
...

RELIABILITY: FALLACY OR REALITY?
...

AS CHIP ARCHITECTS AND MANUFACTURERS PLUMB EVER-SMALLER PROCESS

TECHNOLOGIES, NEW SPECIES OF FAULTS ARE COMPROMISING DEVICE RELIABILITY.

FOLLOWING AN INTRODUCTION BY ANTONIO GONZÁLEZ, SCOTT MAHLKE AND SHUBU

MUKHERJEE DEBATE WHETHER RELIABILITY IS A LEGITIMATE CONCERN FOR THE

MICROARCHITECT. TOPICS INCLUDE THE COSTS OF ADDING RELIABILITY VERSUS THOSE OF

IGNORING IT, HOW TO MEASURE IT, TECHNIQUES FOR IMPROVING IT, AND WHETHER

CONSUMERS REALLY WANT IT.

Moderator’s introduction: Antonio González......Technology projections suggest
that Moore’s law will continue to be effective
for at least the next 10 years. Basically, as
Figure 1 shows, in each new generation
devices will continue to get smaller, become
faster, and consume less energy. However,
the new technology also brings along some
new cotravelers. Among them are variations,
which manifest in multiple ways. First, there
are variations caused by the characteristics of
the materials and the way chips are manu-
factured; these are called process variations.
There are multiple types of process varia-
tions: spatial and temporal, within die and
between dies. Random dopant fluctuations
are one type of process variation. Second,
there are voltage variations, such as voltage
droops. Third, there are variations caused by
temperature. Temperature affects many key
parameters, such as delay and energy con-
sumption. Finally, there are variations due to
inputs. A given functional unit behaves
differently—in terms of delay, energy, and
other parameters—depending on the data
input sets.

Faults are another group of cotravelers
that accompany new technology. Faults
have multiple potential sources. One of
these is radiation particles; it is expected that

future devices will be more vulnerable to
particle strikes. Another source of faults is
wear-out effects, such as electromigration.
Finally, faults are also caused by variations.
When variations are high, we might want to
target designs to the common case rather
than the worst case. When the worst case
occurs, the system would need to take some
corrective action, to continue operating
correctly.

Basically, the topic of the panel is these
faults. We typically classify faults into three
main categories:

N Transient faults appear for a very short
period of time and then disappear by
themselves. Particle strikes are the
most common type of transient fault.

N Intermittent faults appear and disap-
pear by themselves, but the duration
can be very long—that is, undeter-
mined. Voltage droops are an example
of this type of fault.

N Permanent faults remain in the system
until a corrective action is taken.
Electromigration is an example of this
type of fault.

Some of these faults have a changing
probability of occurrence over the lifetime

Antonio González

Intel

Scott Mahlke

University of Michigan

Shubu Mukherjee

Intel

Resit Sendag

University of Rhode

Island

Derek Chiou

University of Texas at

Austin

Joshua J. Yi

Freescale Semiconductor

...

36 Published by the IEEE Computer Society 0272-1732/07/$20.00 G 2007 IEEE

of a device. Failure rates during device
lifetimes exhibit a bathtub curve behavior.
At the beginning, during the period called
infant mortality (1 to 20 weeks), the
probability of a fault occurring is relatively
high. Then, during the normal lifetime, the
probability is far lower. Finally, during the
wear-out period, the probability starts to
increase again.

Many questions remain open in reliabil-
ity research. First, what will be the
magnitude of these faults, and what oppor-
tunities will arise from exploiting these
variations? What will the impact of particle
strikes be in the future? What is the degree
of wear-out in the typical lifetime of
a processor? Will reliability be critical to
keep high yields? How much does the
processor contribute to the total faults in
a system? Is it really an important part of
the problem, or can architects just ignore it
and take care of the other parts?

Is the microarchitecture the right level at
which to address these issues? Are system-,
software-, or circuit-level solutions prefera-
ble? Which types of solution are the most
adequate, feasible, and cost-effective?

Is ignoring reliability an option? Do we
need schemes and methods just to anticipate

and detect faults? Or, do we need mech-
anisms to detect and correct these faults?
For instance, some parts that fail (or are
likely to fail) might be transparently
corrected, just as when you go to a mechanic
to replace weak or failing parts of your car.
What will be the cost of such solutions?
Will all users be willing to pay for the cost
of reliability, or would only certain classes
of users (for example, users of large servers)
be willing to pay? Does reliability depend
on the application? Are certain applications
more sensitive? Is reliability going to be
a mainstream architecture consideration, or
is it going to be limited to a niche of systems
and applications? All of these remain to be
answered.

Until recently, reliability has been ad-
dressed in the manufacturing process
(through burn-in and testing) and through
circuit techniques, whereas microarchitec-
ture techniques have focused primarily on
mission-critical systems. However, over the
past 5 to 10 years, reliability has moved
more into the mainstream of computer
architecture research. On the one hand,
transient and permanent faults due to
CMOS scaling are a looming problem that
must be solved. In a recent keynote address,

Figure 1. Technology scaling trends: more, faster, less-energy transistors.

..

NOVEMBER–DECEMBER 2007 37

Shekhar Borkar summed up the emerging
design space as follows: ‘‘Future designs will
consist of 100 billion transistors, 20 billion
of which are unusable due to manufacturing
defects; 10 billion will fail over time due to
wear-out, and regular intermittent errors
will be observed.’’1 This vision clearly
suggests that fault tolerance must become
a first-class design feature.

On the other hand, some people in the
computer architecture community believe
that reliability will provide little added value
for most of the computer systems that will
be sold in the near future. They claim that
researchers have artificially enhanced the
magnitude of the problems to increase the
perceived value of their work. In their
opinion, unreliable operation has been
accepted by consumers as commonplace,
and significant increases in hardware failure
rates will have little effect on the end-user
experience. From this perspective, reliability
is simply a tax that the doomsayers want to
levy on your computer system.

The goal of this panel is to debate the
relevance of reliability research for computer
architects. Highlights of the discussion
follow the panelists’ position statements.

The need for reliability is a fallacy:
Scott Mahlke

I believe there is a need for highly reliable
microprocessors in mission-critical systems,
such as airplanes and the Space Shuttle. In
these systems, the cost of the computer
systems is not a dominant factor; the more
important reality is that people’s lives are at
stake. However, for the mainstream com-
puter systems used in consumer and
business electronic devices, the need for
reliability is a fallacy. Starting with the most
obvious and working toward the least
obvious, the following are the top five
reasons why computer architecture research
in reliability is a fallacy.

Reason 1: It’s the software, stupid!
The unreliability of software has long

dominated that of hardware. Figure 2
shows the failure rates for several system
components. The failures per billion hours
of operation (also called failures in time, or
FITs) in Microsoft Windows are an order of
magnitude higher than corresponding va-
lues for all hardware components. Bill Gates
has stated that the average Windows
machine will fail, on average, twice a month.
In fact, when operating systems start off,
they fail very frequently. Mature operating
systems can have a mean time to failure
(MTTF) measured in months, whereas
a newer operating system might crash every
few days.

This is not intended as a bash of
Microsoft or other software companies.
Software is inherently much more complex
than hardware, and software verification is
an open research question. The bottom line
is that to improve the reliability of current
systems for the user, the focus should be on
the software, not the hardware.

Reason 2: Electronics have become disposable
One of the big issues that researchers are

examining today is transistor wear-out and
how to build wear-out-tolerant computer
systems. But, the majority of consumers
care little about the reliable operation of
electronic devices, and their concerns are
decreasing as these devices become more
disposable. In 2006, the average lifetime of
a business cell phone was nine months. The
average lifetimes of a desktop and a laptop
computer were about two years and one
year, respectively. Most electronic devices
are replaced before wear-out defects can
manifest. Therefore, building devices whose
hardware functions flawlessly for 20 years is
simply unnecessary. Furthermore, from the
economic perspective, reliability can be
quite expensive in terms of chip area, power
consumption, and design complexity. Thus,
it’s often not worth the cost.

Reason 3: A transient fault is about as likely as
my winning the lottery

Data from the IBM z900 server system
shows that three transient faults occurred in
198 million hours of operation, or about

...

About this article

Derek Chiou, Resit Sendag, and Josh Yi conceived and organized the 2007 CARD

Workshop and transcribed, organized, and edited this article based on the panel discussion.

Video and audio of this and the other panels can be found at http://www.ele.uri.edu/CARD/.

...

COMPUTER ARCHITECTURE DEBATE

...

38 IEEE MICRO

one fault every 2.7 million days. One of my
favorite comments about this was that it was
much more likely that somebody would
walk by and kick the power cord than it was
that an actual transient fault would occur.

Let’s compare the rate of transient faults
to some other things that we don’t think
about in our everyday lives. My chance of
winning the lottery is about equal: 1 in
3 million. The chance of getting struck by
lightning in a thunderstorm is about twice
that of a transient fault: 1 in 1.4 million.
How about getting murdered? The chance
is about 1 in 10,000 in the United States.
The chance of being involved in a fatal car
crash is about 1 in 6,000, and the chance of
a plane crashing is 1 in 10 million. The
point is that we don’t constantly worry
about these things happening to us, so do
we really need to be concerned about
a transient fault happening? The chances
are so unlikely that the best thing to do
about them may be to ignore them.

Reason 4: Does anyone care?
In many situations, 100 percent reliable

operation of hardware is not important or
worth the extra cost. For instance, no one
can tell the difference if a few pixels are
incorrect in a picture displayed on their

laptop. Imagine a streaming video coming
through; no one would care if occasionally
a pixel on a frame had the wrong color.
How often do you lose a call on your cell
phone? How often is a word garbled and
you have to ask the person on the other end
to repeat something? The majority of
consumers today either do not notice or
readily accept imperfect operation of elec-
tronic devices. There is also a lot of
redundancy in applications such as stream-
ing video, so maybe the answer is that
software, rather than hardware, should be
made more resilient.

Reason 5: This problem is better solved closer to
the circuit level

Even if you accept reliability as a problem
for microprocessor designers, one important
question is at what level of design should
the problem be solved—architectural or
circuit? An example of the circuit-level
approach is Razor, which introduced a mon-
itoring latch.6 Essentially, Razor is an in situ
sensor that measures the latency of a partic-
ular circuit. It enables timing speculation
and the detection of transient pulses caused
by energetic particle strikes. The point is
that architects may not need to worry about
solving these problems. Rather, techniques

Figure 2. Failures in billions of hours of operation.2–5

..

NOVEMBER–DECEMBER 2007 39

like Razor can handle reliability problems
beneath the surface, where the area and
power overhead is lower. Another impor-
tant factor is that many designs can benefit
from circuit-level techniques, so point
solutions need not be constructed. Finally,
in situ solutions naturally handle process
variation.

The need for reliability is a reality:
Shubu Mukherjee

Captain Jean-Luc Picard of the starship
USS Enterprise once said that there are three
versions of the truth: your truth, his truth,
and the truth. The God-given truth is that
circuits are becoming more unreliable due
to increasing soft errors, cell instability,
time-dependent device degradation, and
extreme device variations. We have to figure
out how to deal with them.

The user’s truth
Users care deeply about the reliability of

their systems. If they get hundreds of errors
a day, they will be unhappy. But, if the
number of hardware errors is in the noise
relative to other errors, hardware errors may
not matter as much to them. That is exactly
the direction in which the entire industry is
moving. The goal of hardware vendors is to
maintain a low enough hardware error rate
that those errors continue to be obfuscated
by software crashes and bugs. However,
there have always been point risks that make
certain individual corruption or crashes
critical—for example, a Windows 98 crash
during a Bill Gates demo—even if such
errors occur rarely.

The IT manager or vendor’s truth
The truth, however, is very different from

the perspective of an IT manager who has to
deal with thousands of users. The greater
the number of user complaints per day, the
greater is her company’s total cost of
ownership for those machines. It is like
the classic light bulb phenomenon: The
more you have, the sooner at least one of
them will fail. And that’s what we see in
many houses. In a house with 48 light
bulbs, each with 4 years MTTF, we replace
a light bulb every month. These failures
negatively impact business, because billions

of dollars are involved. User-visible errors,
even when few surface, have an enormous
impact on the industry. They increase cost
because companies start getting product
returns. Companies can face product re-
turns even for soft errors, because users
sometimes demand replacement of parts. In
addition, there is the issue of loss of data or
availability.

The designer’s awakening
The designer’s awakening is an experi-

ence similar to going through the four stages
of grief. First, you have the shock: ‘‘Soft
errors (SERs) are the crabgrass in the lawn
of computer design.’’ This is followed by
denial: ‘‘We will do the SER work two
months before tape out.’’ Then comes
anger: ‘‘Our reliability target is too ambi-
tious.’’ Finally, there is acceptance: ‘‘You
can deny physics only so long.’’ These are
all real comments by my colleagues. The
truth is, designers have accepted silicon
reliability as a challenge they will have to
deal with.

The designer’s challenge
The industry is addressing the reliability

problem with the help of research commu-
nity. We need solutions at every level.
Protection comes at many levels: at the
process level through improved process
technology; at the materials level through
shielding for alpha particles; at the circuit
level through radiation-hardened cells; at
the architecture level through error-correct-
ing code (ECC), parity, hardened gates, and
redundant execution; and at the software
level through higher-level detection and
recovery. Companies are doing a lot. They
are constantly making trade-offs between
the cost of protection (in terms of perfor-
mance and die size) and chip reliability,
without sacrificing the minimum perfor-
mance, reliability, and power thresholds
that they must achieve.

Industry needs universities’ help with research
Industry needs help from academia, but

academia has some misconceptions about
reliability research. One of the misconcep-
tions concerns mean time between failures
(MTBF), which is only a rough estimate of

...

COMPUTER ARCHITECTURE DEBATE

...

40 IEEE MICRO

an individual part’s life. Using MTBF to
predict the time to failure (TTF) of a single
part is fundamentally flawed, because
MTBF does not apply to a specific part.
Thus, we cannot start optimizing lifetime
reliability on the basis of MTBF.

Another common misconception is the
notion that a system hang doesn’t cause data
corruption. However, if you cannot prove
otherwise, you should assume it does cause
data corruption because your data might
already have been written to the disk before
the system hangs. Finally, one other mis-
conception is that adding protection with-
out correction reduces the overall error rate,
but in reality it does not.

Many questions remain unanswered in
different areas of silicon reliability, and
industry needs help from the universities.
How do we predict and/or measure error
rate from radiation, wear-out, and variabil-
ity? How do we detect soft errors, wear-out,
and variability on individual parts? Many
traditional solutions exist, but how do we
make them cheaper?

Cost of reliability—Are users willing
to pay?
Mahlke: The big question is how much are
the people willing to pay? This is very
market dependent. For example, a credit
card company trying to compute bills
would be willing to pay a fair amount of
money. But what about the average laptop
user, how much extra are they willing to
pay? My theory is that end users are not
willing to pay. Either they are used to errors,
they accept them, or they don’t care about
infrequent errors.

González: I want to add that cost could also
be reflected in some performance penalty.
Reliability can be sometimes provided at the
expense of some decrease in performance—
for example, lower frequency—or some
increase in power due to the extra hardware.

Mukherjee: If you look back, people pay
for ECC. We do. We pay for parity, we pay
for RAID systems (redundant arrays of
independent disks), we pay a lot for fault-
tolerant file servers from EMC. So, people
pay. The main thing that we need to do is

to measure and show them what they are
paying for. It turns out that every company
has some applications that they need to run
with much more reliability than others. E-
mail, surprisingly, is one of them. Financial
applications are another. So, yes, they are
willing to pay if we show them what they
are paying for.

González: Following up on that, do we
have any quantification of reliability in
terms of area or any other metric? How
much is already in the chip today to
guarantee certain levels of reliability?

Mukherjee: The amount of area that we are
putting in for error correction logic is going
up exponentially in order to keep a constant
MTTF. And it will continue to grow.

Mahlke: Yes, but most of that error
protection logic is in the memory, right?
There is not much in the actual processor.

Mukherjee: Not necessarily. I cannot
publicly reveal the details. Mean time to
failure—what does it tell us?

Audience member: Why do we make
products with MTTF of seven years, when
most of the users are going to throw them
away in one year? It’s just a matter of doing
the mathematics. It all depends on the
distribution of the failures versus time. You
can have 90 percent of your population
failing in one year, and still have an MTTF
of seven years with the right distribution.
So, just because my MTTF is seven years
doesn’t mean that unacceptably large frac-
tions of the people are not going to see
failures in one year.

Mahlke: I think you are right. Just because
the MTTF is seven years, it doesn’t mean
that all fail at seven years. Many of them
will fail before that. But, I think if you look
at it, people are keeping these things
11 months and then throwing them away.
If you look at the data for how many
phones actually fail after 11 months, I
believe that it is a very small number, even
when there are hundreds of millions of
phones sold each year. And, if we just
replace those phones, and each phone is

..

NOVEMBER–DECEMBER 2007 41

$100 or something, the cost is relatively
small.

The counter-argument is this: Let’s say I
am going to add $10 worth of electronics
for reliability to each phone. Does the
average phone customer want to pay that
money to get that little bit of extra
reliability? I think there is a big distinction
between servers that are doing important
computation and disposable electronic de-
vices that people use. Maybe we need two
different reliability strategies for these two
domains. Because, for disposable electron-
ics, where we try to reduce the cost, it may
be too much overhead if we blindly
incorporate reliability mechanisms such as
parity bits or dual modular redundancy
(DMR) into the hardware.

Mukherjee: We don’t specify lifetime
reliability based on the mean, but rather
on a very high percentile of the chips
surviving whatever number of years we
internally think the chips should survive.
So, it is not based on the mean.

Audience member: I would like to add one
sentence to that. I have seen graphs from
Intel that are publicly available. They show
that this number of years for this 99.99+
percent of chips is going down. The reason
is that it is harder to give the same
guarantee.

Mukherjee: Good observation.

Error detection and correction
Audience member: One of the things I find
disturbing is silent failure. If the hardware
failure is a silent failure, I don’t know if my
data is corrupted, I have no indication. So,
in these systems, if I have error detection,
then I can track the data being corrupted
and follow on. But, if we are having bit-
flipping hardware, I don’t have detection
and neither have I correction. Detection is
not correction, I agree, but detection is one
of the reasons we tolerate failures in
software and supplement systems.

Mukherjee: That’s a very good point. I was
in the same camp for a while, but after
interacting with some of the customers, I
am beginning to think otherwise, because

fault detection raises your overall error rate.
Silent data corruption falls into two classi-
fications: the one that you care about, and
the one that you don’t care about. When
you put fault detection to prevent silent
data corruption, you end up flagging both
types of these errors, and the customer
annoyance factor goes up. The bottom line
is that detection alone is not enough. You
have to go for full-blown correction.

González: So, there are errors that matter
and errors that don’t—but are we not using
the same kind of systems for both? For
instance, you may be checking your bank
account with the same computer that you’re
using to run your media entertainment.

Mahlke: If you are accessing something and
you knew there was an error in something
small, maybe your address book, you can
download a copy of it, right? But, if there
was something larger than that, and maybe
you didn’t have a copy of the data—or
maybe, as Antonio [González] said, you
were doing something critical like trans-
ferring money from your bank account—
then I kind of agree with Shubu [Mukher-
jee] that detection alone may not be good
enough. If you want to go down this
reliability path, you may need to detect
and correct, because detection just throws
many red flags and you start worrying about
what you lost versus fixing it behind the
scenes. If a fault actually leads to a system
hanging or crashing, then you will know
about it. This may reduce the number of
things we need to worry about to the things
that lead to silent data corruption. Because,
if that is a relatively small number, and I can
figure out the other ones when they occur,
maybe I don’t need to worry about the
small subset of faults.

Mukherjee: A system hang is not necessar-
ily a detected error; it can cause silent data
corruptions.

Audience member: In Scott’s [Mahlke]
presentation, he used the z series from
IBM as an example, but these are systems
that are all about the reliability, and they are
enormously internally redundant and fault
tolerant. So, when you talked about the low

...

COMPUTER ARCHITECTURE DEBATE

...

42 IEEE MICRO

error rate, that is the low error rate after all
the expense devoted to reliability and
adding everything for reliability. It would
be very interesting to understand the non-z
series experience that people have.

Mahlke: The errors that I mentioned did
not cause corruption, but were actually
parity errors that were caught and corrected
in their system. These weren’t the errors
that got through all the armor that they
have put up.

Mukherjee: I have an example of that, from
a recently published paper from Los Alamos
National Lab.7 There is a system of 2048
HP AlphaServer ES45s, where the MTTF is
quite small. It is proven that cosmic-ray-
induced neutrons are the primary cause of
the BTAG (board-level cache tag) parity
errors that are causing the machines to fail.

Will classical solutions be enough?
Audience member: I think one thing that
both of you agreed on is that reliability has
a cost, either in area or in performance. You
may not see the errors, because the system is
over-dimensioned. Perhaps, we are not
doing our jobs as microarchitects to actually
look at the trade-offs between performance
and errors that we are able to tolerate, or to
look at dimensioning the system to tolerate
more errors, and perhaps to make the
system cheaper using cheaper materials or
architectures. Perhaps the tragedy here is
that a lot of these trade-offs at this point are
done at the semiconductor level rather than
at microarchitecture level. But, in the future
it may be done at the microarchitecture
level, where you can compute the trade-offs
between performance versus reliability ver-
sus cost.

Mahlke: One of the problems is that as you
go towards more multipurpose systems,
these systems tend to do both critical and
noncritical things. You might have different
trade-offs for reliability versus performance
for different tasks. For instance, for a video
encoder, the system requires maximum
performance and lower reliability. There-
fore, as we go towards less-programmable
systems, the trade-off is more obvious. On
the other hand, as we go towards more-

programmable systems doing both critical
and noncritical tasks, the trade-off becomes
a little bit harder, or a little bit foggy, with
these multipurpose systems.

González: Do you have a good example of
a potential area where you believe that
current approaches—for example, ECC—
won’t be enough? Do you have a good
example to motivate what can be done at
the microarchitecture level, Shubu?

Mukherjee: If you look at logic gates today,
their contribution to error rate is hidden in
the noise of all the factors that cause the
errors, such as soft errors and cell instability.
But, if you look five to 10 years ahead—
once timing problems start to show up,
maybe due to variations or wear-outs—logic
is going to become a problem. So, in that
case, classical ECC is not going to buy you
anything. We can start looking at residue-
checking or parity-prediction circuits to
detect logic errors.

It also comes down to this fundamental
point that you have a full stack, starting
from the software all the way down to the
process. As you go up from one layer to
another, the definition of errors makes it
clearer whether it is an error or not. That’s
what you need to track and what you need
to expose. That’s what Joel Emer and I have
worked on for a long time. We are
convinced that if you look at different levels
of a system, the resilience is very different.
In some cases, if you hit the bit, you
immediately see the error, but sometimes
you don’t see it at all. There is a wide degree
of variability.

Measuring reliability
Audience member: Can you give us an idea
of how much reliability we gain by what
you are putting in the processor, compared
to when we have nothing?

Mukherjee: I have some data on a cancelled
processor project. I was the lead architect for
reliability of that processor. Our data
showed that if you didn’t have any pro-
tection, that chip would be failing in
months due to all kinds of reliability
issues.

..

NOVEMBER–DECEMBER 2007 43

Audience member: How much can we put
in the commodity processors that customers
are willing to pay extra pennies for?

Mukherjee: That goes to the fundamental
problem of how to let customers know what
they are getting for the extra price. The
problem is that if you look at soft errors, we
cannot tell them what extra benefit they are
going to get. We can measure the perfor-
mance by clock time, but we don’t have
a good measurement of a system’s reliability.

González: Any idea on how we can measure
reliability?

Mukherjee: We fundamentally need
a mechanism to measure these things. For
hard errors, the problem may be tractable.
For soft errors—induced by radiation—this
is still a hard problem. For gradual errors,
such as wear-out, we still don’t know how
to measure the reliability of an individual
part. So, the answer is that, in many cases,
we don’t know how to measure reliability.

Mahlke: There may be a different angle of
looking at how reliability can be measured.
Instead of thinking of reliability as a tax that
you have to pay, and trying to justify this
tax, maybe the right way to go about this is
thinking of what else we get in addition to
reliability.

Let’s take Razor as an example. Razor can
identify events like transient faults, and it
also allows you to drive voltage down and
essentially operate at the lowest voltage
margin possible. It identifies when the
voltage goes too low and self-corrects the
circuit. If we talk about adaptive systems
and how to make systems more adaptable
for reliability or power consumption, then it
may be about justifying the cost of some
feature that the user really wants, and
reliability just kind of happens magically
behind your back.

How much extra hardware is needed
for reliability?
Audience member: How much can Intel
afford to put in the chip for reliability?

Mukherjee: We will put as much as we
need to hide under the software errors.

Mahlke: I guess you are saying that you are
putting in too much, since the software
errors are two orders of magnitude greater
than the hardware errors.

Mukherjee: Microsoft has actually shown
that Windows causes very few of the
problems. It is the device drivers that cause
many of the problems. Memory is also a big
problem, since more than 90 percent of
memories out there don’t have any fault
detection or error correction in them. Stratus
is a company that actually builds fault-
tolerant systems using Windows boxes
running on Pentium 3s. How did they do
that? They tested all the device drivers. And
they don’t let anyone install any device driver
arbitrarily on those systems. So, they have
a highly reliable, fault-tolerant Windows
system running on Pentium 3s. Believe it
or not, that exists. So, blaming Windows is
not the right way. Microsoft has done
a phenomenal job showing that it is not
Windows itself that causes most of the
reliability problems in today’s computers.MICRO

Acknowledgments
All views expressed by Antonio González

in this article are his alone, and all views
expressed by Shubu Mukherjee are his
alone. Neither author represents the posi-
tion of Intel Corporation in any shape or
form. Although Mahlke argues the fallacy
viewpoint in this article, his research group
actively works in the areas of designing
reliable and adaptive computer systems.

..

References
1. S. Borkar, ‘‘Microarchitecture and Design

Challenges for Gigascale Integration,’’ key-

note address, 37th Ann. IEEE/ACM Int’l

Symp. Microarchitecture, 2004.

2. National Software Testing Labs, http://

www.nstl.com.

3. R. Mariani, G. Boschi, and A. Ricca, ‘‘A

System-Level Approach for Memory Ro-

bustness,’’ Proc. Int’l Conf. Memory Tech-

nology and Design (ICMTD 05), 2005;

http://www.icmtd.com/proceedings.htm.

4. J. Srinivasan et al., ‘‘Lifetime Reliability: To-

ward an Architectural Solution,’’ IEEE Micro,

vol. 25, no. 3, May-June 2005, pp. 70-80.

...

COMPUTER ARCHITECTURE DEBATE

...

44 IEEE MICRO

5. Center for Advanced Life Cycle Engineer-

ing, Univ. of Maryland; http://www.calce.

umd.edu.

6. D. Ernst et al., ‘‘Razor: A Low-Power

Pipeline Based on Circuit-Level Timing

Speculation,’’ Proc. 36th Ann. Int’l Symp.

Microarchitecture (MICRO 03), IEEE CS

Press, 2003, pp. 7-18.

7. S.E. Michalak et al., ‘‘Predicting the Num-

ber of Fatal Soft Errors in Los Alamos

National Laboratory’s ASC Q Supercomput-

er,’’ IEEE Trans. Device and Materials

Reliability, vol. 5, no. 3, Sept. 2005, pp. 329-

335.

Antonio González is the founding director
of the Intel-UPC Barcelona Research Cen-
ter and a professor of computer architecture
at Universitat Politècnica de Catalunya. His
research focuses on computer architecture,
with particular emphasis on processor
microarchitecture and code generation tech-
niques. González is an associate editor of
IEEE Transactions on Computers, IEEE
Transactions on Parallel and Distributed
Systems, ACM Transactions on Architecture
and Code Optimization, and Journal of
Embedded Computing.

Scott Mahlke is an associate professor in
the Electrical Engineering and Computer
Science Department at the University of
Michigan, where he directs the Compilers

Creating Custom Processors research group.
His research interests include application-
specific processors, high-level synthesis,
compiler optimization, and computer ar-
chitecture. Mahlke has a PhD from the
University of Illinois, Urbana-Champaign.
He is a member of the IEEE and ACM.

Shubu Mukherjee is a principal engineer
and director of SPEARS (Simulation and
Pathfinding of Efficient and Reliable Sys-
tems) at Intel. The SPEARS Group spear-
heads architectural innovation in the de-
livery of microprocessors and chipsets by
building and supporting simulation and
analytical models of performance, power,
and reliability. Mukherjee has a PhD com-
puter science from the University of
Wisconsin–Madison.

The biographies of Resit Sendag, Derek
Chiou, and Joshua J. Yi appear on p. 24.

Direct questions and comments about
this article to Antonio González, Intel and
UPC, c/Jordi Girona 29, Edifici Nexus II,
3a. planta, 08034 Barcelona, Spain; antonio.
gonzalez@intel.com.

For more information on this or any

other computing topic, please visit our

Digital Library at http://computer.org/

csdl.

..

NOVEMBER–DECEMBER 2007 45

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

