 1, the overhead due to SWPF was extremely high
for both IS and CG. This overhead has little effect in IS because
SWPF can hide this overhead by virtue for significantly
reducing the latencies of the indirect memory accesses.

The speedup for each prefetching method is very modest for
CG (in fact, negative for SPWF) because CG is cache friendly
thus limiting the opportunity for prefetching. IMP has almost
same performance in this benchmark while ATP has a slight
improvement. Because CG is so cache friendly, the increased
overhead actually decreases performance of SWPF by -19%.

For PR and TC, SWPF and ATP outperform IMP. More
specifically, for PR, SWPF and ATP have speedups of 1.07 and
1.06, respectively, while IMP has a slightly negative speedup.
For TC, ATP and SWPF have a speedup of 1.75 and 1.62,
respectively, while IMP has a speedup of 1.23. PR and TC's
A[B[i][j]] type of indirect memory accesses which is
challenging for IMP as prefetching for the outer loop (i.e., a
prefetch distance of i+distance) yields more speedup than
prefetching for the inner loop (i.e., j+distance). By contrast,
both SWPF and ATP are able to adjust the prefetch distance to
maximize speedup although the overhead associated with SWPF
degrades its performance.

For HJ2 and HJ8, ATP and SWPF again outperform IMP.
More specifically, for HJ2, ATP and SWPF have speedups of
3.27 and 3.26, respectively, while IMP provides effectively no
speedup. For HJ8, SWPF and ATP have speedups of 1.46 and
1.45, respectively, while IMP again provides effectively no
speedup. IMP provides effectively no speedup over the no-
prefetching baseline because IMP has great difficulty detecting
the A[func(B[i])] type of indirect memory accesses
present in HJ2 and HJ8. The speedups of ATP and SWPF in
HJ2 are higher than those in HJ8 because the latter contains
linked list accesses which reduce the potential speedup due to
prefetching.

For g500, the speedup due to ATP (1%), SWPF (0%), and
IMP (0%) is effectively zero because the marked loop does not
execute continuously for long periods of time. Even though its
speedup is very low, ATP still performs slightly better than
SWPF and IMP in both single-core and multi-core architectures.
For histo, the speedups due to ATP and SWPF are 1.52 and 1.35,
respectively while IMP provides effectively no speedup. The
overhead associated with SWPF degrades its performance as
compared with ATP. histo speedup by IMP increases
significantly for larger prefetch distances, however, larger
distances negatively affect other benchmarks. We have used the
best overall performing distance for IMP, which is 4.

B. Multi-Core Performance of ATP
 Figures 5 and 6 show speedup due to ATP, SWPF, and IMP
on 4-core and 8-core architectures, respectively. Overall, for 4-
core architectures, ATP has the highest average speedup (1.49)
followed by SWPF (1.38) and IMP (1.11). For 8-cores, speedups
for ATP, SWPF, and IMP are 1.31, 1.24, and 1.03, respectively.
Generally, the speedups due to prefetching in 4 and 8-core
architectures are lower than on a single-core architecture due to
increased resource utilization. By way of example, for IS,
because the main loop is not long enough to hide memory
latency, the speedup in IS decreases due to an increased number
of memory accesses and the concomitant increase in latency for
those accesses. On the other hand, for HJ2, although the speedup
for each prefetching method decreases as the number of
increases, the speedup for 8-cores for ATP and SWPF is still
2.36 and 2.34, respectively. Therefore, while resource
contention has some effect on the efficacy of each prefetching
method, ATP and SWPF still provide significant speedup.

C. Efficacy of Adaptive Distance on ATP Speedup
As described above, the Distance Selection Unit allows ATP

to dynamically adjust the prefetch distance for different
applications and configurations. Figure 7 compares the speedup
of ATP when using adaptive prefetch distance versus ATP with
various fixed distances (2, 4, 8, 16, and 32). The results in Figure
7 show that dynamically adjusting the prefetching distance has
an average speedup of 1.59 while the highest performing fixed
distance (distance = 4) yields an average speedup of 1.46.
Therefore, even though periodically testing each distance for a
certain number of iterations to choose the best distance for the
next period may slightly degrade the speedup for some
benchmarks, on average, dynamically adjusting the prefetch
distance yields a higher average speedup.

IS and HJ2 benefit from longer prefetch distances due to the
small number of instructions in its main loop. As such, in order
to be timely, prefetch instructions must be issued further away
in order to be timely.
 By contrast, PR and TC have higher performance when using
shorter prefetch distances as Figure 7 shows. The indirect
memory access behavior in these benchmarks is of the form
A[B[i][j]]. Because the second dimension of array B, i.e.,
j, is very short (16 for PR and 4 for TC for the inputs we used),
ATP calculates prefetch addresses based on the first dimension
instead. This increases the number of total instruction executed
between two consecutive accesses to the first dimension of array
B which favors using shorter distances.

Figure 4: Performance comparison of SWPF, IMP and ATP on single core

Figure 5: Performance comparison of SWPF, IMP and AT on 4-cores.
Baseline is 4-cores with no prefetching.

Figure 6: Performance comparison of SWPF, IMP and AT on 8-cores.
Baseline is 8-cores with no prefetching.

Figure 7: Performance comparison of ATP using different fixed distances

and adaptive distance adjustment.

D. Prefetch Coverage and Accuracy
 A prefetcher needs to be accurate or it will prefetch memory
blocks that are never used, thus polluting its own cache. If a
prefetcher is not timely, it will either not fully hide the memory
latency of the cache miss or, even worse, the prefetched cache
line will be evicted. Table 4 shows the accuracy and timeliness

for different benchmarks using SWPF, IMP, and ATP. Accuracy
is the percentage of prefetched cache lines which are accessed
later. Timeliness is the percentage of cache hits to previously
prefetched cache lines to the total number of accurately
prefetched cache lines.

Table 4. Prefetch accuracy and timeliness
Benchmark. SWPF IMP ATP

Acc. Tim. Acc. Tim. Acc. Tim.
is 100% 100% 100% 76% 100% 94%
cg 100% 94% 79% 39% 95% 83%
pr 100% 8% 88% 86% 100% 98%
tc 100% 6% 100% 100% 100% 98%

hj2 100% 91% 99% 56% 100% 100%
hj8 100% 100% 100% 100% 100% 100%

g500 100% 20% 73% 42% 86% 78%
histo 100% 54% 100% 32% 100% 90%
avg 100% 59% 92% 66% 98% 93%

SWPF has 100% accuracy for all benchmarks because it

handles border checks and guarantees the prefetched cache line
will be accessed. The prefetch accuracy of ATP and IMP are
lower (98% and 92%, respectively). ATP is more accurate than
IMP since the software mechanism specifies and limits the
prefetches, thus reducing the number of useless prefetches.

Even though we chose the best overall distances for SWPF
and IMP, this distance is not best for all the benchmarks well.
As such, the average timeliness for SWPF and IMP is 59% and
66%, respectively. By contrast, because ATP dynamically
adjusts the distance, the overall timeliness of ATP is
significantly higher (93%).

V. RELATED WORK
 Hardware prefetching is a well-known technique that rely on
past memory access patterns to predict future misses. Many
prior hardware prefetching methods exist from stream/stride
prefetchers [11, 12] targeting simple patterns to correlation
prefetchers [13, 14] maintaining large tables for detecting more
complicated access patterns, none of which have been effective
for indirect access patterns. Continuous Runahead Execution
(CRE) [2] proposed a complex mechanism to dynamically
identify address dependence chain of a load that is likely to
create a cache miss. It can accurately prefetch data needed in
near future. However, CRE cannot provide effective prefetching
for indirect accesses because indirect accesses create load miss
chains, which prevent CRE to run sufficiently ahead. Most
relevant to our work is a recent study by Yu [3] which proposed
a hardware mechanism targeting indirect accesses. Although it
can successfully find many regular (A[B[i]]), multi-way
(A[B[i]] and C[B[i]]), and multi-level (A[B[C[i]]]) structures, it
struggles to detect more complex structures and it cannot
perform software specific optimizations (e.g., prefetching for
the future iterations of outer loop instead of inner loop).
 Software prefetching [15-20] provides a way for
programmers to insert prefetching instructions into a program
targeting various simple and complex patterns. Insertion of
instructions can be manual, which requires significant
programmer effort, or automatic, which requires compiler to
recognize the access pattern. Ainsworth [1] developed an
algorithm which automates the insertion of software prefetches
for indirect memory accesses into programs. Although this
approach eliminates the requirement for the programmer effort,

it cannot guarantee to insert the instructions in an optimized way
for the specific architecture. Furthermore, significant instruction
overhead may offset its benefits. On the other hand, software
prefetching can target more complex patterns than hardware
counterparts, especially if hardware budget is limited.

In contrast to prior work, we proposed a hybrid software-
hardware approach using strengths of each for prefetching
indirect memory accesses.

VI. CONCLUSION
 We propose and implement the Array Tracking Prefetcher

to have the benefits of both software and hardware prefetching
for indirect memory accesses. ATP inserts instructions outside
the loop and use them to pass information to the hardware
mechanism. The hardware mechanism uses this information to
determine which indirect memory accesses to prefetch and when
to do so. To increase the prefetch timeliness (and performance),
ATP dynamically adjusts the distance. By using software hints,
ATP avoids using an expensive hardware budget.
 Our results show that ATP yields an average speedup of
1.60X, 1.49X, and 1.31X for single-core, 4-core, and 8-core
architectures, respectively. ATP also outperforms software-
based and hardware-based (IMP) prefetching methods.

ACKNOWLEDGMENT
This work was supported by NSF grant 1422516.

REFERENCES
[1] Ainsworth and Jones, “Software prefetching for indirectmemory

accesses,” in CGO 2017.
[2] Hashemi et al., “Continuous runahead: transparent hardware acceleration

for memory intensive workloads,” in MICRO 2016.
[3] Yu et al., “Imp: Indirect memory prefetcher,” in MICRO 2015.
[4] D. H. Bailey, “Nas parallel benchmarks,” in Encyclopedia of Parallel

Computing. Springer, 2011, pp. 1254–1259.
[5] Page et al., “The pagerank citation ranking: Bringing order to the web.”

Stanford InfoLab, Tech.Rep., 1999.
[6] Ahmad et al., “Crono: A benchmarksuite for multithreaded graph

algorithms executing on futuristic multicores,” in IISWC 2015.
[7] Chiba and Nishizeki, “Arboricity and subgraph listing algorithms,”SIAM

Journal on Computing, vol. 14, no. 1, pp. 210–223,1985.
[8] Balkesen et al., “Main-memory hash joins on multi-core cpus: Tuning to

the underlying hardware,” in ICDE 2013, pp. 362–373.
[9] Murphy et al., “Introducing the graph 500,” Cray Users Group (CUG),

vol. 19, pp. 45–74,2010.
[10] I. R. Group et al., “Parboil benchmark suite,” 2007.
[11] Chen and Baer, “Effective hardware-based data prefetching for high-perf.

processors,” in IEEE Trans. Computers, vol. 44, no. 5, pp. 609–623, 1995.
[12] Vanderwiel and Lilja, “Data prefetch mechanisms,” ACM Computing

Surveys (CSUR), vol. 32, no. 2, pp. 174–199, 2000.
[13] Joseph and Grunwald, “Prefetching using markov predictors,” in ACM

SIGARCH Comp. Arch. News, vol. 25, no. 2. ACM, 1997, pp. 252–263.
[14] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global

history buffer,” Micro, IEEE, vol. 25, no. 1, pp. 90–97, 2005.
[15] Callahan et al., “Software prefetching,”in ACM SIGARCH Computer

Architecture News, vol. 19, no. 2.ACM, 1991, pp. 40–52.
[16] Mowry, “Tolerating latency through software-controlled

dataprefetching,” Ph.D. dissertation, Stanford University, 1994.
[17] Serrano et al., “Value profile guided stride prefetching for irregular code,”

in Compiler Construction. Springer, 2002, pp. 307–324.
[18] Luk and Mowry, “Compiler-based prefetching for recursive data

structures,” in ACM SIGOPS Review, vol. 30, no. 5. 1996, pp. 222–233.
[19] Lipasti et al.,“Spaid: Software prefetching in pointer-and call-intensive

environments,”in MICRO 1995.
[20] Lee et al., “When prefetching works, when it does not, and why,” ACM

Trans. Archit. Code Optim.,vol. 9, no. 1, pp. 2:1–2:29, Mar. 2012.

	I. Background and Introduction
	II. Array Tracking Prefetcher
	A. Software Component
	B. Hardware Component
	C. Prefetch Triggering and Calculation
	D. Distance Selection Unit

	III. Methodology
	A. Simulation Environment
	B. Benchmarks

	IV. Results
	A. Single-Core Performance of ATP
	B. Multi-Core Performance of ATP
	C. Efficacy of Adaptive Distance on ATP Speedup
	D. Prefetch Coverage and Accuracy

	V. Related Work
	VI. Conclusion
	acknowledgment
	References

