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Abstract 
 

Concurrent multithreaded architectures exploit both 
instruction-level and thread-level parallelism through a 
combination of branch prediction and thread-level control 
speculation.  The resulting speculative issuing of load 
instructions in these architectures can significantly impact the 
performance of the memory hierarchy as the system exploits 
higher degrees of parallelism. In this study, we investigate the 
effects of executing the mispredicted load instructions on the 
cache performance of a scalable multithreaded architecture. We 
show that the execution of loads from the wrongly-predicted 
branch path within a thread, or from a wrongly-forked thread, 
can result in an indirect prefetching effect for later correctly-
executed paths. By continuing to execute the mispredicted load 
instructions even after the instruction- or thread-level control 
speculation is known to be incorrect, the cache misses for the 
correctly predicted paths and threads can be reduced, typically 
by 42-73%. We introduce the small, fully-associative Wrong 
Execution Cache (WEC) to eliminate the potential pollution that 
can be caused by the execution of the mispredicted load 
instructions. Our simulation results show that the WEC can 
improve the performance of a concurrent multithreaded 
architecture up to 18.5% on the benchmark programs tested, 
with an average improvement of 9.7%, due to the reductions in 
the number of cache misses. 
 
 
1. Introduction 
 

A concurrent multithreaded architecture [1] consists of a 
number of thread processing elements (superscalar cores) 
interconnected with some tightly-integrated communication 
network [2]. Each superscalar processor core can use branch 
prediction to speculatively execute instructions beyond basic 
block-ending conditional branches. If a branch prediction 
ultimately turns out to be incorrect, the processor state must be 
restored to the state prior to the predicted branch and execution 
is restarted down the correct path. Simultaneously, a concurrent 
multithreaded architecture can aggressively fork speculative 
successor threads to further increase the amount of parallelism 

that can be exploited in an application program. If a speculated 
control dependence turns out to be incorrect, the non-speculative 
head thread must kill all of its speculative successor threads.  

With both instruction- and thread-level control speculation, a 
multithreaded architecture may issue many memory references 
which turn out to be unnecessary since they are issued from what 
subsequently is determined to be a mispredicted branch path or a 
mispredicted thread. However, these incorrectly issued memory 
references may produce an indirect prefetching effect by 
bringing data or instruction lines into the cache that are needed 
later by correctly-executed threads and branch paths.  

Existing superscalar processors with deep pipelines and wide 
issue units do allow memory references to be issued 
speculatively down wrongly-predicted branch paths. However, 
we go one step further and examine the effects of continuing to 
execute the loads issued from both mispredicted branch paths 
and mispredicted threads even after the speculative operation is 
known to be incorrect. We propose the Wrong Execution Cache 
(WEC) to eliminate the potential cache pollution caused by 
executing the wrong-path and wrong-thread loads. This work 
shows that the execution of wrong-path or wrong-thread loads 
can produce a significant performance improvement with very 
low overhead. 

In the remainder of the paper, Section 2 presents an overview 
of the superthreaded architecture [2], which is the base 
architecture used for this study. Section 3 describes wrong 
execution loads and the implementation of the WEC in the base 
processor. Our experimental methodology is presented in 
Section 4 with the corresponding results given in Section 5. 
Section 6 discusses some related work and Section 7 concludes. 
 

2. The Superthreaded Architecture 
 
2.1. Base Architecture Model 
 

The superthreaded architecture (STA) [2] consists of multiple 
thread processing units (TUs) with each TU connected to its 
successor by a unidirectional communication ring. Each TU has 
its own private level-one (L1) instruction cache, L1 data cache, 
program counter, register file, and execution units. The TUs 
share the unified second-level (L2) cache. There also is a shared 
register file that maintains some global control and lock 



registers. A private memory buffer is used in each thread unit to 
cache speculative stores for run-time data dependence checking. 
When multiple threads are executing on an STA processor, the 
oldest thread in the sequential order is called the head thread and 
all other threads derived from it are called successor threads. 
The program execution starts from its entry thread while all 
other TUs are idle. When a parallel code region is encountered, 
this thread activates its downstream thread by forking. This 
forking continues until there are no idle TUs. When all TUs are 
busy, the youngest thread delays forking another thread until the 
head thread retires and its corresponding TU becomes idle. A 
thread can be forked either speculatively or non-speculatively. A 
speculatively forked thread will be aborted by its predecessor 
thread if the speculative control dependence subsequently turns 
out to be false. 
 
2.2. Thread Pipelining Execution Model 
 

The execution model for the STA architecture is thread 
pipelining, which allows threads with data and control 
dependences to be executed in parallel. Instead of speculating on 
data dependences, the thread execution model facilitates run-
time data dependence checking for load instructions. This 
approach avoids the squashing of threads caused by data 
dependence violations. It also reduces the hardware complexity 
of the logic needed to detect memory dependence violations 
compared to some other CMA execution models [3,4]. As 
shown in Figure 1 the execution of a thread is partitioned into 
the continuation stage, the target-store address-generation 
(TSAG) stage, the computation stage, and the write-back stage. 
 

Continuation
Stage

TSAG Stage

Computation
Stage

Write-Back
Stage

WB_DONE flag

Fork & forward
continuation variables

TSAG_DONE flag

target store addr.

target store
addr.&data

Continuation
Stage

TSAG Stage

Computation
Stage

Write-Back
Stage

WB_DONE flag

Fork & forward
continuation variables

TSAG_DONE flag

target store addr.

target store
addr.&data

Continuation
Stage

TSAG Stage

Computation
Stage

Write-Back
Stage

Fork & forward
continuation variables

TSAG_DONE flag

target store addr.

target store
addr.&data

Thread 1

Thread 2

Thread 3

 
 

Figure 1. Thread pipelining execution model 
 

The continuation stage computes recurrence variables (e.g. 
loop index variables) needed to fork a new thread on the next 
thread unit. This stage ends with a fork instruction, which 
initiates a new speculative or non-speculative thread on the next 
TU. An abort instruction is used to kill the successor threads 
when it is determined that a speculative execution was incorrect. 
Note that the continuation stages of two adjacent threads can 
never overlap.  

The TSAG stage computes the addresses of store instructions 
on which later concurrent threads may have data dependences.  
These special store instructions are called target stores and are 
identified using conventional data dependence analysis. The 

computed addresses are stored in the memory buffer of each TU 
and are forwarded to the memory buffers of all succeeding 
concurrent threads units. 

The computation stage performs the actual computation of the 
loop iteration. If a cross-iteration dependence is detected by 
checking addresses in memory buffer [2], but the data has not 
yet arrived from the upstream thread, the out-of-order 
superscalar core will execute instructions that are independent of 
the load operation that is waiting for the upstream data value.   

In the write-back stage all the store data (including target 
stores) in the memory buffer will be committed and written to 
the cache memory. The write-back stages are performed in the 
original program order to preserve non-speculative memory state 
and to eliminate output and anti-dependences between threads.  

 
3. The Wrong Execution Cache (WEC) 
 
3.1. Wrong Execution 
 

There are two types of wrong execution that can occur in a 
concurrent multithreaded architecture such as the STA 
processor.  The first type occurs when instructions continue to be 
issued down the path of what turns out to be an incorrectly-
predicted conditional branch instruction within a single thread. 
We refer to this type of execution as wrong path execution. The 
second type of wrong execution occurs when instructions are 
executed from a thread that was speculatively forked, but is 
subsequently aborted. We refer to this type of incorrect 
execution as wrong thread execution. Our interest in this study is 
to examine the effects on the memory hierarchy of load 
instructions that are issued from both of these types of wrong 
executions. 

 
3.1.1. Wrong Path Execution 
 

Before a branch is resolved, some load instructions on 
wrongly-predicted branches may not be ready to be issued 
because they are waiting either for the effective address to be 
calculated or for an available memory port. In wrong path 
execution, however, they are allowed to access the memory 
system as soon as they are ready even though they are known to 
be from the wrong path. These instructions are marked as being 
from a wrong execution path when they are issued so they can 
be squashed in the pipeline at the write-back stage. A wrong-
path load that is dependent upon another instruction that gets 
flushed after the branch is resolved also is flushed in the same 
cycle. No wrong-execution store instructions are allowed to alter 
the memory system since they are known to be invalid. 

An example showing the difference between traditional 
speculative execution and our definition of wrong-path 
execution is given in Figure 2. There are five loads (A, B, C, D, 
and E) fetched down the predicted execution path. In a typical 
pipelined processor, loads A and B become ready and are issued 
to the memory system speculatively before the branch is 
resolved. After the branch result is known to be wrong, however, 
the other three loads, C, D and E, are squashed before being able 
to access the memory system. 

In a system with wrong-path execution, however, ready loads 
are allowed to continue execution (loads C and D in Figure 2) in 
addition to the speculatively executed loads (A and B). These 
wrong-path loads are marked as being from the wrong path and 



are squashed later in the pipeline to prevent them from altering 
the destination register. However, they are allowed to access the 
memory to move the value read into the upper levels of the 
memory hierarchy.  Since load E is not ready to execute by the 
time the branch is resolved, it is squashed as soon as the branch 
result is known. 
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Figure 2. The difference between speculative and wrong-path 

execution 
 
3.1.2. Wrong Thread Execution 
 

When executing a loop in the normal execution mode of the 
superthreaded execution model described in Section 2, the head 
thread executes an abort instruction to kill all of its successor 
threads when it determines that the iteration it is executing 
satisfies the loop exit condition. To support wrong thread 
execution in this study, however, the successor threads are 
marked as wrong threads instead of killing them when the head 
thread executes an abort. These specially-marked threads are not 
allowed to fork new threads, yet they are allowed to continue 
execution. As a result, after this parallel region completes its 
normal execution, the wrong threads continue execution in 
parallel with the following sequential code. Later, when the 
wrong threads attempt to execute their own abort instructions, 
they kill themselves before entering the write-back stage. 
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Figure 3. The wrong thread execution model with four TUs  

If the sequential region between two parallel regions is not 
long enough for the wrong threads to determine that they are to 
be aborted before the beginning of the next parallel region, the 
begin instruction that initiates the next parallel region will abort 
all of the still-executing wrong threads from the previous parallel 
region. This modification of the begin instruction allows the 
head thread to fork without stalling. Since each thread’s store 
data are put in a speculative memory buffer local to each TU, 
and wrong threads do not execute their write-back stages, no 
stores from the wrong threads can alter the shared memory.  

Figure 3 shows this wrong thread execution model with four 
TUs. Note that although wrong-path and wrong-thread execution 
have similarities, the main difference between them is that, once 
a branch is resolved, the ready loads that are not yet ready to 
execute on a wrong path are squashed, while wrong-thread loads 
are allowed to continue their execution. 
 
3.2. Operation of the WEC  
 

The indirect prefetching effect provided by the execution of 
loads down the wrong-paths and the wrong-threads may be able 
to reduce the number of subsequent correct-path misses. 
However, these additional wrongly-executed loads may reduce 
the performance since the cache pollution caused by these loads 
might offset the benefits of their indirect prefetching effect. This 
cache pollution can occur when the wrong-execution loads move 
blocks into the data cache that are never needed by the correct 
execution path. It also is possible for the cache blocks fetched by 
the wrong-execution loads to evict blocks that still are required 
by the correct path. This effect is likely to be more pronounced 
for low-associativity caches. In order to eliminate this cache 
pollution, we introduce the Wrong-Execution Cache (WEC). 
 
3.2.1. Basic operation of the WEC  
 

The WEC is used to store cache blocks fetched by wrong-
execution loads separately from those fetched by loads known to 
be issued from the correct path, which are stored in the regular 
L1 data cache. The WEC is accessed in parallel with the L1 data 
cache. Only those loads that are known to be issued from the 
wrong-execution, that is, after the control speculation result is 
known, are handled by the WEC. The data blocks fetched by 
loads issued before the control speculation is cleared are put into 
the L1 data cache. After the speculation is resolved, however, a 
wrong-execution load that causes a miss in both the L1 data 
cache and the WEC will cause an access to be made to the next 
level memory. The required block is moved into the WEC to 
eliminate any cache pollution that might be caused by the 
wrong-execution load. If a load causes a miss in the L1 data 
cache, but a hit in the WEC, the block is simultaneously 
transferred to both the processor and the L1 data cache.  

A load from the correct path that hits on a block previously 
fetched by a wrong-execution load also initiates a next -line 
prefetch.  The block fetched by this next -line prefetch is placed 
into the WEC. When a correct-execution load causes a miss, the 
data block is moved into the L1 data cache instead of the WEC, 
as would be done in a standard cache configuration. The WEC 
also acts as a victim cache [5] by caching the blocks evicted 
from the L1 cache by cache misses from the correct execution 
path. In summary, the WEC is a combination of a prefetch buffer 
for wrong-execution loads and a victim cache for evictions from 



the L1 data cache. The operation of the WEC is summarized in 
Figure 4. 
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Figure 4. Flowchart of a WEC access. 
 
3.2.2. Incorporating the WEC into the superthreaded 
architecture 
 

Each TU in the STA used in this study has its own private L1 
data cache. In addition, a private WEC is placed in parallel with 
each of the L1 caches. To enforce coherence among the caches 
during the execution of a parallel section of code, all possible 
data dependencies in a thread's execution path are conservatively 
identified. These potentially shared data items are stored in each 
TU’s private speculative memory buffer until the write-back 
stage is executed. Updates to shared data items made by a thread 
during the execution of a parallel section of code are passed to 
downstream threads via a unidirectional communication ring. 

During sequential execution, a simple update protocol is used 
to enforce coherence. When a cache block is updated by the 
single thread executing the sequential code, all the other idle 
threads that cache a copy of the same block in their L1 caches or 
WECs are updated simultaneously using a shared bus. This 
coherence enforcement during sequential execution creates 
additional traffic on the shared bus.  This traffic is directed only 
to what would otherwise be idle caches, however, and does not 
introduce any additional delays. 
 
4. Experimental Methodology 
 

This study uses the SIMCA (SImulator for Multithreaded 
Computer Architecture) simulator [6] to model the performance 
effects of incorporating the WEC into the STA. This simulator is 
based on the cycle-accurate SimpleScalar simulator, sim-
outorder, version 3.0 [7]. SIMCA is execution driven and 
performs both functional and timing simulation. 
 
4.1. TU parameters  
 

Each TU uses a 4-way associative branch target buffer with 
1024-entries and a fully associative speculative memory buffer 
with 128 entries. The distributed L1 instruction caches are each 
32KB and 2-way associative. The default unified L2 cache is 

512KB, 4-way associative, with a block size of 128 bytes [8]. 
The L2 cache latency is 12 cycles. The round-trip memory 
latency is 200 cycles. The L1 cache parameters are varied as 
described in Section 5. The L1 data cache latency is 1 cycle. 

The time required to initiate a new thread (the fork delay) in 
the STA includes the time required to copy all of the needed 
global registers to a newly spawned thread’s local register file 
and the time required to forward the program counter. We use a 
fork delay of four cycles [2] in this study plus two cycles per 
value to transfer data between threads after a thread has been 
forked.  
 
4.2. Benchmark Programs  
 

Four SPEC2000 integer benchmarks (vpr, gzip, mcf, parser) 
and two SPEC2000 floating-point benchmarks (equake, mesa) 
are evaluated in this study. All of these programs are written in 
C. The compiler techniques shown in Table 1 were used to 
manually parallelize these programs for execution on the STA. 
The loops chosen for parallelization were identified with run-
time profiling as the most time-consuming loops in each 
program. Table 2 shows the fraction of each program that we 
were able to parallelize.  
 
Table 1. Program transformations used in manually 
transforming the code to the thread-pipelining execution 
model. 
 

 
Table 2. The dynamic instruction counts of the benchmark 
programs used in this study, and the fraction of these 
instructions that were executed in parallel. 
 

 
The GCC compiler, along with modified versions of the GAS 

assembler and the GAD loader from the Simplescalar suite, were 
used to compile the parallelized programs. The resulting 
parallelized binary code was then executed on the simulator. 
Each benchmark was optimized at level O3 and run to 
completion. To keep simulation times reasonable, the 
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MinneSPEC [9] reduced input sets were used for several of the 
benchmarks. 

 
4.3. Processor Configurations  
 

The following STA configurations are simulated to determine 
the performance impact of executing wrong-path and wrong-
thread loads, and the performance improvements attributable to 
the WEC.  

orig: This is the baseline supertheaded architecture described 
in the previous sections.  

vc: This configuration adds a small fully-associative victim 
cache [5] in parallel with the L1 data cache to the orig 
configuration. 

wp: This configuration adds more aggressive speculation to a 
TU’s execution as described in Section 3.1.1. It is a good test of 
how the execution of the loads down the wrong branch path 
affects the memory system. The thread-level speculation, 
however, remains the same as in the orig configuration. 

wth: This configuration is described in detail in Section 
3.1.2. Since each thread’s store data is put into the speculative 
memory buffer during a thread’s execution, and wrong threads 
cannot execute their write-back stages, no wrong thread store 
data alters the memory system. The speculative load execution 
within a correct TU (superscalar core) remains the same in this 
configuration as in the orig configuration. 

wth-wp: This is a combination of the wp and wth 
configurations. 

wth-wp-vc: This configuration is the wth-wp configuration 
with the addition of a victim cache. It is used to compare against 
the performance improvement made possible by caching the 
wrong-path and wrong-thread loads in the WEC. 

wth-wp-wec: This is the wth-wp configuration with the 
addition of a small, fully associative WEC in parallel with each 
TU’s L1 data cache. The details of the WEC are given in Section 
3.2.1.  

nlp: This configuration implements next -line tagged 
prefetching [10] with a fully associative prefetch buffer, but 
without any other form of speculative execution. A prefetch is 
initiated on a miss and on the first hit to a previously prefetched 
block. The results of these prefetches are put into the prefetch 
buffer. Tagged prefetching has previously been shown to be 
more effective than prefetching only on a miss [11]. We used 
this configuration to compare against the ability of the WEC to 
successfully prefetch blocks that will be used by subsequently 
executed loads issued from a correct execution path. 
  

5. Evaluation of Simulation Results  
 

We first examine the baseline performance of the STA 
followed by an evaluation of the performance of the WEC when 
using different numbers of TUs. The effects of wrong execution, 
both with and without a WEC, on the performance of the STA 
are subsequently examined. We also study the sensitivity of the 
WEC to several important memory system parameters and 
analyze the reduction in the number of L1 data cache misses and 
the increase in the memory traffic due to the WEC.   

The overall execution time is used to determine the 
percentage change in performance of the different configurations 
tested relative to the execution time of the baseline 
configuration. Average speedups are calculated using the 

execution time weighted average of all of the benchmarks [12]. 
This weighting gives equal importance to each benchmark 
program independent of its total execution time. 

 
5.1. Baseline Performance of the Superthreaded 
Architecture  
 

The system parameters used to test the baseline performance, 
and to determine the amount of parallelism actually exploited in 
the benchmark programs [13], are shown in Table 3. The size of 
the distributed 4-way associative L1 data cache in each TU is 
scaled from 2k to 32k as the number of TUs is varied to keep the 
total amount of L1 cache in the system constant at 32K.  

 
Table 3. Simulation parameters used for each TU 

 

 
The baseline for these initial comparisons is a single-thread, 

single-issue processor, which does not exploit any parallelism. 
The single-thread-unit, sixteen-issue processor corresponds to a 
very wide issue superscalar processor that is capable of 
exploiting only instruction-level parallelism. In the 16TU STA 
processor, each thread can issue only a single instruction per 
cycle. Thus, this configuration exploits only thread-level 
parallelism. The other configurations exploit a combination of 
both instruction- and thread-level parallelism. Note that the total 
amount of parallelism available in all of these configurations is 
constant at 16 instructions per cycle. 

Figure 5 shows the amount of instruction- and thread-level 
parallelism in the parallelized portions of the benchmarks to 
thereby compare the performance of the STA processor with a 
conventional superscalar processor. The single TU configuration 
at the left of each set of bars is capable of issuing 16 instructions 
per cycle within the single TU. As you move to the right within 
a group, there are more TUs, but each can issue a proportionally 
smaller number of instructions per TU so that the total available 
parallelism is fixed at 16 instructions per cycle. 

In these baseline simulations, 164.gzip shows high thread-
level parallelism with a speedup of 14x for the 16TU X 1-issue 
configuration. A 1TU X 16-issue configuration gives a speedup 
less than 4x when executing this program. 175.vpr appears to 
have more instruction-level than thread-level parallelism since 
the speedup of the parallelized portion of this program decreases 
as the number of TUs increases. For most of the benchmarks, the 
performance tends to improve as the number of TUs increases. 
This behavior indicates that there is more thread-level 
parallelism in the parallelized portions of the benchmark 
programs than simple instruction-level parallelism.  

In the cases where the pure superscalar model achieves the 
best performance, it is likely that the clock cycle time of the very 
wide issue superscalar processor would be longer than the 
combined models or the pure STA model. On average, we see 
that the thread-level parallelization tends to outperform the pure 
instruction-level parallelization. 
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Figure 5. Performance of the STA processor for the 
parallelized portions of the benchmarks with the hardware 
configurations shown in Table 3. The baseline configuration 
is a single-threaded, single-issue processor. 
 
5.2. Performance of the superthreaded processor 
with the WEC 
 

Based on the results in the previous section, and considering 
what is expected for future processor development, we use eight 
TUs, where each TU is an 8-issue out-of-order processor, in the 
remainder of the study.  In some of the experiments, however, 
we vary the number of TUs as noted to study the impact of 
varying the available thread-level parallelism on the 
performance of the WEC. 

Each of the TUs has a load/store queue size of 64 entries. The 
reorder buffer also has 64 entries. The processor has 8 integer 
ALU units, 4 integer multiply/divide units, 8 floating-point (FP) 
adders and 4 FP multiply/divide units. The default L1 data cache 
in each TU is 8KB, direct-mapped, with a block size of 64 bytes. 
The default WEC has 8 entries and is fully associative with the 
same block size as the L1 data cache.  

Since our focus is on improving the performance of on-chip 
direct-mapped data caches in a speculative multithreaded 
architecture, most of the following comparisons for the WEC are 
made against a victim cache. We also examine the prefetching 
effect of wrong execution with the WEC by comparing it with 
next -line tagged prefetching. 
 
5.2.1. The Effect of Varying the Number of TUs  
 

Figure 6 shows the performance of the wth-wp-wec 
configuration as the number of TUs is varied. These results are 
for the entire benchmark program, not just the parallelized loops. 
The baseline is the orig configuration with a single TU. The 
speedup of the wth-wp-wec configuration can be as much as 
39.2% (183.equake). For most of the benchmarks, even a two-
thread-unit wth-wp-wec performs better than the orig 
configuration with 16 TUs. 

The single-thread wth-wp-wec configuration shows that the 
WEC can improve the performance significantly, up to 10.4% 
for 183.equake, for instance. When more than one TU is used, 
we see even greater improvements with the WEC due to the 
larger number of wrong loads issued by executing the wrong 
threads. For example, in Figure 7, we see that the performance 

of 181.mcf improves from 6.2% compared to the baseline 
configuration when executing with a single TU, to a 20.2% 
increase over the baseline configuration when using 16 TUs. On 
average, the performance of the wth-wp-wec configuration 
increases with the number of threads because the total size of the 
WEC and the L1 cache increases, although the ratio of the WEC 
size to the L1  data cache size remains constant. Once the total 
cache and WEC sizes match the benchmark’s memory footprint, 
the performance improvement levels off. 

The 175.vpr program slows down on the orig configuration 
because there is not enough overlap among threads when using 
more than one TU. As a result, the superthreading overhead 
overwhelms the benefits of executing the program in parallel.  
The 181.mcf program also shows some slowdown for two and 
four TUs because of contention for TUs. 
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Figure 6. Performance of the wth-wp-wec configuration for 
the entire benchmark programs as the number of TUs is 
varied. The baseline processor is a STA processor with a 
single TU. 
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Figure 7. Performance of the wth-wp-wec configuration on 
top of the parallel execution. The baseline processors are 
one- to 16-TU STA processors with the  number of TUs 
corresponding to the number of threads used in the wth-wp-
wec configuration. 
 
5.2.2. Performance Improvements Due to the WEC 
 

The previous section showed the performance improvement 
obtained by executing wrong-path and wrong-thread loads with 
a WEC in each TU as the total number of available TUs was 
varied.  Figure 8, in contrast, compares the relative speedup 



obtained by all of the different processor configurations 
described in Section 4.2 compared to the baseline processor, 
orig. All of these configurations use eight TUs. 

 This figure shows that the combination of wrong execution 
plus the WEC (wth-wp-wec) gives the greatest speedup of all the 
configurations tested. The use of only wrong-path or wrong-
thread execution alone or in combination (wp, wth, or wth-wp) 
provides very little performance improvement. When they are 
used together (wth-wp), for instance, the best speedup is only 
2.2% (for 183.equake) while there is some slowdown for 
177.mesa. It appears that the cache pollution caused by 
executing the wrong loads in these configurations offsets the 
benefit of their prefetching effect. When the WEC is added, 
however, the cache pollution is eliminated which produces 
speedups of up to 18.5% (181.mcf), with an average speedup of 
9.7%.  
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Figure 8. Relative speedups obtained by the different 
processor configurations with eight TUs. The baseline is the 
original superthreaded parallel execution with eight TUs. 
 

Compared to a victim cache of the same size, the 
configurations with the WEC show substantially better 
performance. While the WEC (wth-wp-wec) and the victim 
cache (wth-wp-vc) both reduce conflict misses, the WEC further 
eliminates the pollution caused by executing loads from the 
wrong path and the wrong thread. 

In addition to this indirect prefetching effect, the WEC also 
stores the results of the next -line prefetches initiated by a hit to a 
block in the WEC prefetched through a wrong execution. With 
both the indirect prefetching and the explicit prefetching, the 
wth-wp-wec performs better than conventional next -line tagged 
prefetching (nlp) with the same size prefetch buffer. Note that 
the extra hardware cost of both configurations would be 
approximately the same. On average, conventional next -line 
prefetching (nlp) produces a speedup of 5.5%, while the WEC 
(wth-wp-wec) produces a speedup of 9.7%. 

 
5.3. Parameter Sensitivity Analysis  
 

In this section, we study the effects of varying the L1 data 
cache associativity, the L1 data cache size, and the WEC size on 
the performance of the WEC. Each simulation in this section 
uses eight TUs. 

 

5.3.1. Impact of the L1 Data Cache Associativity 
 

Increasing the L1 cache associativity typically tends to reduce 
the number of L1 misses for both correct execution [14] and 
wrong execution [15]. The reduction in misses in the wrong 
execution paths reduces the number of indirect prefetches issued 
during wrong execution, which then reduces the performance 
improvement from the WEC, as shown in Figure 9.  

The baseline configuration is the orig processor with a direct-
mapped and 4-way associative L1 data corresponding to the 
direct-mapped and 4-way WEC results. When the associativity 
of the L1 cache is increased, the speedup obtained by the victim 
cache (vc) disappears. However, the configuration with the 
wrong-execution cache, wth-wp-wec, still provides significant 
speedup. This configuration also substantially outperforms the 
wth-wp-vc configuration, which issues loads from the wrong 
execution paths, but uses a standard victim cache instead of the 
WEC. 
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Figure 9. Sensitivity of an eight-TU STA processor with 8-
issue superscalar cores and a WEC as the associativity of 
the L1 data cache is varied (direct-mapped, 4-way). 

 
5.3.2. The Effect of the L1 Data Cache Size  
 

Figure 10 shows the normalized execution times for the orig 
and wth-wp-wec configurations when the L1 data cache size is 
varied. We see that the relative speedup produced by the WEC 
(wth-wp-wec) decreases as the L1 data cache size is increased. 
However, the WEC size is kept constant throughout this group 
of simulations so that the relative size of the WEC compared to 
the L1 data cache is reduced as the L1 size is increased. With a 
larger L1 cache, the wrong execution loads produce fewer 
misses compared to the configurations with smaller caches. The 
smaller number of misses reduces the number of potential 
prefetches produced by the wrong execution loads, which 
thereby reduces the performance impact of the WEC. 

For all of the test programs, a small 8-entry WEC with an 8K 
L1 data cache exceeds the performance of the baseline processor 
(orig) when the cache size is doubled, but without the WEC. 
Furthermore, on average, the WEC with a 4K L1 data cache 
performs better than the baseline processor with a 32K L1 data 
cache. These results suggest that incorporating a WEC into the 
processor is an excellent use of chip area compared to simply 
increasing the L1 data cache size. 
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Figure 10. Sensitivity of an eight-TU STA processor with 8-
issue superscalar cores and a WEC as the L1 data cache size 
is varied (4k, 8k, 16k, 32k). 
 
5.3.3. The Effect of the WEC Size  
 

Figure 11 shows that, in general, the configuration that is 
allowed to issue loads from both the wrong paths and the wrong 
threads with a 4-entry victim cache (wth-wp-vc) outperforms the 
orig configuration with a 16-entry victim cache. Furthermore, 
replacing the victim cache with a 4-entry WEC causes the wth-
wp-wec configuration to outperform the configuration with a 16-
entry victim cache, wth-wp-vc. This trend is particularly 
significant for 164.gzip, 181.mcf and 183.equake. 

Figure 12 compares the WEC approach to a tagged 
prefetching configuration that uses a prefetch buffer that is the 
same size as the WEC. It can be seen that the wth-wp-wec 
configuration with an 8-enty WEC performs substantially better 
than traditional next -line prefetching (nlp) with a 32-entry 
prefetch buffer. This result indicates that the WEC is actually a 
more efficient prefetching mechanism than a traditional next -line 
prefetching mechanism.  
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Figure 11. Sensitivity of an eight-TU STA processor with 8-
issue superscalar cores and a WEC to changes in the size of 
the WEC (4, 8, 16 entries) compared to a vc. 
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Figure 12. Sensitivity of an eight-TU STA  processor with 8-
issue superscalar cores and a WEC to changes in the size of 
the WEC (4, 8, 16 entries) compared to nlp. 
 
5.4. L1 Changes in Data Cache Traffic and Misses  
 

Figure 13 shows that the WEC can significantly reduce the 
number of misses in the L1 data cache. This reduction is as high 
as 73% for 177.mesa, although the miss count reduction for 
181.mcf is not as significant as the others. This figure also shows 
that this reduction in the number of L1 misses comes at the cost 
of an increase in the traffic between the processor and the L1 
cache. This increase in cache traffic is a side effect of issuing 
more load instructions from both the wrong path and wrong 
threads. This traffic increase can be as high as 30% in 175.vpr, 
with an average increase of 14%. This small average increase in 
cache traffic would appear to be more than offset by the increase 
in performance provided by using the WEC, though. 
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Figure 13. Increases in the L1 cache traffic and the reduction 
in L1 misses. 
 

6. Related Work  
 

Pierce and Mudge [16] suggested that the additional loads 
issued from mispredicted branch paths could provide some 
performance benefits and proposed [17] a wrong-path instruction 
prefetching scheme in which instructions from both possible 
branch paths are prefetched. Sendag et al [15] examined the 
impact of wrong-path execution on the data cache in a single-
threaded processor. To limit the performance degradation caused 
by cache pollution, they proposed the Wrong Path Cache, which 
is a combination of a prefetch buffer and a victim cache [5].  

While there has been no previous work studying the 
execution of loads from a mispredicted thread in a multithreaded 



architecture, a few studies have examined prefetching in the 
Simultaneous MultiThreading (SMT) architecture. Collins et al 
[18] studied the use of idle thread contexts to perform 
prefetching based on a simulation of the Itanium processor 
extended to simultaneous multithreading. Their approach 
speculatively precomputed future memory accesses using a 
combination of software, existing Itanium processor features, 
and additional hardware. Similarly, using idle threads on an 
Alpha 21464-like SMT processor to pre-execute speculative 
addresses, and thereby prefetch future values to accelerate the 
main thread, also has been proposed [19]. 

These previous studies differ from our work in several 
important ways. First, this study extends these previous 
evaluations of single-threaded and SMT architectures to a 
concurrent multithreading architecture. Second, our mechanism 
requires only a small amount of extra hardware; no extra 
software support is needed. Third, while we also use threads that 
would be idle if there was no wrong thread execution, our goal is 
not to help the main thread’s execution, but rather, to accelerate 
the future execution of the currently idle threads. 
 
7. Conclusions 
 

In this study, we have examined the effect of executing load 
instructions issued from a mispredicted branch path (wrong-
path) or from a misspeculated thread (wrong-thread) on the 
performance of a speculative multithreaded architecture. We 
find that we can reduce the cache misses for subsequent 
correctly predicted paths and threads by continuing to execute 
the mispredicted load instructions even after the instruction- or 
thread-level control speculation is known to be incorrect.  

Executing these additional loads causes some cache pollution 
by fetching never needed blocks and by evicting useful blocks 
needed for the later correct execution paths and threads. In order 
to eliminate the potential pollution caused by the mispredicted 
load instructions, we introduced the small, fully-associative 
Wrong Execution Cache (WEC).  Our simulation results show 
that the WEC can improve the performance of a concurrent 
multithreaded architecture up to 18.5% on the benchmark 
programs tested, with an average improvement of 9.7%.  This 
performance improvement comes from reducing the number of 
cache misses by, typically, 42-73%. 

While this study has examined the effects of several 
parameters on the performance of the WEC, there are still many 
important factors left to be considered, such as the effects of 
memory latency, the block size, and the relationship of the 
branch prediction accuracy to the performance of the WEC.  

The WEC proposed in this work is one possible structure for 
exploiting the potential benefits of executing mispredicted load 
instructions. Although this current study is based on a 
multithreaded architecture that exploits loop level parallelism, 
the ideas presented in this paper can be easily used in all types of 
multithreaded architectures executing general workloads.  
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