
..

PROGRAMMING MULTICORES:
DO APPLICATIONS PROGRAMMERS

NEED TO WRITE EXPLICITLY
PARALLEL PROGRAMS?

..

IN THIS PANEL DISCUSSION FROM THE 2009 WORKSHOP ON COMPUTER ARCHITECTURE

RESEARCH DIRECTIONS, DAVID AUGUST AND KESHAV PINGALI DEBATE WHETHER EXPLICITLY

PARALLEL PROGRAMMING IS A NECESSARY EVIL FOR APPLICATIONS PROGRAMMERS,

ASSESS THE CURRENT STATE OF PARALLEL PROGRAMMING MODELS, AND DISCUSS

POSSIBLE ROUTES TOWARD FINDING THE PROGRAMMING MODEL FOR THE MULTICORE ERA.

Moderator’s introduction: Arvind
Do applications programmers need to write
explicitly parallel programs? Most people be-
lieve that the current method of parallel pro-
gramming is impeding the exploitation of
multicores. In other words, the number of
cores in a microprocessor is likely to track
Moore’s law in the near future, but the pro-
gramming of multicores might remain the
biggest obstacle in the forward march of
performance.

Let’s assume that this premise is true.
Now, the real question becomes: how should
applications programmers exploit the poten-
tial of multicores? There have been two main
ideas in exploiting parallelism: implicitly and
explicitly.

Implicit parallelism
The concept of the implicit exploitation

of the parallelism in a program has its roots

in the 1970s and 1980s, when two main
approaches were developed.

The first approach required that the com-
pilers do all the work in finding the parallel-
ism. This was often referred to as the ‘‘dusty
decks’’ problem—that is, how to exploit par-
allelism in existing programs. This approach
taught us a lot about compiling. But most
importantly, it taught us how to write a pro-
gram in the first place, so that the compiler
had a chance of finding the parallelism.

The second approach, to which I also
contributed, was to write programs in a man-
ner such that the inherent (or obvious) paral-
lelism in the algorithm is not obscured in the
program. I explored declarative languages for
this purpose. This line of research also taught
us a lot. It showed us that we can express all
kinds of parallelism in a program, but even
after all the parallelism has been exposed, it
is fairly difficult to efficiently map the

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 19

Arvind

Massachusetts Institute

of Technology

David August

Princeton University

Joshua J. Yi

University of Texas

School of Law

Resit Sendag

University of Rhode

Island

Keshav Pingali

Derek Chiou

University of Texas

at Austin

0272-1732/10/$26.00 �c 2010 IEEE Published by the IEEE Computer Society

...

19

exposed parallelism on a given hardware sub-
strate. So, we are faced with two problems:

� How do we expose the parallelism in a
program?

� How do we package the parallelism for
a particular machine?

Explicit parallelism
The other approach is to program

machines explicitly to exploit parallelism.
This means that the programmer should be
made aware of all the machine resources:
the type of interconnection, the number
and configuration of caches in the memory
hierarchy, and so on. But, it is obvious that
if too much information were disclosed
about the machine, programming difficulty
would increase rapidly. Perhaps a more sys-
tematic manner of exposing machine details
could alleviate this problem.

Difficulty is always at the forefront of any
discussion of explicit parallel programming.
In the earliest days of the message passing in-
terface (MPI), experts were concerned that
people would not be able to write parallel
programs at all because humans’ sequential
manner of thinking would make writing
these programs difficult. In addition, the
more resources a machine exposes, the less
abstract the programming becomes. Hence,
it is not surprising that such programs’ por-
tability becomes a difficult issue. How will
the program be transferred to the next gener-
ation of a given machine from the same ven-
dor or to an entirely different machine?
Today, the issue of portability is so impor-
tant that giving it up is not really an option.
To do so would require that every program
be rewritten for each machine configuration.
The last problem, which is equally important
as the first two, is that of composability.
After all, the main purpose of parallel
programming is to enhance performance.
Composing parallel programs in a manner
that is informative about the performance
of the composed program remains one of
the most daunting challenges facing us.

Implicit versus explicit debate
This minipanel addresses the implicit ver-

sus explicit debate. How much about the
machine should be exposed? Professors

David August and Keshav Pingali will debate
the following questions:

� How should applications programmers
exploit the potential of multicores?

� Is explicitly parallel programming
inherently more difficult than implic-
itly parallel programming?

� Can we design languages, compilers,
and runtime systems so that applica-
tions programmers can get away with
writing only implicit parallel programs,
without sacrificing performance?

� Does anyone other than a few compiler
writers and systems programmers need
explicitly parallel programming?

� Do programmers need to be able to ex-
press nondeterminism (for example, se-
lection from a set) to exploit parallelism
in an application?

� Is a speculative execution model essen-
tial for exploiting parallelism?

The case for an implicitly parallel
programming model and dynamic
parallelization: David August

Let’s address Arvind’s questions directly,
starting with the first.

How should applications programmers exploit
the potential of multicores? We appear to
have two options. The first is explicitly paral-
lel programming (parallel programming for
short); the second is parallelizing compilers.
In one approach, humans perform all of
the parallelism extraction. In the other,
tools, such as compilers, do the extraction.
Historically, both approaches have been dis-
mal failures. We need a new approach, called
the implicitly parallel programming model and
dynamic parallelization. This is a hybrid
approach that is fundamentally different
from simply combining explicitly parallel
programming with parallelizing compilers.

To understand this new approach, we
must understand the difference between
‘‘explicit’’ and ‘‘implicit.’’

Consider the __INLINE__ directive. You
can, using some compilers, mark a function
with this directive, and the compiler will au-
tomatically and reliably inline it for you.
This directive is explicit. The tool makes

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 20

..

20 IEEE MICRO

...

COMPUTER ARCHITECTURE DEBATES

inlining more convenient than inlining man-
ually. However, it is not as convenient as
simply not having to concern yourself with
questions of inlining, because you are still re-
sponsible for making the decision and
informing the inlining tool of your decision.
Explicit inlining is now unnecessary because
compilers are better at making inlining deci-
sions than programmers. Instead, by using
functions and methods, programmers pro-
vide compilers with enough information to
decide on their own what and where to
inline. Inlining has become implicit since
each function and method by itself (without
the __INLINE__ directive) is a suggestion to
the compiler that it should make a decision
about whether to inline.

Parallel programming is explicit in that the
programmer concretely specifies how to parti-
tion the program. In parallel programming,
we have many choices. Figure 1 shows a partial
list of more than 150 parallel programming
languages that programmers can choose
from if they want to be explicit about how
to parallelize a program. Somehow, despite
all these options, the problem still isn’t solved.

Programmers have a hard time making good
decisions about how to parallelize codes, so
forcing them to be explicit about it to address
the multicore problem isn’t a solution. As
we’ll see, it actually makes the problem
worse in the long run. That’s why I’m not a
proponent of explicitly parallel programming.

Is explicitly parallel programming inherently
more difficult than implicitly parallel pro-
gramming? For this question, I’m not
going to make a strong argument. Instead,
my opponent (Keshav Pingali) will make
a strong argument for me. In his PLDI
(Programming Language Design and Imple-
mentation) 2007 paper,1 he quotes Tim
Sweeney, who ‘‘designed the first multi-
threaded Unreal 3 game engine.’’ Sweeney
estimates that ‘‘writing multithreaded code
tripled software code cost at Epic games.’’
This means that explicitly parallel program-
ming is going to hurt. And, it’s going to
hurt more as the number of cores increases.
Through Sweeney, I think my opponent
has typified the universal failure of explicitly
parallel programming to solve the problem.

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 21

Figure 1. A partial list of parallel programming languages.

..

MAY/JUNE 2010 21

To support the case for implicitly parallel
programming languages, I refer to the same
paper by my opponent, in which he says
‘‘it is likely that more SQL programs are exe-
cuted in parallel than programs in any other
programming language. However, most SQL
programmers do not write explicitly parallel
code’’ This is a great example of implic-
itly parallel programming offering success in
the real world. What we should be doing as a
community is broadening the scope of
implicitly parallel programming beyond the
database domain.

Can we design languages, compilers, and
runtime systems so that applications pro-
grammers can get away with writing only
implicitly parallel programs, without
sacrificing performance? I’d like to answer
this question by describing an experiment
we’ve done. In Figure 2, we have a function
called rand. It’s just a pseudo number gen-
erator with some internal state, called

state. Elsewhere, we have an apparently
DoAll loop that calls rand. Unfortu-
nately, a dependence existing between
each rand call must be respected, creating
a serialization of the calls to rand. Sched-
uling iteration 1 on core 1, iteration 2 on
core 2, and iteration 3 on core 3 provides
no benefit as rand is called at the start
and end of each iteration. This serializes
each iteration of the loop with the next.

With this constraint, parallelism seems
impossible to extract, because this depen-
dence must be respected for correct execu-
tion, yet we can’t speculate it, schedule it,
or otherwise deal with it in the compiler.
As programmers, though, we know that the
rand function meets its contractual obliga-
tions regardless of the order in which it’s
called. The value order returned by rand
is irrelevant in our example. The sequential
programming language constrains the com-
piler to maintaining the single original se-
quential order of dependences between calls
to rand. This is unnecessary, so we should
relax this constraint.

To let the programmer relax this constraint,
we add an annotation to the sequential pro-
gramming model that tells the compiler that
this function can be invoked in any order.
We call this annotation commutative,
referring to the programmer’s intuitive no-
tion of a commutative mathematical opera-
tor. The commutative annotation says
that any invocation order is legal so long
as there is an order. Armed with this infor-
mation, the compiler can now execute iter-
ations in parallel, as Figure 3 shows. The
actual dependence pattern becomes a dy-
namic dependence pattern. The order in
which rand is called is opportunistic, and
large amounts of parallelism are exposed.
The details of the commutative annota-
tion are available elsewhere.2

There are several important things to
note. First, the annotation is not an explicitly
parallel annotation like an OpenMP pragma.
Second, the annotation is not a hint to the
compiler to do something that it could pos-
sibly figure out on its own if it were smart
enough, like the register and inline keywords
in C are now. It is an annotation that com-
municates information about dependences
to the compiler, information that is only

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 22

Core 1

(a) (b)

Core 2

Time

Core 3

char *state;

void * rand(int size);

void *rand() {

 state =

f(state);

 return state;

}

rand1

rand2

rand3

rand4

rand5

rand6

Figure 2. Parallelization diagram: pseudocode (a) and dynamic execution

schedule (b). The dependence between each rand call creates a

serialization of the calls to rand.

..

22 IEEE MICRO

...

COMPUTER ARCHITECTURE DEBATES

knowable through an understanding of the
real-world task. Additionally, although we
arrived at this use of commutative by
examining this program’s execution plan,
we don’t expect the programmer to have to
do so. Instead, we expect the programmer
to integrate commutative directly into
the programming process, where it should
be annotated on any function that is seman-
tically commutative. That is, commuta-
tive is a property of the function as used
in this program, not a property of the under-
lying hardware, the execution plan, nor any
of the other concerns explicitly parallel pro-
grammers must consider.

The idea isn’t new; my opponent also
refers to this idea in his PLDI 2007 paper
and talks about ‘‘some serial order’’ and
‘‘commutativity in the semantic sense.’’
Note that our commutative isn’t inher-
ently commutative (like addition), but
semantically commutative. So, it states that
receiving random numbers out of order, as
Figure 3 shows, is acceptable for this pro-
gram’s task even though it might not be ac-
ceptable for other tasks. For our implicitly
parallel programming experiment, we took
all of the C programs in the SPEC CPU
2000 integer benchmark suite and modified
50 of the roughly 500,000 lines of code
(LOC). Most of the modifications involved
adding the commutative annotation.
This annotation adds a little nondeterminism
in the form of new legal orderings. As Figure
4 illustrates, by using this method, we
restored the performance trend lost in 2004.

Do programmers need to be able to express
nondeterminism (for example, selection from a
set) to exploit parallelism in an application?
The answer is yes. Figure 5 shows performance
with and without those annotations— the ef-
fect of those 50 lines of code out of 500,000.
Without the annotations, we can only talk
about speedup in percentages, such as 10 or
50 percent—what one normally expects
from a compiler. Using the annotations with
today’s compiler technology, we can talk
about speedup in terms of multiples, such as
5 or 20 times.

Is a speculative execution model essential for
exploiting parallelism? Yes, the compiler is

speculating a lot, but we don’t expose it to
the programmer. Speculation management
can and should be hidden from the program-
mer, just as speculative hardware has done for
the last few decades.

And, really the final question is: Does anyone
other than a few compiler writers and systems
programmers need explicitly parallel pro-
gramming? Obviously, compiler writers
and system programmers have to do it. For
now, they will have to deal with these issues.
For everyone lucky enough not to be com-
piler writers or systems programmers, my an-
swer is: No, you don’t need explicitly parallel
programming.

My opponent might argue, as he does in
his paper, that the programmer must provide
the means to support speculation rollback.
Well, in our approach, we didn’t need that.
He might also argue, as he does in his
paper, that a need for opportunistic

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 23

Core 1

(a) (b)

 Core 2

rand1

rand2

rand3

rand4

rand5

rand6

Time

Core 3 char *state;

void * rand(int size);

@Commutative

void *rand() {

 state =

f(state);

 return state;

}

Figure 3. Parallelization diagram: pseudocode with commutative

annotation (a) and dynamic execution schedule (b). Since the value order

returned by rand is irrelevant in the example given in Figure 2, we can

relax the constraint on maintaining a single original sequential order

of dependences between calls to rand. We do this by adding the

commutative annotation to the sequential programming model that

tells the compiler that this function can be invoked in any order. With

this annotation, the compiler can now execute iterations in parallel.

..

MAY/JUNE 2010 23

parallelism exists. As our results in Table 1
show, our implicitly parallel approach pro-
vides less than 2 times speedup on some pro-
grams. You might think that this is a failure

of implicitly parallel programming and that
falling back to explicitly parallel program-
ming is the only way to speed up perl.
That would be a disaster. Given more time,

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 24

CPU 92 CPU 95 CPU 2000 CPU 2006 Our technology

S
P

E
C

 C
P

U
 in

te
g

er
 p

er
fo

rm
an

ce
 (

lo
g

ar
ith

m
ic

 s
ca

le
)

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 4. Restoration of performance trend lost in 2004. The compiler technology in this figure is the implicitly parallel

approach developed by the Liberty Research Group, led by David August at Princeton University.

100

10

1S
p

ee
d

up
 v

s.
 s

in
g

le
 th

re
ad

ed

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
3.p

er
lbmk

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

Geo
 m

ea
n

Existing
Framework + annotations

Figure 5. Performance with and without the implicitly parallel approach with annotations.

Approximately 50 of 500,000 lines of code have been modified.

..

24 IEEE MICRO

...

COMPUTER ARCHITECTURE DEBATES

I could tell you how we can speed that up
without falling back to explicitly parallel pro-
gramming. This leads me to one final
thought.

I have an ally in this debate in the form of
the full employment theorem for compiler
writers. It says, ‘‘Compilers and runtime sys-
tems can always be made better.’’ Every time
you see a tool fail to make good use of im-
plicit parallelism, you can fix it. You can al-
ways make it good enough to avoid reverting
back to explicit parallelism and all of its
problems. The human effort that went into
improving a single application’s performance
could have been better applied to improving
the tools, likely improving the performance
of many programs, existing and not yet
written.

The case for an explicitly parallel
programming: Keshav Pingali

I believe that applications programmers
do need to write explicitly parallel programs.
I can summarize my thoughts in three points.

First, explicitly parallel programming is
indeed more complex than implicitly parallel
programming. I think we all agree about
that. Unfortunately, I think it is a necessary
evil for applications programmers, particu-
larly for those who write what we call ‘‘irreg-
ular’’ programs (mainly programs that deal
with very large pointer-based data structures,
such as trees and graphs).

Second, exploiting nondeterminism is
important for performance, and by that I
don’t mean race conditions. What I mean
here is what experts call ‘‘don’t-care nonde-
terminism.’’ There are many programs that
are allowed to produce multiple outputs,
and any one of those outputs is acceptable.
You want the system to figure out which
output is the most efficient to produce.
This kind of nondeterminism is extremely
important. I think David pretty much agrees
with that, so I won’t spend too much time
on it.

Finally, optimistic or speculative parallel
execution is absolutely essential. This is a
point that many people don’t appreciate,
even those in the parallel programming com-
munity. Parallelism in many programs
depends on runtime values. And therefore,
unless something is done at runtime, such

as speculation, we really can’t exploit parallel-
ism in those kinds of programs.

Delaunay mesh refinement
I find it easiest to make arguments with

concrete examples. A popular example in
the community is Delaunay mesh refinement
(DMR).3 The input to this algorithm is a tri-
angulation of a region in the plane such as
the mesh in Figure 6a. Some of the triangles
in the mesh might be badly shaped according
to certain shape criteria (the dark gray trian-
gles in Figure 6a). If so, we use an iterative

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 25

Table 1. Maximum speedup achieved on up to 32 threads over

single-threaded execution and minimum number of threads

at which the maximum speedup occurred.

Benchmark No. of threads Speedup

164.gzip 32 29.91

175.vpr 15 3.59

176.gcc 16 5.06

181.mcf 32 2.84

186.crafty 32 25.18

197.parser 32 24.5

253.perlbmk 5 1.21

254.gap 10 1.94

255.vortex 32 4.92

256.bzip2 12 6.72

300.twolf 8 2.06

GeoMean 17 5.54

ArithMean 20 9.81

(a) (b)

Figure 6. Delaunay mesh refinement example. Through an iterative refine-

ment procedure, triangles within the neighborhood, or cavity, of a badly

shaped triangle (dark gray triangles in (a)) are retriangulated, creating new

triangles (light gray triangles in (b))

..

MAY/JUNE 2010 25

refinement procedure to eliminate them
from the mesh. In each step, the refinement
procedure

� picks a bad triangle from the worklist,
� collects several triangles in the neigh-

borhood (the cavity) of that bad triangle
(dark gray regions in Figure 6a), and

� retriangulates the cavity, creating the
light gray triangles in Figure 6b. If
this retriangulation creates new badly
shaped triangles, they are added to the
worklist.

There is room for nondeterminism in this
algorithm because the final mesh’s shape
depends on the order in which we process
the bad triangles. But we can show that
every processing order terminates and produ-
ces a mesh without badly shaped triangles.
The fact that any one of these output
meshes can be produced is important for
performance.

Another important point is that parallel-
ism in this application depends on runtime
values. Whether bad triangles can be refined
concurrently depends on whether their cav-
ities overlap. Because dependences between
computations on different bad triangles de-
pend on the input mesh and on the modifi-
cations made to the mesh at runtime, the
parallelism can’t be exposed by compile-time

program analyses such as points-to
or shape analysis.4,5 To exploit this ‘‘amor-
phous data-parallelism,’’ as we call it, it’s
necessary in general to use speculative or
optimistic parallel execution.1 Different
threads process worklist items concurrently,
but to ensure that the sequential program’s
semantics are respected, the runtime system
detects dependence violations between con-
current computations and rolls back con-
flicting computations as needed. (DMR
can be executed in parallel without specula-
tion by repeatedly building interference
graphs and finding maximal independent
sets, and so on, but this doesn’t work in
general.)

Framework
David and I disagree about what to call

these kinds of applications. The framework
in Figure 7 is useful for thinking about the
implicitly and explicitly parallel program-
ming models.

Let’s go back to David’s SQL program-
ming example. Database programming, in
my opinion, is a great example of an area
where implicitly parallel programming suc-
ceeded. But it’s important to remember
that there are two kinds of programs and
two kinds of programmers. Applications pro-
grammers write SQL programs that are
implicitly parallel. So, I accept that this
SQL programming has been a success
story for implicitly parallel programming.
However, application programmers rely
on implementations of relations, such as
B-trees, which have been carefully coded in
parallel by a small number of systems pro-
grammers. The question is whether we can
generalize this to general-purpose parallel
programs. I think about it in terms of
Niklaus Wirth’s equation: program ¼
algorithm þ data structure. We
need to think about an application in terms
of both the algorithm, which the applications
programmer codes using an abstract data
type; and the concrete data structure that
implements that abstract data type. In data-
base programming, algorithms are indeed
being expressed with an implicitly parallel
language such as SQL. However, the data
structures are being implemented with an
explicitly parallel language such as Cþþ or

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 26

SQL
programs

B-tree
and

so on

Implicity
parallel

Explicity
parallel

Figure 7. A framework for understanding

the implicitly and explicitly parallel program-

ming models. Applications programmers

write SQL programs, which are implicitly

parallel, and they rely on implementations

of relations, such as B-trees, which

systems programmers have carefully

coded in parallel.

..

26 IEEE MICRO

...

COMPUTER ARCHITECTURE DEBATES

Java. Can we make this software develop-
ment model general purpose? We have had
some success doing so; however, we’ve also
run into some stumbling blocks, which
makes us more skeptical about this particular
model.

A programming model example and the need
for explicitly parallel programming

A recent effort on the parallel execution of
irregular programs (which are organized
around pointer-based data structures such
as trees and graphs) has led the development
of the Galois programming model.1,6,7 This
programming model is sequential and
object-oriented (sequential Java). Applica-
tions programmers write algorithms using
Galois set iterators, which essentially give
them nondeterministic choices, sets, and
so on. They then rely on the equivalent of
a collections library, in which all the data
structures, such as graphs and trees, are
implemented. An applications programmer
can easily write an algorithm, such as
DMR, with this sequential language. How-
ever, they’re relying on a collections library
that someone else implemented using explic-
itly parallel programming with locks and so
on. Is this good enough? In other words,
can we ship a collections library of data struc-
tures that have been implemented with
explicitly parallel programming that applica-
tions programmers can then use in their se-
quential object-oriented models and thus
avoid having to write any concurrent pro-
grams at all? Unfortunately, here we run
into three fundamental problems, which
make me skeptical as to whether this pro-
gramming model will work.

The first problem is that no current fixed
set of data structures meets all applications’
needs. For example, the Java collections
library contains many concurrent data struc-
tures, but there are many other data
structures that aren’t in there, such as kd-
trees and suffix trees. As library writers in-
teract with applications programmers, they
find more of these data structures. They
then have to code concurrent versions
using explicitly parallel languages. Just to
give you an idea of how many data struc-
tures there are, a Google search on ‘‘hand-
book of data structures’’ returns a great

book by Sartaj Sahni.8 It’s 1,392 pages
and lists hundreds of data structures. What
that means is that there’s a large variety of
data structures that we must code in terms
of some explicitly parallel programming
language. We might then be able to use
the Galois programming model on top to
express the algorithm. If the data structures
that we need to implement the algorithm
aren’t supported in the library, however,
they must still be coded in explicitly parallel
programming languages.

Second, even generic data structures must
be tuned for a particular application. For ex-
ample, if you need a graph, you find it in the
library and use it for your program. How-
ever, if your application has some properties
that you must exploit to get good perfor-
mance, you have no option but to start
mucking around with the data structure im-
plementation, which is of course in an explic-
itly parallel language.

The third problem is tied to the first two.
In many applications, the API functions
of the various classes (graph, tree, data struc-
ture, and so on) do relatively little computa-
tion. In databases, this model works well
because most of the execution time is spent
in library functions that system programmers
have carefully implemented in explicitly
parallel languages. Hence, there’s no need
to worry too much about the top-level
program. However, many general-purpose
applications don’t spend a lot of time on
data structure operations. Therefore, to get
really good performance, you need to squish
the application code and data structure
implementation together in some way. Un-
fortunately, we don’t currently have the com-
piler technology to generate good code of
that kind from a separate specification of
the algorithm and the data structure.

We run into these three issues when we
try to shield applications programmers
from the complexities of explicitly parallel
programming. Are these fundamental prob-
lems? If they are, you have no choice but
to write some amount of explicitly parallel
code even if you’re an applications program-
mer. I see no solutions for these problems
right now. So, I’m putting these issues up
for debate and will see if my opponent has
a viewpoint on them.

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 27

..

MAY/JUNE 2010 27

Parallel libraries and automatic
parallelization
August: There’s a lot of talk about solving
the parallel programming model problem
through the use of libraries. It occurs to
me, especially after hearing that one book
lists numerous data structures, that there
are more libraries than programs. If that’s
so, maybe the problem is not how to write
parallel programs, but how to write parallel
libraries. So, we’re back to where we started.
We need a solution that works for writing
libraries and applications.

Pingali: I don’t think that’s going to solve
anything. I agree that explicitly parallel pro-
gramming is difficult. Therefore, we want
to minimize the amount of code written
explicitly parallel. However, if applications
programmers want really good perfor-
mance, they might need to dig for data
structure implementations, whether or not
thousands of them exist. No technology
that I know of lets you write these opti-
mized data structure implementations for
particular applications. For example, I
don’t know of any automatic way of taking
some implicitly parallel descriptions of data
structures, such as kd-trees and suffix trees,
and producing optimized parallel imple-
mentations. Currently, the only way is to
write explicitly parallel code. Transactional
memory might make programming those
kinds of data structures easier, but ulti-
mately you don’t get the performance you
want. And, even for the transactions, there’s
some notion of explicit parallelism.

August: If we were to explicitly parallelize a
large number of libraries, we would start to
see some patterns, and if we start to see pat-
terns, effort might be better spent imple-
menting ways to automate those patterns
by merging those patterns that are in paral-
lel form in a compiler.

In the past, when compilers were the 15-
percent solution, the economics weren’t
there for many of us to get involved in writ-
ing automatic parallelization techniques or
transforms. But, now that we have a choice
between relying on some kind of system or
turning to the recurring expense of writing
explicitly parallel programs, the economics

might be there to take that approach. What
do you think?

Pingali: That’s an interesting idea, David. I
would be happy about this because I don’t
particularly like explicitly parallel program-
ming, either. However, almost all of the com-
piler technology developed over the past 40
to 50 years has been targeted toward dense
matrix computation. We know very little
about how to analyze irregular pointer-
based data structures (such as large trees and
graphs). Some work has been done, but it
hasn’t gone anywhere, in my opinion. So,
I’ve become somewhat skeptical about the
possibility of developing compiler technology
for generating a parallel implementation for
these data structures from high-level specifica-
tions. But it’s an interesting goal.

August: Perhaps we should give up the idea
that we can fully understand code statically,
an idea that I think has misdirected effort in
compiler development for decades. Let’s
refer to the poor performer benchmark, perl,
in our implicitly parallel program experiment.
In perl, the parallelism is fully encoded in
the input set. The perl script has parallelism
in it, but, most likely, the input defines
where the parallelism is. Therefore, no static
analysis can tell you what the input to that pro-
gram is or where the parallelism will be be-
cause they haven’t yet been determined.
Therefore, maybe we should think about this
as the fundamental problem and move to a
model where we look at the code and do trans-
formations at runtime or generationally. We
should abandon doing things like shape anal-
ysis and heroic compiler analyses in general.

Where should it be done
in the software stack?
Audience: I never thought that parallelism
would be a problem, at least for many appli-
cations. The problem arises in actually run-
ning these programs effectively on a
machine. A lot of that has to do with local-
ity. For example, where to get data, where
to get the structures, how quickly they’re
obtained, and how much bandwidth is
obtained. Unfortunately, I haven’t seen any-
thing in the discussion so far to address that.
I was just wondering first of all whether

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 28

..

28 IEEE MICRO

...

COMPUTER ARCHITECTURE DEBATES

your systems work. That’s what was so good
about an API. It’s terrible that you have to
do everything yourself but it really works
when you’re sure things are in the right
place. What are your thoughts on this?

August: From the implicitly parallel pro-
gramming model viewpoint, we’re going
to rely on a dynamic component—a layer
between the program and the multicore
processor—to do the tuning. There has
been some success in the iterative compilation
world. Compilers don’t know the right thing
to do unless they can observe the effects of
their transformations. Once they have the
chance to do so, they can make increasingly
better decisions. The goal there is to reduce
the burden on the applications programmers
to do that kind of tuning.

Arvind: Just for clarification, are you talk-
ing about an interactive system?

August: Because of the problem that I men-
tioned with the perl benchmark, we need to
deal with the program after it starts running.
We want to observe dependences on values,
to speculate upon them, and to tune. We
also want to understand if there are other
things happening dynamically in the system,
such as might reduce the effective core count.
We’d like to adjust for such events as well.
So, this is a runtime system.

Arvind: Is this for future program runs?

August: It could be the same run. We have
extra cores, so we can expend some effort
adjusting the program. Some of the most suc-
cessful models are those in which the static
compiler only partially encodes the program
and leaves the rest to be adjusted at runtime.
It isn’t a dynamic optimizer as such since the
program isn’t fully defined. Instead, the pro-
gram can be parameterized by feedback from
the performance at runtime. So, it’s a hybrid
between a compiler running statically and
purely runtime optimization.

Pingali: One mistake we keep making in the
programming languages and architecture
community, or the systems community
more broadly, is thinking about programmers

as monolithic because we’re used to the idea
of SPEC benchmarks. So, there is one big
piece of code and someone has to put some-
thing in that C (or other language) code to
exploit parallelism. We need to get away
from this kind of thinking because domains
in which people have successfully exploited
parallelism have two classes of programmers.
There are ‘‘Joe’’ programmers—applications
programmers with little knowledge about
parallel programming although they’re
domain experts. And, there are ‘‘Steve’’ or
‘‘Stephanie’’ programmers—highly trained
parallel programming experts who know a
lot about the machine, but little about a
particular application domain. These pro-
grammers write the middle layers.

In the database domain, for example, Joe
programmers write SQL code. They don’t
know a lot about concurrency control and
all that other stuff, but they get the job
done. There are a small number of people
at IBM, Oracle, and other corporations,
who implement, for example, WebSphere
carefully and painfully in Cþþ or Java.
Therefore, clearly we need to manage resour-
ces and locality to get good performance. The
real question we should be asking is where in
the software stack this management should
take place. If there’s any hope for bringing
parallelism into the mainstream and for hav-
ing millions of people write programs, we
can’t leave resource and locality management
to applications programmers. Rather, it must
be done at a lower level, even if it’s less effi-
cient than doing it with respect to having
some knowledge about the application. So,
I don’t think we have any choice. We
shouldn’t be considering whether to do it,
but rather, where in the software stack to
do it and how to make sure that as much
as possible is done lower in the stack. Other-
wise, multicores will never go mainstream.

August: That sounds like an argument for
implicit programming.

Pingali: We should do as much implicit
programming as we can at the Joe program-
mer level. There is no debate about that.
The question is whether we can get away
from explicitly parallel programming alto-
gether, and my position is no.

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 29

..

MAY/JUNE 2010 29

Are libraries really the solution?
Audience: Professor Pingali, you were talk-
ing about how people always handcraft libra-
ries. Let’s talk about the Cþþ Standard
Template Library. In many software compa-
nies today, if you handcraft data structures or
operations that can’t be expressed using STL,
you’re fired.

Pingali: We still haven’t dealt with parallel-
ism in regard to STL. So, can we build a par-
allel implementation of STL that covers such
a broad application scope that companies can
really start firing people the moment they say
they’re getting terrible performance for a par-
ticular application and they need to code
something at the STL level using explicitly
parallel programming? I don’t think we’re
there yet. I don’t know if we’ll ever get
there for reasons I already mentioned.

Audience: The flip side of this is that STL
consists not only of data structure manipula-
tions, linked lists, and so on, but also of
math applications such as those applying an
operation in mathematical parallel. Almost
no one uses math operations in the STL li-
brary. Professor August, can your compiler
convert some of the code used in this area
by employing the math implementation?

August: Let’s take an example of an iterator
traversing a linked list. We wish that a pro-
grammer had used the array library. We also
wish that the access order didn’t matter—
random access to the array elements would
be nice, especially in the DoAll style of par-
allelism. But that doesn’t stop us from find-
ing parallelism. Perhaps we can’t think of a
more serial operation than the traversal of a
linked list. But, there are techniques that
can transform serial data structures, such
as a linked list, into other data structures
that enable parallelism, such as arrays or
skip lists specific to particular traversals.
There are some automatic techniques to
deal with these kinds of problems.

Paradigm shift and education problem
Audience: To roughly characterize the two
arguments, both of you are saying that ex-
plicit programming is hard. One of you
argues that it’s so hard we shouldn’t use it.

The other argues that it’s hard but we have
to do it. I’m curious about the quote on
the UnReal engine that David mentioned.
How difficult was developing or building
the parallel version of that engine for the
first time? How much of this is really a tran-
sient effect? How much extra programmer
time and cost did it entail the next time
they tried to build an engine like that?
Is this really an education problem because
it’s a big paradigm shift from single-threaded
to multithreaded code?

August: Maybe one thing that will happen is
that programmers will change. Perhaps there
won’t be any Joe programmers anymore.
That’s possible, but I doubt it. The other
thing that we know will change is the num-
ber of cores. We’re talking about 4, 6, and
8 now. What will happen when we have
32, 64, or more? What about thousands?
The multithreaded version of the UnReal en-
gine, which was too hard to build the first
time, needs to be built again. The first ver-
sion didn’t explore speculation; however,
now you have to do speculation because
we need much better speedups than only
3 times. It seems like just as you solved the
problem, the microprocessor manufacturers
made the problem harder. So, we’re contin-
ually chasing the rabbit, and there must be
a better way.

Audience: Well, that implies that eventually
you must do explicit programming. Unless
you’re saying that your implicit infrastruc-
ture can do a better job?

August: Yes, that’s my claim.

Pingali: The way I see it, the fewer opportu-
nities for making errors and bugs, the better
off Joe programmers are. Perhaps with
enough training, we can even get them to
write reasonably good concurrent code. But
the point is, it’s almost always better if you
don’t have to worry about these concurrency
bugs, even if you’re Steve or Stephanie pro-
grammer. So, what we should do is try to
move concurrency management somewhere
in the software stack, where it can be dealt
with in a controlled way as opposed to just
letting it out and saying everyone must

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 30

..

30 IEEE MICRO

...

COMPUTER ARCHITECTURE DEBATES

become a Stephanie programmer. I don’t
think that’s going to happen because it
hasn’t happened in a few domains, such as
dense numerical linear algebra, that success-
fully harnessed parallelism. In the dense nu-
merical algebra domain, a small number of
people write matrix factorization libraries,
and a large number of Matlab programmers
who simply write Matlab use these libraries.
If you start looking at the library implemen-
tations, such as the matrix factorization code
and matrix multiplication, the code is some-
what horrific. To have everyone write their
own explicitly parallel code isn’t a scalable
model of software development.

Implicit versus explicit
Audience: David, you have annotations that
you need to add to your programs. Where
do you draw the line between implicit and
explicit?

August: If the annotation brings information
that can’t be determined otherwise, it’s
implicitly parallel. If a compiler or runtime
system can determine the existence of depen-
dence automatically, annotations confirming
its existence or indicating what to do about
it are explicit. Consider the situation where
you can give the user the numbers from a
pseudorandom number generator in any
order, changing the program’s output. If the
programmer states that this is legal, that
statement is implicit because it’s otherwise
indeterminable. The compiler can’t know
whether the user needs the numbers in the
original order, because sometimes the order
is important and sometimes it isn’t, depend-
ing on the real-world task. To me, that
isn’t only an implicitly parallel annotation,
but it’s a good language annotation since it
isn’t automatically determinable.

How should parallel programming
be introduced in a computer science
and engineering curriculum?
Arvind: When I was an assistant professor,
I went to the department head and said, I
have to teach this course, it’s very impor-
tant. He asked how important; I said very
important. Then, he said, why don’t you
teach it at the freshmen level. I said no,

no, it isn’t that important. So, the question
really is how important is parallel program-
ming? Is it separate from sequential pro-
gramming? And within that context, how
important is explicitly parallel program-
ming? Should we teach it at the freshmen
level, or is it like quantum mechanics,
where you must master classical mechanics
before you can touch quantum mechanics?
I would like both of you to express your
opinion on this.

August: It’s as important as computer
architecture. So, it should be taught at the
junior/senior level.

Pingali: I’d like to go back to Niklaus
Wirth’s equation: program ¼ algo-
rithm þ data structure. We need
to teach algorithms and data structures
first. When teaching students sequential
algorithms and data structures, we can also
teach them parallelism in algorithms, which
we can do without talking about a particular
programming model or implementation of
locks, transactional memory, synchroniza-
tion, and so on. We can talk about locality,
parallelism, and algorithms without talking
about all of those other things. After that,
we should introduce implicitly parallel pro-
gramming at the Joe programmer level.
That is, Joe programmers write these Joe
programs using somebody’s data structures
in libraries, which are painfully written, like
a collection of classes written over many
years. This way, they get a feel of what
they can get out of parallel programming.
Then, you take the covers off and tell them
what’s in these data structure libraries, and
expose them to their implementations.
That’s the sequence that we have to go
through. I would start with data structures
and algorithms at the abstract level.
Then, show them implicit parallel program-
ming at the Joe programmer level using
parallel libraries. Then, expose them to its
implementation. MICRO

..
References

1. M. Kulkarni et al., ‘‘Optimistic Parallelism

Requires Abstractions,’’ Proc. ACM SIG-

PLAN Conf. Programming Language Design

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 31

..

MAY/JUNE 2010 31

and Implementation (PLDI 07), ACM Press,

2007, pp. 211-222.

2. M. Bridges et al., ‘‘Revisiting the Sequential

Programming Model for Multi-Core,’’ Proc.

40th Ann. IEEE/ACM Int’l Symp. Microarch-

itecture, IEEE CS Press, 2007, pp. 69-84.

3. L. Paul Chew, ‘‘Guaranteed-Quality Mesh

Generation for Curved Surfaces,’’ Proc.

9th Ann. Symp. Computational Geometry

(SCG 93), ACM Press, 1993, pp. 274-280.

4. L. Hendren and A. Nicolau, ‘‘Parallelizing

Programs with Recursive Data Structures,’’

IEEE Trans. Parallel and Distributed Sys-

tems, vol. 1, no. 1, Jan. 1990, pp. 35-47.

5. M. Sagiv, T. Reps, and R. Wilhelm, ‘‘Solving

Shape-Analysis Problems in Languages

with Destructive Updating,’’ ACM Trans.

Programming Languages and Systems,

vol. 20, no. 1, Jan. 1998, pp. 1-50.

6. M. Kulkarni et al., ‘‘Optimistic Parallelism

Benefits from Data Partitioning,’’ Proc.

Conf. Architectural Support for Programming

Languages and Operating Systems (ASPLOS

08), ACM Press, 2008, pp. 233-243.

7. M. Kulkarni et al., ‘‘Scheduling Strategies

for Optimistic Parallel Execution of Irregular

Programs,’’ Proc. Symp. Parallelism in Algo-

rithms and Architectures (SPAA 08), ACM

Press, 2008, pp. 217-228.

8. D. Mehta ed., Handbook of Data Struc-

tures and Applications, Chapman and

Hall, 2004.

Arvind is the Johnson Professor of Compu-
ter Science and Engineering at the Massa-
chusetts Institute of Technology. His current
research focus is on enabling rapid develop-
ment of embedded systems. He is coauthor
of Implicit Parallel Programming in pH.
Arvind has a PhD in computer science from
the University of Minnesota. He is a Fellow
of both IEEE and ACM, and a member of
the National Academy of Engineering.

David I. August is an associate professor in
the Department of Computer Science at
Princeton University, where he directs the
Liberty Research Group, which aims to solve
the multicore problem. August has a PhD in
electrical engineering from the University
of Illinois at Urbana-Champaign. He is a
member of IEEE and ACM.

Keshav Pingali is a professor in the
Department of Computer Science at the
University of Texas at Austin, where he holds
the W.A.‘‘Tex’’ Moncrief Chair of Grid and
Distributed Computing in the Institute for
Computational Engineering and Science.
His research interests include programming
languages, compilers, and high-performance
computing. Pingali has an ScD in electrical
engineering from the Massachusetts Institute
of Technology. He is a Fellow of IEEE and
of the American Association for the Ad-
vancement of Science (AAS).

Resit Sendag is an associate professor in the
Department of Electrical, Computer, and
Biomedical Engineering at the University of
Rhode Island, Kingston. His research inter-
ests include high-performance computer
architecture, memory systems performance
issues, and parallel computing. Sendag has a
PhD in electrical and computer engineering
from the University of Minnesota, Minnea-
polis. He is a member of IEEE and the IEEE
Computer Society.

Derek Chiou is an assistant professor in the
Electrical and Computer Engineering De-
partment at the University of Texas at
Austin. His research interests include com-
puter system simulation, computer architec-
ture, parallel computer architecture, and
Internet router architecture. Chiou has a
PhD in electrical engineering and computer
science from the Massachusetts Institute of
Technology. He is a senior member of IEEE
and a member of ACM.

Joshua J. Yi is a first year JD student at the
University of Texas School of Law. His
research interests include high-performance
computer architecture, performance metho-
dology, and deep submicron effects. Yi has a
PhD in electrical engineering from the
University of Minnesota, Minneapolis. He
is a member of IEEE and the IEEE
Computer Society.

Direct questions and comments to Ar-
vind at the Stata Center, MIT, 32 Vassar
St., 32-G866, Cambridge, MA 02139;
arvind@csail.mit.edu.

[3B2-14] mmi2010030019.3d 28/6/010 13:37 Page 32

..

32 IEEE MICRO

...

COMPUTER ARCHITECTURE DEBATES

[3B2-14] mmi2010030019.3d 28/6/010 15:15 Page 33

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Helvetica
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

