
..

WHERE DOES SECURITY STAND?
NEW VULNERABILITIES VS.

TRUSTED COMPUTING
..

HOW CAN WE ENSURE THAT PLATFORM HARDWARE, FIRMWARE, AND SOFTWARE WORK

IN CONCERT TO WITHSTAND RAPIDLY EVOLVING SECURITY THREATS? ARCHITECTURAL

INNOVATIONS BRING PERFORMANCE GAINS BUT CAN ALSO CREATE NEW SECURITY

VULNERABILITIES. IN THIS PANEL DISCUSSION, FROM THE 2007 WORKSHOP ON

COMPUTER ARCHITECTURE RESEARCH DIRECTIONS, SHAY GUERON, GEOFFREY

STRONGIN, AND JEAN-PIERRE SEIFERT ASSESS THE CURRENT STATE OF SECURITY AND

DISCUSS POSSIBLE ROUTES TOWARD TRUSTED COMPUTING.

Moderator’s introduction: Shay Gueron......In any discussion of the PC
platform, the most important point to
remember is that it is intended to benefit
users. The PC experience today, as it is
viewed by our users, is the result of several
components operating together, with each
component playing its own unique role.

The hardware and, in particular, the
processors provide the ‘‘compute power.’’
This capability involves two factors—archi-
tecture and microarchitecture. The quality
of the processor architecture is measured by
the flexibility and usability of the instruc-
tion set that it offers. The instruction set
provides building blocks for use by the
software. The quality of the microarchitec-
ture is measured by the efficiency from the
performance, power consumption, and cost.

Processors have various design vectors—
for example, power, performance, debug-
ging, and cost. Security is one of the factors

in the equation, and the processor is
a critical component of an overall platform
solution to security. Innovations in the
microarchitectural features improve the
processor’s quality from the power/perfor-
mance viewpoint. Two obvious examples
are the caches and the branch predictors
that are parts of any modern processor,
where the different micro-implementations
provide the competitive edge for each
processor. On the other hand, security is
a bit different: The security of the platform
is the result of cooperation between the
hardware, firmware, and software on the
platform. Therefore, all of the platform
components must work together to deliver
security.

When facing a security issue, it is
necessary to find the best place in the
platform to address it. For instance, if an
issue affects only a few applications, it is
probably better to rewrite those applications

Shay Gueron

University of Haifa and

Intel Corporation

Geoffrey Strongin

Advanced Micro Devices

Jean-Pierre Seifert

University of Innsbruck

and Samsung Electronics

Derek Chiou

University of Texas at

Austin

Resit Sendag

University of Rhode Island

Joshua J. Yi

Freescale Semiconductor

0272-1732/07/$20.00 G 2007 IEEE Published by the IEEE Computer Society

..

25

than to make a hardware change that could
affect performance of all applications. In some
cases, a processor’s features can solve security
problems. Indeed, various chip manufacturers
have added security features to processors over
time—for example, ring protections and the
eXecute Disable (XD) bit.

Side-channel attacks
Consider the most recent type of side-

channel attack in the news—the branch
prediction analysis (BPA) attacks.1 These
attacks exploit the branch prediction mech-
anism. Processors improve performance
using branch prediction to predict the most
probable code path to execute and then fill
the pipeline with the corresponding instruc-
tions. Sometimes a processor mispredicts
a branch, requiring it to restart from that
branch once it detects the misprediction.
Good branch predictors are essential to
achieve high performance in modern micro-
processors with deep pipelines and multi-
ple-instruction issue. Performance, howev-
er, varies depending on whether a branch is
predicted correctly or incorrectly; an in-
correctly predicted branch means the pro-
cessor must roll back the effects of instruc-
tions after the mispredicted branch and
restart at the that branch. The BPA security
attack capitalizes on that performance
variation. A spy process running on the
target machine, together with another
application process, can use these timing
differences as side-channel information and
deduce the precise execution flow per-
formed by this ‘‘victim’’ process.

This could potentially lead to a complete
break of a cryptosystem—but under what
exact circumstances? Such a theoretical
exploit could occur only under all three of
the following circumstances:

N The malicious code (spy) was allowed to
run on the system either by some
operating system (OS) automatic upload
or by the user inadvertently launching it.

N The victim cryptosystem is written in
such a way that knowledge of the
execution flow provides the attacker
with information that lets him com-
promise the security.

N The OS supports multiprocessing, and
the scheduling mechanism enables
a sophisticated ping-pong game be-
tween the spy and its victim.

Here is an obvious way to eliminate the
problem: Processors and operating systems do
not multiprocess, and processors do not use
branch prediction. It’s not difficult to guess
that such solutions would not be very attractive
to the user, who—remember—needs to get
services from the platform. This raises an
important question: Will users be willing to
give up some of the platform’s performance
capabilities and the multitasking user experi-
ence, just to solve a (theoretical) threat that can
be easily handled by the software?

Indeed, in the case of BPA attacks, careful
analysis indicates a potential vulnerability in
some unexpected part of the RSA algo-
rithm.2 However, this analysis shows that
a change of algorithm in the crypto-applica-
tions that carries a minimal performance
penalty (and potentially even improves that
performance) can be simply deployed to
solve the problem. The software-algorithmic
change has already been offered (by Intel) to
the open-source community.

Another educational example is a poten-
tial vulnerability in OpenSSL 0.9.8 in the
‘‘exponent scanning’’ phase,2 where the code
implementation writes

return((a-.d[i]&

(((BN_ULONG)1),,j))?1:0);

Here, the branch could be exploited if the
compiler does not perform the optimization to
eliminate it. But by just replacing the line with

return((a-.d[i].. j) & 0x01);

the problem is eliminated, regardless of the
OS scheduling properties and the particular
processor. This demonstrates how a program-
mer who is not aware of all security
implications in crypto-programming can
inadvertently insert a potential vulnerability
through one innocent line of code.

...

About this article
Derek Chiou, Resit Sendag, and Josh Yi conceived and organized the 2007 CARD

Workshop and transcribed, organized, and edited this article based on the panel discussion.

Video and audio of this and the other panels can be found at http://www.ele.uri.edu/CARD/.

...

COMPUTER ARCHITECTURE DEBATE

...

26 IEEE MICRO

Virtualization and trust boundary
Attacks that exploit the hardware must

first successfully exploit the OS to obtain
ring-0 privilege. But, if the attacker obtains
this privilege, he can in fact perform many
malicious acts that do not involve the
hardware. Thus, major efforts should be
concentrated on preventing ring-0 access.
As long as the OS is using the virtualization
layer, it’s not possible for an adversary to
install rootkit malware. (A rootkit is a tool
that allows administrators access to main-
tain or control a computer system, without
having the user be aware of it.) With
a rootkit, it’s possible to execute files on
the target machine, change the system
configuration, access and edit system log
files, and monitor computer usage. The
main difference between a rootkit and any
other management tool is that on top of
having root-level privileges, a rootkit is also
undetectable (to the user). Rootkits are used
for multiple legitimate purposes, such as law
enforcement and monitoring of employees’
activity in an organization. Parental super-
vision is another legitimate usage for
a rootkit. It is clear, however, that a mal-
icious rootkit (rootkit malware) is a very
serious security and privacy threat if it gets
installed on a user’s platform.

One recent example is the Blue Pill
attack, in which the rootkit uses virtualiza-
tion to go under the OS. Software solutions
could most likely detect such activity—for
example, by having the OS monitor the
time differences in execution with and
without a hypervisor.

Buffer overflows
The most dominant software attack, the

so-called buffer overflow attack, capitalizes
on pushing attack code onto the C function
call stack. Simply marking the stack area as
nonexecutable with a special bit (called the
NX or XD bit) eliminated many of those
very simple software attacks. Thus, the XD
bit is an example of a hardware-based assist
for a problem that is inherently a software
problem. However, even before the XD bit
was implemented, the security community
realized that it could protect only against
the exploits that existed at that time, and

not against all potential buffer overflow
vulnerabilities.

Software (OS) vendors are also working
to prevent buffer overflows; Microsoft’s
canary bit, which can detect some over-
flows, is an example.

Toward a united security strategy
The PC platform has made tremendous

advances in the past 20 years, owing to
great progress in architecture, microarchi-
tecture, OS, and software. However, from
the security perspective, the PC platform
has become a target for attacks, and the
problem today seems to be worse than it
was 20 years ago. Attackers have an advan-
tage with their ability to develop 0-day
exploits versus the time it takes for patches
to be widely installed. The solution to this
problem cannot come from a single source.
The PC platform community needs to step
back and look at how to solve the larger
problem first, and then determine the roles
each provider can play in the solution.

All players in the PC platform commu-
nity need to work together and improve the
platform’s quality from all aspects, includ-
ing security. The processors need to con-
tinue improving computational efficiency.
It is the role of software to guard against
malicious attacks. The PC platform will
continue to evolve, and the user experience
can benefit through the cooperative efforts
of the industry.

Position statement: Geoffrey Strongin
Only recently has the mainstream com-

puting community recognized security as
one of the biggest issues facing computer
architecture. Three decades ago, only a few
security experts were thinking about how to
make general-purpose computing more
secure. Today, virtually everyone, including
the cashier at Starbucks, knows that com-
puter security is a serious issue. We are,
however, far from solving the problem.

Though trusted computing has been the
focus of a dedicated group of researchers
who appear to have left very few stones
unturned, until there is a significant com-
mercial deployment we have no way of
measuring the actual progress and the actual
benefits. AMD is working on the third

..

NOVEMBER–DECEMBER 2007 27

iteration of trusted-computing hardware
support, yet there is still no commercial
OS support for trusted computing. Other
microprocessor vendors are in the same
boat.

We need to look pragmatically at what
trusted computing is capable of accomplish-
ing and what it cannot accomplish. The
current direction of trusted computing
implementations is to leverage secure vir-
tualization technology as the core technol-
ogy for creating isolation between guest
partitions. The problem is that the guest
partitions are themselves large monolithic
targets. The virtualization approach does
not improve the security of the guest itself;
each guest remains vulnerable. Secure
virtualization may allow other guests to
continue to function when one is corrupted,
but this does not help if there is critical data
within the guest that is corrupted.

We need more robust protection tools.
For example, some viruses kill tool alarms,
essentially creating silent failures of the
security programs. One proposed technique
to improve guest OS security are tamper-
resistant external health monitors living
outside of a guest OS that provide higher
assurance warnings of a penetration or
failure inside a guest. Such research is
promising and should be pursued.

More importantly, we need to look at
how to provide a finer level of protection
within a given guest. Most legacy operating
systems are monolithic, contain millions of
lines of code, and have a simple user-mode/
kernel-mode view of protection. If we could
rewrite operating systems, security could be
done much better—but we cannot, because
of legacy constraints.

One strategy to incrementally improve
security is to partition a legacy monolithic
operating system into smaller submodules
that are internally compartmentalized to
effectively introduce firewalling between
those submodules. Such partitioning could
be assisted using the virtualization layer, or
it could be accomplished by other tech-
niques. I think that a critical area of
combined hardware and software research
is to develop workable solutions that allow
for the effective decomposition of the
monolithic OS kernels without incurring

the massive code rewrites that would make
this logistically impractical.

Position statement: Jean-Pierre Seifert
Despite massive trust and security engi-

neering efforts by the Trusted Computing
Group (TCG) around the PC architecture,
new potential security vulnerabilities of the
x86 architecture have attracted much recent
research activity and vibrant public discus-
sion. As a few vulnerabilities that potentially
could undermine TCG’s general computer
architecture security efforts, consider the
following:

N Virtualization hardware support could
function as a tool for undetectable
malware—that is, reversing the secu-
rity promises of virtualization, as
Figure 1 shows. (As Shay Gueron
points out, a software solution could
only most likely detect the potentially
malicious virtualization. This likeli-
hood depends on the perfection of the
virtualization. A perfect virtualization
could also maliciously virtualize the
required timestamps to hide some
timing differences. At least theoreti-
cally, such a distinguisher algorithm
between a native and a virtualized
environment is provably not existing.3)

N New (old?) side-channel attacks could
capitalize upon caches, branch pre-
diction units, keystroke tables, and so
on, potentially circumventing the
TCG trust boundaries.

N Buffer overflow attacks could circum-
vent even the XD or No eXecute (NX)
bit.

I also see several new challenges ahead:

N With an architecture not originally
intended as a security-aware platform,
security cannot be baked in after-
wards—without dramatic architecture
changes. Because security is not
a cheap-and-simple add-on after the
fact, the underlying architecture must
be completely overhauled for security.

N Due to massive implicit and explicit
parallelism deeply hidden in today’s
very complex miroarchitectures, the

...

COMPUTER ARCHITECTURE DEBATE

...

28 IEEE MICRO

isolated execution requirement—that
is, the confinement guarantee—must
be carefully evaluated. To support
Lampson’s confinement4 at the OS
level, we must tag resources like
caches, branch prediction units, trans-
lation look-aside buffers (TLBs), and
so on at process-level granularity.

N The most dominant software attack—
the so-called buffer overflow attack—
capitalizes on pushing attack code
onto the C function call stack. Mark-
ing the stack area with a special bit
(called the NX or XD bit) as non-
executable eliminated many of those
very simple software attacks. This is
a correct step but only a very tiny one
in the direction of a capability-based
computer-architecture paradigm.

N Although the potential security advan-
tages of a capability-based computer-
architecture are tremendous, its prac-
tical realization is a daunting research
project. But, as evidenced by the
amount we have modified the x86
architecture over the last 25+ years,
the giant effort toward a capability-

aware x86/x86-64 architecture is per-
haps not unprecedented and thus not
completely hopeless.

I agree with Geoffrey that trusted plat-
forms are not currently available. There are
two vectors of research in security: new
vulnerabilities and new trusted computing.
It is very hard to get trusted platforms today
with built-in hardware support. We are also
lacking software support. Because of the
current lack of real systems, we cannot say
anything about the real value of trusted-
computing platforms. But we can already
derive from the existing trusted-computing
specifications their shortcomings and spec-
ulate on new attacks. As architectures
introduce new mechanisms for reasons such
as improving performance or improving
security, new attacks are developed to
exploit those new mechanisms.

For example, new, very sophisticated
attacks use performance variations, such as
cache eviction latencies and branch pre-
diction timing differences, caused by micro-
architectural performance enhancements.
Some of these attacks are only academic

Figure 1. Undermining the trust boundary of virtual machines via side-channel attacks.

..

NOVEMBER–DECEMBER 2007 29

today, but so were buffer overflow attacks
20 years ago. Such attacks can overcome the
known promises of trusting computing,
especially in the presence of the isolation
promise. There are also new attacks on
virtualization hardware and other trusted-
computing hardware being proposed by the
security community. Thus, introducing
virtualization hardware support could actu-
ally increase vulnerability vectors rather
than reduce them.

As a specific example, the NX bit was
recently added to the x86 instruction set
architecture (ISA). Today, many known
security vulnerabilities leverage that bit. It is
important to examine the security implica-
tions of any proposed new hardware feature,
because once it is in the architecture, it is
very difficult to remove it.

Security is not only a processor manu-
facturers’ problem; we do also need better
trusted-computing software support. The
operating system especially must be written
to use the secure hardware correctly. To give
you an example, let’s consider the x86
timestamp counter instruction RDTSC.
This instruction is the source of many new
and old side-channel attacks because it is
available in ring 3 (user mode), although it
has been well known for some time that
such an instruction must be a privileged
instruction. However, this ring-3 availabil-
ity can no longer be removed, as all major
operating systems rely on the instruction’s
availability at the application level. Thus,
this legacy architecture flaw is a clear
software issue. To make it short, starting
from a commodity standard architecture
that was not designed for security, it is very
hard to make little changes that make the
processor secure.

Where should security be solved?
Strongin: Side-channel and covert channel
attacks must be addressed at the operating
system level, not at the architecture level. (A
‘‘covert channel’’ can be described as any
communications channel that can be
exploited by a process to transfer informa-
tion in a manner that violates the system’s
security policy. Essentially, it is a method of
communication that is not part of an actual
computer system’s design but can be used to

transfer information to users or system
processes that normally would not be
allowed access to the information.) Such
attacks cannot be easily addressed at the
hardware architectural level. Systems be-
come even more vulnerable when hyper-
threading and multicore designs are in-
troduced. All shared resources have
vulnerabilities to side-channel attacks.
There is no point in worrying about side-
channel attacks unless you are already
running a secure OS. The Rainbow series
of specifications defined the requirements
for implementing a secure OS, or trusted
computing base, assuming it was designed
that way from scratch. Unless the OS is
secure, trying to add architectural features
to close covert- and side-channel attacks is
like trying to soundproof the walls of a barn
whose front door, back door, and windows
are all open.

Audience member: We had the same issues
with the same solution—put it in the OS—
30 years ago. Have we come very far?

Strongin: No, we have not come far. The
Rainbow project concluded the same
thing—namely, that the problem has to be
solved in the OS. Hardware is inherently
vulnerable.

Seifert: Security is not addressed in main-
stream operating systems of today. The
problem, however, cannot be solved quick-
ly. We can isolate boxes from each other,
but what can we do within a single box? We
need more work within a single box.
Perhaps we could use one of the many
new cores in a multicore system to do
security monitoring? The more functional-
ity, however, the greater the probability of
additional back doors.

Security cores
Gueron: The ubiquity and cost of the PC
platform benefits the user. Using a core for
security means it cannot be used for
something else, which increases system cost.
Software writers should provide security;
hardware should just be as fast as possible.

Strongin: One environment checking an-
other environment, potentially using a vir-

...

COMPUTER ARCHITECTURE DEBATE

...

30 IEEE MICRO

tualization layer, can be done on a single
core. The binding of a virtual core to
a physical machine is a different discussion
topic. If we have isolated execution envi-
ronments, then the issue becomes one of
software overhead, software management,
and the interfaces to let multiple tool
vendors write compatible and interchange-
able tools. This is an area that is potentially
very fruitful for research for tool vendors
and the academic community. To exploit
and monitor these isolated environments,
however, we need OS interfaces. Those
same interfaces for monitoring become
attack surfaces. We do not want to make
things worse while trying to make them
better.

Seifert: But, at some point, perhaps at eight
cores, it might be an interesting academic
project to try moving monitoring into one
of the cores or to try implementing the
monitoring in an external FPGA.

Strongin: I agree that exploration of these
architectural directions is interesting and
potentially useful. Keep the exploration at
the logical level and avoid binding too early
to physical hardware. What are the unique
aspects of a security processor compared to
other cores?

Audience member: Perhaps only certain
cores should have special security capabil-
ities.

Seifert: It is very difficult to provide
security to a system with lots of chips and
an OS. There must be some way to bring in
new functionality, to fix some issue, to
provide some update. Once you have an
update facility, you have potentially created
a big hole. Fixed functionality solves the
security problem but eliminates the ability
to change that functionality. A core with
special capabilities opens potential security
questions.

The user as a threat
Audience member: The user is part of the
threat, even if there is hardwired security.
How much should we pay—in dollars,
functionality, and inconvenience—for secu-
rity?

Seifert: Two years ago, there was a big
company that decided to try to go back to
big dinosaur computing with dumb term-
inals to improve security. They discovered
that such an architecture kills mobility. We
have gotten spoiled. Unless we focus on the
hard problems, as Yale Patt said in the
single-threaded vs. multithreaded panel, we
cannot get good solutions.

Strongin: It is possible to build systems that
are protected against the user. Preventing
a user from using administrator privileges
provides some protection. If a user has
physical access to a machine, however, it is
difficult to make that machine secure.
Cryptocards that are used in banking servers
are very resistant to attack but are very
expensive—in the $10,000 range. Such
cards are designed to resist user hacking,
even with a user who has access to the
machine.

Why is the user attacking the system?
These days, it is mostly to break intellectual
property protection such as digital rights
management (DRM), to copy DVDs, and
so on. It is a tough balancing act, however,
because most users do not attack their own
systems, and additional security just makes
the system harder to use.

Seifert: Even with a good security in-
frastructure, a user can mistakenly miscon-
figure the system. Making the system more
idiot-proof also burdens the average user to
protect against the rare stupid user. If there
is OS support, it shifts the borderline, but
does not solve the problem.

Strongin: It is very difficult to make any
system idiot-proof, since idiots are surpris-
ingly ingenious and often do things that we
never think about.

The costs of security
Gueron: Highly tamper-resistant security
drives up the cost to the point where it is
too high. Take, for example, password
security. If passwords are required to have
a capital letter, a lowercase letter, a number,
and a symbol, and have to be at least 20
characters long, and need to be changed
every week, passwords wind up being
written down on sticky notes. Those sticky

..

NOVEMBER–DECEMBER 2007 31

notes get lost, requiring IT support to force
the passwords. Overall, security is far less.
Hardware tamper-resistant keys make a lost
password a real problem. All security
solutions have associated costs. Linking
with the administration costs is the job of
system vendors.

Seifert: I agree there must be a be a recovery
system, to deal with a lost key, lost
passwords, and so on, but such a recovery
system, of course, opens up security holes.
Even hardware and board testing facilities,
such as JTAG, open security holes. This
suggests another line of hardware research,
which is, how can you fully test a secure
system but keep it secure? You cannot lock
down everything. The ability to test the
system later is necessary. A back door is
mandated. Thus, there are many new
constraints and new issues for security.
But, first things first: One cannot solve all
of the problems at once.

Current microarchitectural hacks
Audience member: Here is a well-known
example of a security attack: There was
a paper published that demonstrated that
you could get an RSA key by the way the
RSA library was written.5 Was that a micro-
arch attack or an implementation attack?

Strongin: That was a problem of the OS
running higher security-level tasks with
lower security-level tasks. Such problems
shouldn’t happen if you’re serious about
avoiding side channels. You should never
allow the simultaneous execution of pro-
cesses of different security levels or different
security domains. Even allowing the snoop-
ing thread to run is an OS architectural
failure. Snooping threads of lower security
should not be allowed to run simultaneous-
ly with the encryption thread.

Seifert: Last week, I got confirmation that
the authors of the operating system took
responsibility for it and want to ramp up
research on such security holes. However,
for a more complete and updated story on
this fascinating topic of microarchitectural
attacks, I refer the audience to a nice and
recent survey.6

Gueron: The encryption library routine
could have been written more robustly to
avoid this problem. The hardware needs to
provide maximum throughput. Software
writers should be responsible for writing
secure code. Every line of code needs to be
scrutinized for security issues. For example,
one should not use different routines for
squaring and multiplication.

Seifert: I agree, it’s the responsibility of the
software community to write secure code.
The hardware architecture gets more and
more complicated to get more and more
throughput. We must educate the software
community about the hardware architecture
and the consequences of doing certain
things in specific architectures. Just a single
bit changed in the microarchitecture could
have significant consequences for the OS.
One cannot simply take software off the
shelf and expect it to be secure. There are no
easy solutions. Any known solution is very
people intensive. Is it possible to build an
architecture that will be less vulnerable to
such attacks? One suggestion is to buffer up
the effects of instructions to avoid the cache
attack.

Two levels of protection
are just not enough
Strongin: We have to remove covert
channels and side channels from our
answer. We are talking about an OS
vulnerability. The OS should keep other
applications from running at the same time
as crypto-applications. Maybe our current
privilege levels are too coarse, looking to the
security domain of the threads to ensure
that only the user who can see the key can
run while the key is in use. In a monolithic
OS with just two modes, kernel and user as
shown in Figure 2, the machine is com-
pletely open. Any kernel-mode thread can
see everything else, including the state of
other kernel threads and drivers. Nothing
separates out the different drivers.

We need to develop architectures that
can, without forcing a total rewrite, ensure
isolation between kernel threads and drivers.
The challenge is to provide such function-
ality without throwing out the OS and
starting over. The original core x86 ISA had

...

COMPUTER ARCHITECTURE DEBATE

...

32 IEEE MICRO

the ability to isolate using segmentation, but
that ability was not used as the transition to
paging occurred. Reinventing segmentation,
however, is not necessarily the right answer.
We need to think about how to get closer to
a secure architecture. Solving the mono-
lithic OS problem can go a long way toward
solving user-visible security issues.

Seifert: Though more security rings are
available, only user and super-user are in use
today in most standard operating systems.
We need to find a transparent way to split
the OS into modules that the hardware can
handle. Ideally, such partitioning would be
automatic and transparent.

Audience member: Hardware and software
solutions have been around for a long time.
It has not been done yet, because millions of
lines of code would need to be changed and
no one is willing to pay for it.

Seifert: Ideally, we can find an ingenious
hardware solution to transparently solve the
problem.

Gueron: Jean-Pierre and I wrote a paper on
software mitigation for certain microarchi-

tectural attacks.2 I am on the side of
software handling security, not hardware.

But let me elaborate a little bit more on
this very interesting subject. Security holes
are unexpected and often unforeseen. Fig-
ure 3 (taken from the paper I just men-
tioned2) illustrates one recent example.
Figure 3 shows the information flow for
computing modular inverse using the Bi-
nary Extended Euclidean Algorithm
(BEEA). As seen, the branches in this flow
are input data dependent. In a possible
software side-channel attack1 a spy process
saturating the branch target buffer can track
which branches are taken (or not taken) by
the other (crypto) process that runs in
parallel.

In addition, we proved that from having
knowledge of these branches for a computa-
tion of greatest common divisor, GCD (u,
v)—with u and v being coprime but totally
unknown—one can compute both u and v
(in polynomial time).2 It turns out that
OpenSSL (version 0.9.8a) used the BEEA
for modular inversion. This modular in-
version was used for masking the base
during modular exponentiation, and this
masking technique is critical for avoiding

Figure 2. Operating system reality (left) versus intended ring use (right) in the x86

architecture.

..

NOVEMBER–DECEMBER 2007 33

some well-known timing attacks. Thus,
under a side-channel spy-based threat
model, an innocent looking algorithm
(BEEA) can lead to compromising the
whole system security. OpenSSL was noti-
fied about this vulnerability (by Intel

Corporation, based on our input2), and
the current OpenSSL implements some
mitigations.

This surprising combination of facts
teaches us a very important lesson.
Probably, the best defense against current
and future microarchitectural attacks is to
let the cryptographic software community
become aware of the security implications
of writing cryptographic software that is
going to be executed on throughput-
optimized general-purpose processors. This
will help software be written using
a proper side-channel attack-aware meth-
odology.

Seifert: In our paper, the final software
solution was even faster than the original,
insecure code. It is important to focus on
the tough solution that will solve all of the
problems. MICRO

..

References
1. O. Acıiçmez, C.K. Koç, and J.-P. Seifert,

‘‘On the Power of Simple Branch Prediction

Analysis,’’ Proc. ACM Symp. Information,

Computer and Communications Security

(ASIACCS 07), ACM Press, 2007,

pp. 312-320 (also available in the Cryptolo-

gy ePrint Archive, Report 2006/351, Oct.

2006; http://eprint.iacr.org/2006/351).

2. O. Acıiçmez, S. Gueron, and J.-P. Seifert,

‘‘New Branch Prediction Vulnerabilities in

OpenSSL and Necessary Software Coun-

termeasures,’’ to appear in Proc. 11th IMA

Int’l Conf. on Cryptography and Coding,

LNCS 4887, Springer (also available at

Cryptology ePrint Archive, Report 2007/

039, Feb. 2007; http://eprint.iacr.org/2007/

039).

3. S. Gueron and J.-P. Seifert, ‘‘On the

Impossibility to Detect Virtualization,’’ un-

published manuscript, Aug. 2007 (available

from S. Gueron, shay@math.technion.ac.il;

or J.-P. Seifert, seifert@mi.informatik.

uni-frankfurt.de).

4. B.W. Lampson, ‘‘A Note on the Confine-

ment Problem,’’ Comm. ACM, vol. 16,

no. 10, Oct. 1973, pp. 613-615.

5. C. Percival, ‘‘Cache Missing for Fun and

Profit,’’ 2005; http://www.daemonology.net/

papers/htt.pdf.

Figure 3. Information flow of Binary Extended Euclidean Algorithm (BEEA)

(courtesy O. Acıiçmez, S. Gueron, and J.-P. Seifert).

...

COMPUTER ARCHITECTURE DEBATE

...

34 IEEE MICRO

6. O. Acıiçmez, J.-P. Seifert, and C. Koç,

‘‘Micro-Architectural Cryptanalysis,’’ IEEE

Trans. Security and Privacy, vol. 5, no. 4,

Jul.-Aug. 2007, pp. 62-64.

Shay Gueron is a professor in the De-
partment of Mathematics, Faculty of Sci-
ence and Science Education, at the Univer-
sity of Haifa, Israel, and a security architect
at Intel Corporation (Israel Design Center).
Gueron’s research interests include applied
security, cryptography, and algorithms. He
has a PhD in applied mathematics from
Technion—Israel Institute of Technology.

Jean-Pierre Seifert is affiliated with the
Universities of Haifa and Innsbruck and is
directing Samsung’s Trusted Platform Re-
search Lab in San Jose. He previously worked
for Intel and Infineon Technologies, where
as a principal engineer he led research and
development in the Smartcard and Secur-
ityIC business unit. There, he received the

Inventor of the Year award and initiated and
managed several EU-funded projects.

Geoffrey Strongin is an AMD Fellow and
AMD’s chief platform security architect. He
was a founding board member of the
Trusted Computing Group. He has
a BSEE degree from Arizona State Univer-
sity.

Biographies of Derek Chiou, Resit Sen-

dag, and Joshua J. Yi appear on p. 24.

Direct questions and comments about
this article to Shay Gueron, Department of
Mathematics, University of Haifa, 31905
Haifa, Israel; shay@math.haifa.ac.il.

For more information on this or any

other computing topic, please visit our

Digital Library at http://computer.org/

csdl.

..

NOVEMBER–DECEMBER 2007 35

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

