
Exploring the Memory Access Regularity in Pointer-
Intensive Application Programs 

Keqiang Wu, Resit Sendag, and David Lilja 

Department of Electrical and Computer Engineering, University of Minnesota 
200 Union Street S.E., Minneapolis, MN 55455, USA 

{kqwu, rsgt, lilja}@ece.umn.edu 

Abstract. Pointer-intensive and sparse numerical computations typically 
display irregular memory access behavior.  This work presents a mathematical 
model, called the Self-tuning Adaptive Predictor (SAP), to characterize the 
behavior of load instructions in procedures with pointer-based data structures 
by using procedure call boundaries as the fundamental sampling frequency.  
This model incorporates information about the history of specific load 
instructions (temporal locality) and their neighboring loads (spatial locality) 
using a least-squares minimization approach.  Simulation results on twelve of 
the most time-consuming procedures with pointer-based data structures from 
five of the SPEC2000 integer benchmark programs show that these pointer-
based data structures surprisingly demonstrate regular memory access patterns 
and the prediction error at steady-state is within [-6%, +6%] on average. 

1 Introduction 

An important characteristic of Pointer-Based Data Structures (PDS) is that they are 
dynamically allocated and managed with heap allocation.  Heap allocation parcels 
out blocks of contiguous memory as requested by the program at run-time.  Memory 
blocks are deallocated explicitly or via process termination in any order.  For 
example, elements in a linked data structure contain explicit fields that name all 
adjacent elements by address.  This mode of connectivity allows the easy 
construction and manipulation of data structures of arbitrary shape, such as trees and 
graphs.  Dynamic construction allows PDS to grow arbitrarily large.  However, this 
flexibility makes it challenging to characterize the memory access behavior of these 
structures.  Their behavior was traditionally classified as irregular or arbitrary [1-2].  

The intuitive way for prediction is to track the memory allocation/deallocation 
behavior by analyzing the program execution path.  The cache miss behavior for two 
specified data structures, i.e. linked list and binary tree, was analyzed by tracking the 
memory allocation/deallocation sequence in synthetic programs [3].  However, in 
large and real programs, interactions and branch patterns are difficult to predict.  
These add complexity in extending their analysis.   

In this paper, we avoid the detailed analysis on program execution path and use a 
mathematical model to extract the path pattern based on the observed paths.  The 
primary contributions of this paper are: 
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1. The regularity of memory access patterns for procedures with pointer-based data 
structures is observed using procedure call boundaries as the sampling unit. 

2. A mathematical model, Self-tuning Adaptive Predictor (SAP), is proposed that 
correlates both temporal and spatial locality with the program counter (PC), and 
optimizes predictions of future memory addresses referenced by the program using 
a least-squares minimization technique [4]. 

2 Model Formulation 

Consider a general example of the procedure call sequence in Figure 1.  The memory 
access behavior of main( ) is complex as it jumps to different locations when different 
procedures are called.  Its overall behavior depends on the behavior of all 
procedures.   

1. Leaf procedure: a procedure that does not call other procedures. 
2. PC-correlated spatial locality: the data address referenced by a load instruction 

at a PC likely depends on memory addresses referenced by loads at nearby PCs. 
3. PC-correlated temporal locality: the next memory address referenced by a load 

instruction at a certain PC is likely to depend on the previous memory addresses 
referenced by the same load instruction. 

 
 
 
 
 

Fig. 1. Schematic of the calling procedure of a simple program. 

This paper focuses on the memory access behavior produced by load instructions 
in leaf procedures using the procedure call as the fundamental sampling unit.  The 
primary assumption is that, within some certain period, the behavior of memory 
accesses in a procedure depends on the history of both itself and nearby loads.  This 
behavior can be represented as a linear system with constant but unknown parameters.  
At some point, the behavior changes which causes a consequent change in the specific 
parameter values.  The goal of SAP is to detect such changes and automatically 
converge on the estimated parameter values (Figure 2). 

Consider the leaf procedure C in Figure 1.  Suppose that there are r loads within 
procedure C with program counter (PC) values p1, p2, �, pr, respectively.  Within 
the ith call of the procedure, the corresponding referenced addresses are denoted as 
Ai,1, Ai,2, �, Ai,r.  Within a certain range of consecutive calls, the behavior of 
memory accesses can be represented with the following equation, which takes PC-
correlated temporal and spatial localities into account: 
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where 1≤j≤(n-1), 0≤ki≤(n-1) (i=1,2,�,l), 0≤l≤(m-1), and 1≤m≤r. 

 main ( )
{

�
A( );
�
exit(0);

}

Proc A ( )
{

�
B( );
�
return;

}

Proc B ( )
{

�
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�
return;

}
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{
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�
�
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}
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Without loss of generality, we consider the l=1 case in this paper.  The prediction 
of a target load�s address is based on the history of itself and one other nearby load.  
By letting ai=ai,m , bi=ai,1 , y(n)=An,m, and u(n)=An,1 , Equation (1) can be simplified to 
the following memory access function: 

)(...)()(...)1()( knubnubjnyanyany k0j1 −+++−++−=  (2) 

 
Fig. 2. Block diagram representation of the Self-tuning Adaptive Predictor (SAP). 

3 Results and Discussion 

The addresses actually accessed by load instructions are collected by modifying the 
SimpleScalar simulator [5].  Here, we use benchmark 181.mcf with test input set for 
illustration.  181.mcf exhibits the poorest data cache behavior among all benchmarks 
of the SPEC CINT2000 Benchmarks suite. Profiling results using gprof show that the 
bea_compute_red_cost procedure constitutes more than 6.7% of the total running 
time of this benchmark program.  Our simulation results show the total number of 
misses in this procedure constitutes 9.15% of the total misses in the program.  The 
related code and data structures are schematically shown in Figure 3. 
   
typedef long cost_t;  cost_t bea_compute_red_cost (arc_t *arc) 

(a)  { 
typedef struct arc;  return arc->cost � arc->tail->potential + arc->head->potential 
{  } 

node_t *tail, *head;  (d) 
�  bea_compute_red_cost: 

}arc_t;  � 
(b)  lw $3,0($4)  #PC=0x406500; load arc->tail 

typedef struct node  lw $5,4($4)  #PC=0x406508; load arc->head 
{  lw $2,16($4)  #PC=0x406510; load arc->cost 

�  lw $3,44($3)  #PC=0x406518; load arc->tail->potential 
cost_t potential;  lw $4,44($5)  #PC=0x406520; load arc->head->potential 
�  � 

}node_t;  .end    bea_compute_red_cost 
(c)  (e) 

Fig. 3. Related C and assembly code of the procedure bea_compute_red_cost from 181.mcf. 

The five PCs (pi) (see Figure 3e) are defined as follows and the corresponding 
access addresses are denoted as A1, A2, A3, A4, and A5, respectively.  Figures 3 (b), 
(c) and (e) show that the address relationship among arc->cost, arc->tail, and arc-
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>head is determined at compile-time, but the correlation between arc->tail-
>potential and arc->head->potential are not known until arc-> tail and arc->head 
have been dereferenced at run-time.  The memory addresses accessed by p4 and p5 
depend on values stored in registers $3 and $5 respectively, and no correlation can be 
found from the code.  As prediction among A1, A2, and A3 is trivial, our study focuses 
on A2, A4 and A5.  The prediction error is normalized based on the referenced address 
span of the same load instruction.  Figures 4 and 5 show that these two loads display 
different access patterns at different call ranges.  We have sampled several different 
call ranges and observed similar patterns. 

p1=0x406500;  p2=0x406508;  p3=0x406510;  p4=0x406518;  p5=0x406520. 

Fig. 4. Memory access pattern for PC4. 
 

Fig. 5. Memory access pattern for PC5.
 
Empirical study [6] shows that the regular memory access consists of different 

patterns at different call ranges and different models can be effective during different 
phases of the memory access patterns.  In this study, multiple versions of the SAP 
models run concurrently.  Selection of a particular model with which to make a 
prediction is automated by observing the convergence rate of each component model. 

Three models with different history depths of the target and reference loads are 
used as shown in Table 1.  Figure 6 show that using A2 as the reference, SAP gives 
good prediction in 55% of total execution time for that procedure.  Using A4 as the 
reference, Figure 7 shows that the steady state error is within the ranges of [-5%, 
+5%].  We summarize the performance of the prediction in Table 2. The results 
show that using a reference load that has behavior similar to the target load is better 
for predicting the behavior of the target than naively selecting a reference load based 
on simple dependence relationships.  The detailed discussion can be found in [6]. 

Table 1. History depths of the three models used in prediction. 

History Depth Model 1 Model 2 Model 3 
Target load 1 3 5 

Reference load 2 4 6 

4 Conclusions 

This paper has proposed a Self-tuning Adaptive Predictor (SAP) model and examined 
the memory access patterns of leaf procedures with pointer-based data structures.  
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By taking the procedure as the fundamental sampling unit, SAP incorporates temporal 
locality and spatial locality to dynamically adapt to the changing behavior of memory 
accesses.  Our evaluations with a subset of the SPEC2000 integer benchmark 
programs showed that SAP is an accurate model for memory address prediction.  

 
Fig. 6. prediction of A5 using A2. 

 
Fig. 7. Prediction of A5 using A4. 

Table 2. Prediction performance of the procedures at steady state 

Benchmark Procedure Error Benchmark Procedure Error 
pqdown_heap [-3%, 3%] alloc_linked_f_pointer [-4%, 4%] 164.gzip 
gen_bitlen [-11%, 11%]

175.vpr 
net_cost [-2%, 2%] 

bea_compute_red_cost [-5%, 5%] chkgetchunk [-8%, 8%] 
bea_is_dual_infeasible [-4%, 4%] 

255.vortex
memgetword [-6%, 6%] 

compute_red_cost [-6%, 6%] spec_getc [-2%, 2%] 

181.mcf 

sort_basket [-14%, 14%]
256.bzip2 

spec_putc [-2%, 2%] 

Acknowledgments 

This work was supported in part by National Science Foundation grants EIA-9971666 
and CCR-9900605, IBM Corporation, Compaq�s Alpha development group, and the 
Minnesota Supercomputing Institute 

References 

1. Chilimbi, T. M., Larus, J. R.: Using generational garbage collection to implement cache-
conscious data placement. In Proceedings of the First International Symposium on Memory 
Management, volume 34(3) of ACM SIGPLAN Notices, October 1998 

2. Ding, C, Kennedy, K.: Improving cache performance in dynamic applications through data 
and computation reorganization at run time. In Proceedings of the SIGPLAN '99 Conference 
on Programming Language Design and Implementation, Atlanta, GA, May 1999 

3. Zhang, H., Martonosi, M.: A Mathematical Cache Miss Analysis for Pointer Data 
Structures. SIAM Conference on Parallel Processing for Scientific Computing, March, 2001 

4. Draper, N. R., Smith, H.: Applied Regression Analysis. 2nd Ed.., John Wiley & Sons, 1981 
5. Burger, D. C., Austin, T. M., Bennett, S.: Evaluating future Microprocessors: The 

SimpleScalar Tool Set. Technical Report CS-TR-96-1308, University of Wisconsin-
Madison, July 1996 

6. Wu, K., Sendag, R., Lilja, D. J.:  Using a Self-tuning Adaptive Predictor to Characterize 
the Regularity of Memory Accesses in Pointer-Intensive Application Programs.  
University of Minnesota Technical Report: ARCTiC 2003 


