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Abstract—Indirect memory accesses have irregular access 

patterns and concomitantly poor spatial locality. To address this 
problem, we propose the Array Tracking Prefetcher which tracks 
array-based indirect memory accesses using a novel combination 
of software and hardware. Our results show that ATP yields 
average speedup of 1.60 over the baseline single-core without 
prefetching. By contrast, the speedup for conventional software 
and hardware-based prefetching, is 1.49 and 1.16, respectively. 
For four-cores, the average speedups for ATP, software, and 
hardware are 1.49, 1.38, and 1.11, respectively. 

I. BACKGROUND AND INTRODUCTION 
The execution of data structures such as sparse matrices and 

graphs frequently result in indirect memory accesses which have 
irregular access patterns and thus poor cache spatial locality. 
These data structures are often implemented as nested arrays, 
e.g., A[B[i]]. A hardware stream prefetcher can easily 
prefetch entries of array B because its entries are sequentially 
accessed. By contrast, because there may be no pattern to the 
values stored in array B, accesses to array A are likely to be 
irregular, which obviates the efficacy of a stream prefetcher 
which depends on accesses having spatial locality. 

Software prefetching can hide the memory latencies of 
indirect memory accesses. See, e.g., [1] (describing a compiler-
based system to generate software prefetches for indirect 
memory accesses). Software prefetching requires additional 
instructions, e.g., the prefetching instructions themselves, 
instructions for address calculation and border checking, etc. 

In addition to instruction overhead, the benefit of software 
prefetching is further limited by dependencies related to prefetch 
address calculation and lack of run-time information needed for 
optimal placing of prefetch instructions. For a set of memory-
bound benchmarks (described in Section III) with indirect 
accesses, we observe that the effect of prefetching distance (i.e., 
how far in advance of the memory access the prefetch 
instruction is issued) on software prefetching speedup is very 
significant. On average, resulting speedups vary from 1.14 
(worst) to 1.49 (best). Finally, it is also important to remember 
that the optimal prefetch distance for a given application may 
change based on running the application on a different 
underlying architecture [1], which further underscores the 
necessity of run-time information to optimally place the prefetch 
instruction.  

Hardware prefetchers, by comparison, do not require 
executing additional instructions in order to compute and issue 
prefetches but, as described above, they can easily prefetch 
sequentially-accessed array entries. But, in order to capture 
irregular access patterns, hardware prefetchers generally require 
very complex mechanisms to be able to capture irregular access 

patterns. See, e.g., Hashemi et al. [2] (describing continuous 
runahead execution). Yu et al. [3] proposed a relatively less 
complex pure hardware mechanism called Indirect Memory 
Prefetcher (IMP) which was designed to capture a few different 
indirect memory access patterns (e.g., A[B[i]] and 
A[B[C[i]]]).  

Code snippets 1-3 below illustrate the limitations of 
hardware prefetching and concomitantly the advantages of 
software prefetching. We use IMP as an exemplary hardware 
prefetcher given its efficacy and relatively low complexity. 
Code Snippet 1 depicts an indirect memory access where the 
index array, i.e. B, is a multidimensional array. This type of code 
appears in benchmarks such as PageRank (PR) and Triangle 
Count (TC).  

A hardware prefetcher like IMP can capture this indirect 
memory access by prefetching A[B[i][j+D]] where D is the 
distance. Even when M (the maximum number of iterations for 
the inner loop) is very small, IMP can still capture this indirect 
memory access and issue prefetches, but it may not be able to 
fully hide the memory latency of these indirect memory accesses 
because the distance between the prefetch instruction and the 
memory access is too small. But, in this case, increasing the 
distance actually results in a performance decrease because 
inner loop is too short. Software prefetchers solve this problem 
by prefetching memory accesses for the next iteration in the 
outer loop, e.g., A[B[i+4][j]]; hardware prefetchers, 
however, have trouble detecting this behavior. 

Code Snippet 1: Two-dimensional array in a nested loop. 
Code snippet 2 depicts an indirect memory access that 

requires additional arithmetic/logical operations to compute the 
memory address. More specifically, the index to array A 
requires both a logical AND and a right-shift. This type of code 
appears in benchmarks such as HashJoin ph2 (hj2). 

Code Snippet 2: Index requires arithmetic/logical computations. 

Code Snippet 3: Code requires simultaneous tracking of multiple indirect 
accesses of varying depth using the same index array. 

for (i = 0; i < N; i++) 

  for (j = 0; j < M; j++) 

   load A[B[i][j]] 

for (i = 0; i < N; i++) 

  load A[(B[i]&0x3f)>>2] 

for (i = 0; i < N; i++) 

  load A[B[C[i]]] 

  load D[C[i]] 



Most hardware prefetchers such as IMP are unable to capture 
these memory accesses because they require more than one 
arithmetic/logical operations; only very expensive hardware 
prefetchers, e.g., continuous runahead execution [2], can 
successfully prefetch this type of indirect memory access but 
only when runahead is sufficiently far and dependency chain can 
be successfully detected. But if this code snippet only required 
one operation, most hardware prefetchers could capture them by 
calculating a virtual base address or virtual element size.  

Finally, when multiple indirect accesses of varying depth 
appear at the same time as in Code snippet 3, it complicates 
hardware tracking. We observe that IMP is not successful to 
capture the full behavior. IMP was able to detect and prefetch 
for B[C[i]] and D[C[i]], but not for A[B[C[i]]]. 
However, IMP is able to track either A[B[C[i]]] or 
D[C[i]], if they do not exist at the same time.  

By contrast, software prefetching can accurately prefetch 
these memory accesses with some programmer effort. But this 
type of memory access has a significant overhead because 
requires performing the arithmetic/logical operations, which 
have a read-after-write dependence between them, for each 
prefetch. Furthermore, due to lack of run-time information, the 
best prefetching distance is hard to predict.  

Because software and hardware prefetchers have different 
strengths and weaknesses, in this paper, we propose a prefetch 
mechanism that attempts to combine the strengths of each. More 
specifically, we propose the Array Tracking Prefetcher (ATP) 
which tracks array-based indirect memory accesses such as 
A[B[i]], A[B[C[i]]], A[B[i][j]], and 
A[func(B[i])] where func() comprises some arithmetic 
and binary operations, and combinations of these individual 
indirect memory access types. To enable the compiler to extract 
indirect access information from a loop, ATP relies on the 
programmer to mark the corresponding loop. And rather than 
using software to insert prefetching instructions, ATP uses 
special instructions to pass hints the hardware mechanism. 
These special instructions only execute outside of the loop, so 
they do not result in significant instruction overhead. Providing 
hints to the hardware mechanism is better than a pure hardware 
mechanism because the hardware mechanism can configure 
itself based on the behavior of the software. This can 
significantly reduce the training time. Furthermore, it enables 
the hardware mechanism to effectively prefetch a wide variety 
of indirect access behaviors as it does not need to detect these 
behaviors itself.  

During execution of the loop, ATP calculates size of the 
array type (i.e., the prefetching stride) and base address of the 
required arrays, e.g., Address of A[0]for a A[B[i]]. After 
calculating the strides and base addresses, ATP starts generating 
prefetch addresses for forthcoming indirect memory addresses 
based on the calculated base address and stride.  

ATP also includes a mechanism to dynamically change the 
prefetch distance in order to adapt to specific run-time behavior 
to achieve better timeliness and performance. ATP selects the 
best distance after a period of cycles and uses the selected 
distance for the next period.  

Across a set of memory-bound benchmarks, for a single-core 
architecture, ATP achieved an average speedup of 1.60X (with 
a maximum of 3.27X) over the no prefetching baseline.  By 
comparison, (manually inserted) software prefetching had an 

average speedup of 1.49X while hardware prefetching (IMP) 
had an average speedup of 1.16X. For a 4-core architecture, ATP 
had an average speedup of 1.49X (up to 3.04X) while software 
prefetching and IMP had average speedups of 1.38X and 1.11X, 
respectively.  

II. ARRAY TRACKING PREFETCHER 
ATP consists of a software and a hardware component. The 

software component is responsible to detect indirect access 
related information within a loop and pass it to hardware. The 
hardware component uses this information to initialize the ATP, 
which will in turn compute indirect prefetch addresses and issue 
prefetch requests at run-time. 

A. Software Component 
The software component of the ATP extracts information 

related to indirect memory accesses within a loop. This loop can 
either be marked by the programmer as shown in the Code 
snippet 4 or can be automatically identified using a compiler 
pass similar to the approach in [1]. The extracted indirect-access 
information is provided to the hardware through special 
instructions (e.g., see Code snippet 6), called Array Tracking 
Instructions (ATIs). 

Code Snippet 4: Marking the loop for indirect prefetching 

Code Snippet 5: Instructions inside the marked loop. 

Code Snippet 6: ATIs generated from graph in Figure 3 

Figure 1: Dependency graph generated from the Code Snippet 5. 

 Array Tracking Instructions (ATIs): Each ATI is packed 
into a single Array Tracking Execute (ATE) instruction, which 
can be recognized in the processor pipeline. When a core 
identifies an ATE instruction, the core removes it from the 
pipeline and forwards it to the ATP. It is important to note that 
the number of executed ATE instructions is insignificant since 
they appear only once per the main loop where indirect access 
traversals occur. There are four types of ATIs: 1) ATCL (or ATE 
x3) clears all ATP tables. It does not have any operands. 2) 
ATAR (or ATE x0) inserts entries into ATP’s Array Table (AT). 

#at_indacc_loop 

for (i = 0; i < N; i++) 

   sum += A[B[i]]; 

4005a0:  movslq (%rax), %rcx 

4005a3:  add $0x4, %rax 

4005a7:  add (%rsp, %rcx, 4), %edx 

4005aa:  cmp %rsi, %rax 

4005ad:  jne 4005a0 

atar $0x4005a0 

atar $0x4005a7 

atrl $0x4005a0, $0x4005a7, 0 



It has a single operand: the address1 (PC) of the load instruction 
that accesses the base2 or the target array involved in indirect 
accesses. 3) ATRL (or ATE x1) inserts relation (e.g, between 
target array A and base array B in an A[B[i]] structure) 
information to the ATP’s Indirect Relation Table (IRT). It has 
three operands: the first two are the PCs (offsets) of the load 
instructions accessing the base and target arrays, respectively. 
The third operand (1-bit) specifies the type of the relation. 0 
(zero) is used for regular A[B[i]] type accesses and 1 is used 
when the index array is a 2D array, such as B in A[B[i][j]]. 
Finally, 4) ATOP (or ATE x2) is used for complex structures 
when the indexes to the target array is computed by a function 
that uses the base array as an argument (e.g., 
A[func(B[i])]). ATOP inserts these operations to ATP’s 
Operation Table (OT). ATOP has two operands. The first 
operand is the operation type (e.g, NOT, ADD, etc.). The second 
operand specifies the data for the operation. If there are more 
than one operation, more than one ATOP instruction are created. 
For example, A[(B[i]-1)&0xF], requires two consecutive 
ATOP instructions. The first ATOP instruction always follows an 
ATRL. The first ATOP instruction’s first operand is implicitly 
specified as the base array value (e.g., B[i]). The second ATOP 
uses the result of first ATOP as its first operand.  

ATE instructions are 6-bytes long: Two bytes are reserved 
for the opcode, 2-bits specifies type of the ATI instruction, and 
the remainder are for the operands as discussed above.  

 Generating ATIs: Generation of ATIs consists of two 
stages. First, a dependency graph of the instructions inside the 
marked loop (in Code Snippet 5) is generated as shown in Figure 
1 and then ATIs are generated based on this graph. Once the 
dependency graph is generated, a software pass visits all nodes 
to generate ATIs. For all nodes which belong to a load 
instruction, an ATAR instruction is generated. Then, ATRL 
instructions (and ATOP instructions if required) are generated 
based on the connections of the nodes. Code snippet 6 shows the 
ATIs generated from the graph in Figure 1. These instructions 
are placed above the entry point of the loop. Additionally, an 

 
 Figure 2: An overview of ATP 

                                                           
1 16-bit offset from ATAR’s own address (PC) is sufficient. 

ATCL instruction will be inserted to the start of the loop 
(preceding other ATIs) to clear the ATP tables before the 
execution of the loop has completed. 

B. Hardware Component 
An overview of ATP hardware mechanism is shown in 

Figure 2. ATP consists of an ATI queue (ATQ), an Access 
Tracker Unit (ATU), a Base Calculator (BC), a Prefetch 
Calculator (PFC), and a Distance Selector (DS).  

After an ATE instruction has been identified in the processor 
pipeline, it is forwarded to the ATP hardware. A sub-opcode 
field identifies individual ATI instructions. Each ATI instruction 
is inserted into the ATQ, which is a FIFO queue with head and 
tail pointers. ATQ is simply the interface between the processor 
pipeline and the ATP hardware. ATP processes ATI instructions 
in-order from the ATQ. 

ATU and Processing of ATI instructions: Each valid ATI 
in the ATQ is processed in-order from ATQ’s head to tail. In 
general, ATIs are used to initialize/program the ATU tables. 
ATU consists of three important tables, the Array Table (AT), 
the Indirect Relation Table (IRT) and the Operation Table (OT).  

An ATCL instruction resets all ATU tables, namely valid bits 
are set to zero in AT, IRT and OT tables. We explain how ATI 
instructions initialize or program ATU tables using the example 
in Figure 3, which shows the final status of AT, IRT and OT 
tables after they are initialized for A[(B[i]&0x7F)*7] 
structure. The indirect access structure in this example generates 
two ATAR instructions, one for array A and one for array B. The 
ATAR instructions updates the AT table. Each ATAR instruction 
reserves the next available entry in the AT. It specifies a load PC 
that is involved in reading an array element (and involved in 
indirect access). The fields in the AT is shown in Figure 3. 
Initially, trigger-bit and depth field of the AT is 1. Trigger type, 
indirect map, and root fields are all initially 0s.  
 For the example in Figure 3, following the two ATAR 
instructions is an ATRL instruction specifying the relation 
between arrays A and B. Each of the PCs specified by ATRL 
have already been placed in the AT due to prior ATAR 
instructions. When an ATRL instruction is executed, it allocates 
an entry in the IRT, locates the index array’s PC (B) in the AT 
and updates the indirect map field of the AT entry with the index 
of the IRT entry it allocated. Then, it locates the target array PC 
(A) in the AT and saves its index in the destination field in the 
IRT entry. Indirect map field of the AT is a bitmap (each bit 
refers to an index of IRT entry) specifying if an IRT entry in 
relation to the array in the current AT entry exists. 00 means no 
relation exists and thus array in that AT entry is not used as an 
index for any target array. In Figure 3, AT’s entry 1 for array B 
has a non-zero indirect map, 10, suggesting the 0th entry in the 
IRT table provides in its destination field a pointer to the target 
array (in the AT) for which array B used as index for.  If all 
indirect maps are 0, ATP acts as a stream prefetcher. This will 
happen when no ATRL instruction is observed for ATAR 
instructions. 

Level of an indirect access depends on the number of indirect 
accesses made in a chain starting with the access to the index 
array. AT has a field, depth, monitoring this level. ATRL updates 
the depth field of the base array (B) by checking if it is less than 

2 We use base and index array interchangeably to mean the same thing. 



the depth of the target array, A. If so, it sets the depth of array B 
to be one more than its target array (in this example, 2). The 
index array has the highest depth and a target array which is not 
an index to another target array has the lowest depth, 1. Depth is 
used for prefetch address calculation as described in Section 
II.C.  

Finally, ATRL is followed by ATOP instructions since base 
array is not directly used as index for the target array. The first 
ATOP is an AND with data 0x7f and the second ATOP is a 
MUL with 7 as its data. ATOP instructions can only follow an 
ATRL or another ATOP instruction. ATOP sets to 1 the op bit 
of the IRT entry it corresponds to denoting that base array must 
undergo an operation before used as index for target array. Op 
idx field specify the index of the OT that corresponds to the 
operation specified by ATOP. If ATOP is followed by another 
ATOP, the next bit field of the last ATOP is set to 1. 
 Once the last ATOP have been processed, ATU has 
completed initialization and ATP is ready to move to the size 
and base calculation stage. It is important to note that with 
sequence of ATIs, ATU can keep track of multiple indirect array 
access structures with various levels of complexity, 
simultaneously, which is a significant improvement compared 
to the state-of-the-art indirect hardware prefetcher, IMP. 

Size and Base Calculator Unit (SBCU): Before 
prefetching can start for indirect accesses, the stride of the 
trigger arrays and, the element sizes and base addresses of the 
target arrays must be known. ATP employs a single mechanism 
to compute sizes and base addresses.  

 Size Calculation: For each committed load instruction, if 
its PC is found in the AT table, and if the size bit is 0, SBCU 
starts the process for size computation. First, the stride between 
two accesses of the trigger array is computed. SBCU unit uses a 
stream register to keep track of trigger array accesses. A stream 
register consists of a valid bit, an index to the AT (holding the 
trigger array), last address, stride and confidence fields. If the 
observed stride (difference between addresses of two 
consecutive accesses) repeats, confidence counter is 
incremented. If confidence reaches a certain threshold, the 
detected stride is saved in the AT entry corresponding to the 
trigger array and its size bit is set. The stream register is then 
released to be used by other trigger arrays.  
 The size calculation for a non-trigger array uses a different 
method. If the size bit is not set for a non-trigger array in the AT, 
SBCU employs a size calculation register (SCR) for that AT 
entry, which monitors the values read by index arrays and the 
resulting addresses of the non-trigger array. SCR consists of a 
valid bit, two AT index fields, two address fields, two computed 

index (idx) fields, confidence and size fields. SCR holds the AT 
index or indexes that hold the index array/s for the target array 
(the non-trigger array). For each committed load, if the index 
arrays were accessed, the values read from these arrays are 
recorded in the computed index field (idx) of the SCR and if the 
OT has any entry for that index array, the operation/s are 
performed on these values to compute the final index (idx1) 
for the target array and computed index field of SCR is updated. 
When an access to the non-trigger array is observed (after access 
to its index array), its address (addr1) is recorded in the SCR. 
Once SCR observes two addresses (addr1 and addr2) and 
two indexes (idx1 and idx2), the size of non-trigger array is 
computed using Equation 1. The size computation is repeated 
multiple times until a certain confidence threshold is reached. 
After size is computed, its recorded in the AT entry 
corresponding to the non-trigger array, and SCR is released. 

   𝑆𝑖𝑧𝑒(𝐴) =  𝐴𝑑𝑑𝑟(𝐴[𝐵[𝑖+1])−𝐴𝑑𝑑𝑟(𝐴[𝐵[𝑖]])
𝐵[𝑖+1]−𝐵[𝑖]

   (1) 

Base Address Calculation: Finally, before indirect 
prefetching can be performed for target arrays, their base 
addresses must be computed. SBCU assigns a base address 
calculation register (BACR) to a non-trigger type entry of a 
destination array if the base address of it is not yet calculated but 
the size of it is already known. The value of the idx field in 
BACR is set to the index of the AT entry which it is assigned 
for. Like the SCR, BACR also has a field for the indirect map 
which shows the entries of source (index) arrays in the AT.  

 After BACR is assigned to an entry in the AT, SBCU 
monitors the accesses requested for any of the source arrays by 
checking its indirect map field. When SBCU is notified by an 
access of a source array, it stores the value of the accessed data 
in BACR after performing the required operations in the OT if 
any operation exists between the source array and the destination 
array (value).  
 Once an access to the destination array (addr) is seen by 
SBCU, it calculates the base address based on Equation 2 (here 
B[i] is the value and Addr(A[B[i]]) is the addr). If 
the same base address is computed multiple times to satisfy a 
confidence threshold, SBCU sets the base address field of the 
corresponding entry in the AT and releases the BACR. 
   𝐴𝑑𝑑𝑟(𝐴>𝐵>𝑖@@) = B𝑎𝑠𝑒𝐴𝑑𝑑𝑟(𝐴) + (𝐵>𝑖@ u 𝑆𝑖𝑧𝑒(𝐴))  (2) 

C. Prefetch Triggering and Calculation 
As shown in Figure 2, ATP employs a Prefetch Calculation 

Unit (PCU) to calculate prefetch addresses when triggered. 
Whenever ATU observes a trigger access, it notifies PCU with 

Array Table (AT) 

 

 

 
  Indirect Relation Table (IRT)   Operation Table (OT)            ATI instructions 

 
Figure 3: Array Table, Indirect Relation Table, and Operation Table are initialized for a A[(B[i]&0x7F)*7] structure where A is an array of 8-byte 
double values and B is an array of 4-byte integer values. 

atar PC_A 
atar PC_B 
atrl PC_A, PC_B, 0 
atop fAND, 0x7f 
atop fMUL, 0x7 



the index of corresponding AT entry to begin prefetch 
calculation process. Prefetch calculation in ATP is performed in 
two steps: 1) prefetch initialization and 2) prefetch address 
calculation and issuing of prefetches.  

Due to space limitation, in this section, we only explain the 
PCU operation for a 3-level indirect access structure 
A[B[C[i]]]. As ATU signals PCU for prefetching operation 
on an access to the trigger array C, PCU triggers initialization 
phase and first allocates an entry for C in the Prefetch 
Calculation Buffer (PCB). PCB is a temporary buffer that keeps 
detailed information about the entries of potential prefetches and 
it is cleared after all computed prefetches are issued. Since C is 
the trigger array, by following the indirect map fields in the AT, 
its target array B and then A are also inserted into the PCB and 
they are linked to their sources in the PCB entries. 

After the initialization is done, PCU starts calculation of 
prefetch addresses for each entry. To calculate the prefetch 
address for any non-trigger array, PCU needs to read a value 
from the source array. In an A[B[C[i]]] structure, assuming 
we want to calculate a prefetch address for 
A[B[C[i+distance]]] triggered by an access to C[i], we 
need to read the value of C[i+distance] and then 
B[C[i+distance]] to be able to calculate the prefetch 
address for A[B[C[i+distance]]]. To be able to find 
these values in the cache when needed, they need to be 
prefetched ahead (the source values). So for an A[B[C[i]]] 
structure, PCU follows the following steps for address 
calculation and to perform prefetching: 
1. Compute the prefetch address for C[i+3*distance] (depth of C is 

3 in this structure) using Equation 3 and issue the prefetch. 
2. Calculate the prefetch address for B[C[i+2*distance]] (depth of 
B is 2 in this structure): 

a. Compute the address for C[i+2*distance] using Equation 
3 and read its value from the L1 cache. 

b. Compute the prefetch address for B[C[i+2*distance]] 
using Equation 2 and issue the prefetch. 

3. Calculate the prefetch address for A[B[C[i+1*distance]]] 
(depth of A is 1 in this structure): 

a. Compute the address for C[i+1*distance] using Equation 
3 and read its value from the L1 cache. 

b. Compute the address for B[C[i+1*distance]] using 
Equation 2 and read its value from the L1 cache. 

c. Compute the prefetch address for 
A[B[C[i+1*distance]]] using Equation 2 and issue the 
prefetch. 

 
𝑃𝑓𝐴𝑑𝑑𝑟 = 𝐶𝑢𝑟𝑟𝐴𝑑𝑑𝑟 + (𝑆𝑖𝑧𝑒 ×  𝐷𝑒𝑝𝑡ℎ ×  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)   (3) 

 Prefetch address calculation depends on reading source 
array values from the L1 cache. We assume ATP has dedicated 
ports to access the data TLB and the L1 cache. If in any of the 
steps above, the source values cannot be read due to a data TLB 
or an L1 cache miss, the process of prefetch calculation and 
issuing is aborted until another access to the trigger array occur 
and PCU is notified for initialization. The distance value is read 
from the Distance Selection Unit (DSU) as explained in Section 
II.D. An access to a trigger array initiates as many prefetches as 
there are levels in the indirect structure unless the prefetch 
address computation fails due to cache misses. The computed 
prefetch addresses are placed into an 8-entry prefetch request 
queue (PRQ) before they are issued to the L1 cache.  

 PCU operation (both initialization and prefetch calculation) 
is similar to the above for A[func(B[i])] structure but 
different for a A[B[i][j]] structure, where trigger is a 2D 
array. Initialization for A[B[i][j]] is involved with the root 
address fields of the target arrays in the AT and prefetch 
addresses are computed using Equation 4. Due to space 
limitations, the details are not presented. 

𝑃𝑓𝑅𝑜𝑜𝑡𝐴𝑑𝑑𝑟 = 𝑅𝑜𝑜𝑡𝐴𝑑𝑑𝑟 + (𝑆𝑖𝑧𝑒 ×  𝐷𝑒𝑝𝑡ℎ ×  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

𝑃𝑓𝐴𝑑𝑑𝑟 = 𝑀𝑒𝑚[𝑃𝑓𝑅𝑜𝑜𝑡𝐴𝑑𝑑𝑟] + (𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑀𝑒𝑚[𝑅𝑜𝑜𝑡𝐴𝑑𝑑𝑟]) (�) 

D. Distance Selection Unit 
Distance Selection Unit (DSU) enables ATP to adjust the 

prefetch distance (in terms of how many array elements ahead) 
dynamically to be timely accurate on different applications and 
configurations.  

Each power of 2 prefetch distance from 1 to 16 is competed 
during a test period and at the end of this period, the distance 
that takes the smallest number of cycles to complete the same 
number of loop iterations is picked as the distance for the acting 
period that comes after the testing period. The acting period is a 
fixed 50 times larger than the testing period. After acting period 
another testing period follows. In testing period, each prefetch 
distance is run for a fixed number of loop iterations (64 in our 
experiments of which the first 32 are used for warm-up and next 
32 are used for performance measurement) in a round robin 
fashion and the number of cycles is counted. DSU employs two 
32-bit cycle counters. min_count holds the smallest cycle 
count and run_count holds the cycle count for the currently 
tested distance. After each distance has completed its test, if 
run_count < min_count, min_count is set to 
run_count and a 3-bit best_dist register is updated. After 
all distances are tested, best_dist indexes a table of 2-bit 
confidence counters and increments the count for that distance. 
DSU repeats this process until any of the distance’s confidence 
reaches to a threshold which is 2 in our implementation. Using 
a threshold less then 2 decreases the performance of some 
applications due to aggressive decisions. Using a threshold 
above 2 proved useless and increases the duration of the testing 
phase which also decreases the performance. Once the decision 
is made, the chosen distance is set to be used in the acting period 
and the testing period cycle counters are set to 0.  
 In multi-core architectures, distance selection is performed 
separately on each core. We observe that best distances vary for 
each core running a multi-threaded application due to the 
sharing of last-level cache and memory bandwidth. 

III. METHODOLOGY 

A. Simulation Environment 
 We implemented ATP on the gem5 using System 

Emulation mode and generated the results using the x86 out-of-
order CPU model. Table 1 shows the configuration of each core 
while Table 2 shows the ATP configuration. We inserted ATI 
instructions at the beginning of the loop and implemented ATP 
to prefetch for the L1 cache in order to provide for a direct 
comparison with IMP [3], which prefetches for the L1 cache. 
Each L1 is equipped with an 8-enty prefetch request queue in 
our evaluation. 



Table 1: Simulator Configurations 
ISA 64-bit x86 
Architecture 4-Issue, out-order, 2GHz 
LQ/SQ Entries 64/36 
ROB Entries 168 
Br. Pred. Tournament BP 
L1 Cache Private, 8-way 32KB, mshrs: 4, latency: 4 
L2 Cache Private, 8-way 256KB, mshrs: 16, latency: 12 
L3 Cache Shared, 16-way, 1MB per core, mshrs: 16, latency: 32 
Memory 8GB DRAM 

 
We faithfully implemented IMP (attached to each L1 cache) 

on our baseline architecture. Similar as in [3], our IMP 
implementation used a 16-entry Prefetch Table and a 4-entry 
Indirect Pattern Detector with 4-base address length and 4 shift 
values. Total hardware budget for the IMP implementation was 
8032 bits (1004 bytes) per core, almost four times the size of 
our proposed ATP (see Table 2). To evaluate the performance 
of software prefetching, we inserted software prefetching 
instructions inside the loops containing the indirect memory 
accesses. For both IMP and software prefetching, we measured 
the speedup for various prefetch distances but only report the 
results for the best performing distance. 

For each benchmark, we fast-forward to the beginning of the 
loop containing indirect memory accesses and the simulate 
100M instructions; for multi-core simulations, each core 
simulates at least 100M instructions.  
 We use the number of cycles per loop-iteration as the 
performance metric as it eliminates additional overhead due to 
software prefetching. As such, it provides an apples-to-apples 
comparison between hardware and software prefetching. 
 

Table 2: Hardware budget of ATP on single-core architecture. 
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Entries 4 4 4 2 4 1 1 1 - 
Entry size 

(bits) 80 268 6 39 69 101 172 105 118 

Total Size: 2266 bits (~284 bytes) 

B. Benchmarks 
 We used seven benchmarks to evaluate the performance of 

ATP. Each benchmark contains indirect memory accesses inside 
their performance critical loop.  

Integer Sort (IS)  and Conjugate Gradient (CG) are from the 
NAS Parallel Benchmarks suite [4]. IS represents computational 
fluid dynamics programs and uses a bucket sort algorithm to sort 
integer values while CG represents unstructured grid 
computations and use eigenvalue estimation on sparse matrices. 
IS and CG have simple A[B[i]] access behavior.  

Both Pagerank (PR) and Triangle Counting (TC) are from 
the CRONOSuite benchmark suite [6]. PR is a graph algorithm 
that ranks a website based on the rank of the websites that link 
to it [5] while TC counts the number of triangles in a graph and 
is used by graph algorithms such as clustering coefficients [7]. 
PR and TC have simple A[B[i][j]] access behavior.  

Hash Join [8] hashes the keys stored in an array and uses the 
hashed values to access another array. Each bucket in the hash 
table consists of a linked list. We used two different variations 
of this benchmark: (1) Hash Join 2EPB (HJ2) has only one node 

per bucket and (2). Hash Join 8EPB (HJ8) has three nodes per 
bucket; as such it performs memory accesses for the additional 
nodes. Hash Join is a kernel representative of database 
applications.  

Graph500 [9] (g500) runs a breadth first search (BSF) 
algorithm over a graph data structure. It performs indirect 
memory accesses while accessing neighbor vertices.  
 Histogram (Histo) calculates the distribution of numerical 
data and is from the Parboil benchmark suite [10]. 

IV. RESULTS 
This section presents the performance of ATP, software 

prefetching (SWPF), and IMP, which is a pure hardware 
prefetching mechanism. We measure the performance of ATP, 
SWPF, and IMP for single and multi-core architectures. It is 
important to note that the results are biased in favor of 
SWPF because we presented the best speedup achieved by 
SWPF after carefully inserting prefetches and many profiling 
runs to obtain the best performing prefetch distances.  

A. Single-Core Performance of ATP 
Figure 4 shows the speedup of SWPF, IMP, and ATP over 

the no-prefetching baseline architecture. The average (geometric 
mean) speedup of ATP is 1.60 which outperforms both SWPF 
(1.49) and IMP (1.16). For IS, SPWF and ATP both outperform 
IMP, while ATP and IMP outperform SPWF for CG. As 
described in § 1, the overhead due to SWPF was extremely high 
for both IS and CG. This overhead has little effect in IS because 
SWPF can hide this overhead by virtue for significantly 
reducing the latencies of the indirect memory accesses.  

The speedup for each prefetching method is very modest for 
CG (in fact, negative for SPWF) because CG is cache friendly 
thus limiting the opportunity for prefetching. IMP has almost 
same performance in this benchmark while ATP has a slight 
improvement. Because CG is so cache friendly, the increased 
overhead actually decreases performance of SWPF by -19%. 

For PR and TC, SWPF and ATP outperform IMP.  More 
specifically, for PR, SWPF and ATP have speedups of 1.07 and 
1.06, respectively, while IMP has a slightly negative speedup. 
For TC, ATP and SWPF have a speedup of 1.75 and 1.62, 
respectively, while IMP has a speedup of 1.23. PR and TC's 
A[B[i][j]] type of indirect memory accesses which is 
challenging for IMP as prefetching for the outer loop (i.e., a 
prefetch distance of i+distance) yields more speedup than 
prefetching for the inner loop (i.e., j+distance). By contrast, 
both SWPF and ATP are able to adjust the prefetch distance to 
maximize speedup although the overhead associated with SWPF 
degrades its performance.  

For HJ2 and HJ8, ATP and SWPF again outperform IMP. 
More specifically, for HJ2, ATP and SWPF have speedups of 
3.27 and 3.26, respectively, while IMP provides effectively no 
speedup.  For HJ8, SWPF and ATP have speedups of 1.46 and 
1.45, respectively, while IMP again provides effectively no 
speedup. IMP provides effectively no speedup over the no-
prefetching baseline because IMP has great difficulty detecting 
the A[func(B[i])] type of indirect memory accesses 
present in HJ2 and HJ8. The speedups of ATP and SWPF in 
HJ2 are higher than those in HJ8 because the latter contains 
linked list accesses which reduce the potential speedup due to 
prefetching.  



For g500, the speedup due to ATP (1%), SWPF (0%), and 
IMP (0%) is effectively zero because the marked loop does not 
execute continuously for long periods of time. Even though its 
speedup is very low, ATP still performs slightly better than 
SWPF and IMP in both single-core and multi-core architectures. 
For histo, the speedups due to ATP and SWPF are 1.52 and 1.35, 
respectively while IMP provides effectively no speedup. The 
overhead associated with SWPF degrades its performance as 
compared with ATP. histo speedup by IMP increases 
significantly for larger prefetch distances, however, larger 
distances negatively affect other benchmarks. We have used the 
best overall performing distance for IMP, which is 4. 

B. Multi-Core Performance of ATP 
 Figures 5 and 6 show speedup due to ATP, SWPF, and IMP 
on 4-core and 8-core architectures, respectively. Overall, for 4-
core architectures, ATP has the highest average speedup (1.49) 
followed by SWPF (1.38) and IMP (1.11). For 8-cores, speedups 
for ATP, SWPF, and IMP are 1.31, 1.24, and 1.03, respectively. 
Generally, the speedups due to prefetching in 4 and 8-core 
architectures are lower than on a single-core architecture due to 
increased resource utilization. By way of example, for IS, 
because the main loop is not long enough to hide memory 
latency, the speedup in IS decreases due to an increased number 
of memory accesses and the concomitant increase in latency for 
those accesses. On the other hand, for HJ2, although the speedup 
for each prefetching method decreases as the number of 
increases, the speedup for 8-cores for ATP and SWPF is still 
2.36 and 2.34, respectively. Therefore, while resource 
contention has some effect on the efficacy of each prefetching 
method, ATP and SWPF still provide significant speedup. 

C. Efficacy of Adaptive Distance on ATP Speedup 
As described above, the Distance Selection Unit allows ATP 

to dynamically adjust the prefetch distance for different 
applications and configurations. Figure 7 compares the speedup 
of ATP when using adaptive prefetch distance versus ATP with 
various fixed distances (2, 4, 8, 16, and 32). The results in Figure 
7 show that dynamically adjusting the prefetching distance has 
an average speedup of 1.59 while the highest performing fixed 
distance (distance = 4) yields an average speedup of 1.46. 
Therefore, even though periodically testing each distance for a 
certain number of iterations to choose the best distance for the 
next period may slightly degrade the speedup for some 
benchmarks, on average, dynamically adjusting the prefetch 
distance yields a higher average speedup.  

IS and HJ2 benefit from longer prefetch distances due to the 
small number of instructions in its main loop. As such, in order 
to be timely, prefetch instructions must be issued further away 
in order to be timely.  
 By contrast, PR and TC have higher performance when using 
shorter prefetch distances as Figure 7 shows. The indirect 
memory access behavior in these benchmarks is of the form 
A[B[i][j]]. Because the second dimension of array B, i.e., 
j, is very short (16 for PR and 4 for TC for the inputs we used), 
ATP calculates prefetch addresses based on the first dimension 
instead. This increases the number of total instruction executed 
between two consecutive accesses to the first dimension of array 
B which favors using shorter distances. 

Figure 4: Performance comparison of SWPF, IMP and ATP on single core 

Figure 5: Performance comparison of SWPF, IMP and AT on 4-cores. 
Baseline is 4-cores with no prefetching. 

Figure 6: Performance comparison of SWPF, IMP and AT on 8-cores. 
Baseline is 8-cores with no prefetching. 

 
Figure 7: Performance comparison of ATP using different fixed distances 

and adaptive distance adjustment. 

D. Prefetch Coverage and Accuracy 
 A prefetcher needs to be accurate or it will prefetch memory 
blocks that are never used, thus polluting its own cache. If a 
prefetcher is not timely, it will either not fully hide the memory 
latency of the cache miss or, even worse, the prefetched cache 
line will be evicted. Table 4 shows the accuracy and timeliness 



for different benchmarks using SWPF, IMP, and ATP. Accuracy 
is the percentage of prefetched cache lines which are accessed 
later. Timeliness is the percentage of cache hits to previously 
prefetched cache lines to the total number of accurately 
prefetched cache lines. 

Table 4. Prefetch accuracy and timeliness 
Benchmark. SWPF IMP ATP 

Acc. Tim. Acc. Tim. Acc. Tim. 
is 100% 100% 100% 76% 100% 94% 
cg 100% 94% 79% 39% 95% 83% 
pr 100% 8% 88% 86% 100% 98% 
tc 100% 6% 100% 100% 100% 98% 

hj2 100% 91% 99% 56% 100% 100% 
hj8 100% 100% 100% 100% 100% 100% 

g500 100% 20% 73% 42% 86% 78% 
histo 100% 54% 100% 32% 100% 90% 
avg 100% 59% 92% 66% 98% 93% 

  
SWPF has 100% accuracy for all benchmarks because it 

handles border checks and guarantees the prefetched cache line 
will be accessed. The prefetch accuracy of ATP and IMP are 
lower (98% and 92%, respectively). ATP is more accurate than 
IMP since the software mechanism specifies and limits the 
prefetches, thus reducing the number of useless prefetches.  

Even though we chose the best overall distances for SWPF 
and IMP, this distance is not best for all the benchmarks well. 
As such, the average timeliness for SWPF and IMP is 59% and 
66%, respectively. By contrast, because ATP dynamically 
adjusts the distance, the overall timeliness of ATP is 
significantly higher (93%). 

V. RELATED WORK 
 Hardware prefetching is a well-known technique that rely on 
past memory access patterns to predict future misses. Many 
prior hardware prefetching methods exist from stream/stride 
prefetchers [11, 12] targeting simple patterns to correlation 
prefetchers [13, 14] maintaining large tables for detecting more 
complicated access patterns, none of which have been effective 
for indirect access patterns. Continuous Runahead Execution 
(CRE) [2] proposed a complex mechanism to dynamically 
identify address dependence chain of a load that is likely to 
create a cache miss. It can accurately prefetch data needed in 
near future. However, CRE cannot provide effective prefetching 
for indirect accesses because indirect accesses create load miss 
chains, which prevent CRE to run sufficiently ahead. Most 
relevant to our work is a recent study by Yu [3] which proposed 
a hardware mechanism targeting indirect accesses. Although it 
can successfully find many regular (A[B[i]]), multi-way 
(A[B[i]] and C[B[i]]), and multi-level (A[B[C[i]]]) structures, it 
struggles to detect more complex structures and it cannot 
perform software specific optimizations (e.g., prefetching for 
the future iterations of outer loop instead of inner loop).  
 Software prefetching [15-20] provides a way for 
programmers to insert prefetching instructions into a program 
targeting various simple and complex patterns. Insertion of 
instructions can be manual, which requires significant 
programmer effort, or automatic, which requires compiler to 
recognize the access pattern. Ainsworth [1] developed an 
algorithm which automates the insertion of software prefetches 
for indirect memory accesses into programs. Although this 
approach eliminates the requirement for the programmer effort, 

it cannot guarantee to insert the instructions in an optimized way 
for the specific architecture. Furthermore, significant instruction 
overhead may offset its benefits. On the other hand, software 
prefetching can target more complex patterns than hardware 
counterparts, especially if hardware budget is limited.  

In contrast to prior work, we proposed a hybrid software-
hardware approach using strengths of each for prefetching 
indirect memory accesses. 

VI. CONCLUSION 
 We propose and implement the Array Tracking Prefetcher 

to have the benefits of both software and hardware prefetching 
for indirect memory accesses. ATP inserts instructions outside 
the loop and use them to pass information to the hardware 
mechanism. The hardware mechanism uses this information to 
determine which indirect memory accesses to prefetch and when 
to do so. To increase the prefetch timeliness (and performance), 
ATP dynamically adjusts the distance. By using software hints, 
ATP avoids using an expensive hardware budget.  
 Our results show that ATP yields an average speedup of 
1.60X, 1.49X, and 1.31X for single-core, 4-core, and 8-core 
architectures, respectively. ATP also outperforms software-
based and hardware-based (IMP) prefetching methods. 
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