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Abstract
Although high branch prediction accuracy is 

necessary for high performance, it typically comes at 
the cost of larger predictor tables and/or more complex 
prediction algorithms. Unfortunately, large predictor 
tables and complex algorithms require more chip area 
and have higher power consumption, which precludes 
their use in embedded processors. As an alternative to 
large, complex branch predictors, in this paper, we 
investigate adding complementary branch predictors
(CBP) to embedded processors to reduce their power 
consumption and/or improve their branch prediction 
accuracy. A CBP differs from a conventional branch 
predictor in that it focuses only on frequently 
mispredicted branches while letting the conventional 
branch predictor predict the more predictable ones. Our 
results show that adding a small 16-entry (28 byte)
CBP reduces the branch misprediction rate of static, 
bimodal, and gshare branch predictors by an average of 
51.0%, 42.5%, and 39.8%, respectively, across 38 
SPEC 2000 and MiBench benchmarks. Furthermore, a 
256-entry CBP improves the energy-efficiency of the 
branch predictor and processor up to 97.8% and 23.6%, 
respectively. Finally, in addition to being very energy-
efficient, a CBP can also improve the processor 
performance and, due to its simplicity, can be easily 
added to the pipeline of any processor.

1. Introduction
High branch prediction accuracy is a necessary 

component for high performance in today’s processors. 
Processor designers typically increase the branch 
predictor’s prediction accuracy by using more complex 
algorithms and larger prediction tables. Unfortunately,
this approach is difficult to implement in embedded 
processors for several reasons. First, due to longer 
training times, higher prediction latencies, and a higher 

misprediction penalty, a more complex and/or larger 
branch predictor may actually result in a net 
performance loss, despite its higher prediction 
accuracy [12]. Second, the larger chip areas and higher 
power consumption of larger and more complex branch 
predictors may make them too large and/or power 
hungry. Finally, for reasons including implementation 
difficulty, cost, and design time, processor designers 
are unlikely to significantly increase the size of the 
branch predictors in their current-generation processors, 
much less replace them altogether, e.g., replacing a 
static branch predictor with a dynamic one.

To favorably address the trade-off between the 
branch predictor’s performance and power/area, in this 
paper, we propose adding complementary branch 
predictors [19] to the conventional (existing) branch 
predictors of embedded processors. The key difference 
in how complementary and conventional branch 
predictors make branch predictions is that 
complementary branch predictors only make 
predictions for the subset of branches that degrade the 
processor’s performance, namely, frequently 
mispredicted branches. Therefore, instead of making 
branch predictions for all branch instructions, which is 
very costly from a power consumption point-of-view 
and puts the branch predictor on the critical path of the 
pipeline (thus increasing the branch misprediction 
penalty), complementary branch predictors 
complement the conventional branch predictor by only 
making predictions for the branches that the branch 
predictor has trouble predicting accurately. 
Complementary branch predictors are based on the fact 
that patterns of branch mispredictions exist for all 
branch predictors, and can be detected and exploited to 
improve the processor’s branch predictor accuracy.

To quantify the efficacy of this approach, we 
implemented the branch misprediction predictor 



(BMP). This mechanism uses the branch misprediction 
history to predict which future branch will mispredict 
next and when that will occur. Then, before the 
misprediction actually occurs, the BMP changes the 
prediction to avoid a misprediction (and the subsequent 
recovery) so the processor can continue executing 
down the correct-path. Since it only focuses on the 
mispredicted branches, it can improve the branch 
prediction accuracy of any branch predictor, static or 
dynamic, simple or complex. Also, the BMP can be 
added to any conventional branch predictor. Therefore, 
it offers a different, more efficient approach of 
partitioning the branch predictor’s hardware budget.
Furthermore, since they target future branches only, it 
is not on the processor’s critical path.

This paper makes the following contributions:

1. We propose adding complementary branch 
predictors to: A) Improve the performance or 
energy-efficiency and B) Reduce the chip area
(cost) of embedded processors.

2. We show how complementary branch 
predictors can be designed and implemented 
with the branch predictors commonly found in 
embedded processors.

3. We show that complementary branch predictors
can significantly improve the branch prediction 
accuracy of the branch predictors in embedded 
processors for SPEC 2000 and MiBench 
benchmarks, and can significantly improve the 
IPC and EDP of those processors, as compared 
to larger conventional branch predictors.

The remainder of this paper is organized as 
follows: Section 2 describes the implementation the 
BMP in more detail. Section 3 presents a code example 
where the branch predictor fails, but the BMP correctly
predicts the branch direction. Section 4 describes the 
evaluation methodology and presents the BMP 
performance (prediction accuracy, power consumption 
reduction, and EDP) results. Finally, Section 5 presents 
some related work and Section 6 concludes. 

2. Complementary Branch Prediction: The 
Branch Misprediction Predictor

2.1. Description
Our BMP uses a simple mechanism to detect 

branch misprediction patterns. Namely, it counts the 
number of committed branches (the distance) between 
consecutive branch mispredictions for that particular 
context (i.e., index). The distance represents a 
prediction as to when the next branch misprediction 
will occur.

2.2. Implementation and Operation
The main component of the BMP is the MPBT, or 

the mispredicted branch table, which is shown in 
Figure 1. The width of each MPBT entry is 14 bits 
wide; 4 bits for the PC, 8 bits for the distance, 1 used 
bit, and 1 prediction direction (taken/not taken) bit. We 
form the index to the MPBT by XOR-ing the folded 
PC (i.e., bits 2 to 9 of the PC XOR-ed with bits 10 to 
17 of the PC) of current mispredicted branch with a 
concatenation of the global history bits (GHist) and 
global misprediction history bits (GMPHist), and with 
the branch misprediction distance (BCR), which is the 
number of branches between the last two 
mispredictions.

Figure 1. BMP components and operation. For 
simplicity, this figure only shows major 
components. f is logic that generates the MPBT 
index while f* intervenes to correct potential 
mispredictions. Note that the MPBT is only 
accessed and updated after a mispredicted 
branch, and the BCR and the NMPD are updated
on committed and fetched branches, respectively.

Misprediction Prediction: After a branch 
misprediction, the BMP uses the index to access the 
MPBT and the corresponding entry is copied into: 1) 
The 8-bit misprediction distance (NMPD) register and 
a 2) 5-bit register that holds the 4-bit next-to-be-
mispredicted PC (NMPC) and a 1-bit T/NT field 
(NMPDr).

For every branch that is fetched, the NMPD 
decrements. For every committed branch, the BCR 
increments. When a misprediction occurs, the BCR 
register is reset and the BMP also copies new values 
into the NMPD, NMPC, and NMPDr registers. When 
the NMPD decrements to zero, the BMP predicts that 
the next branch instruction will be mispredicted and 
corrects the predicted direction only if the: 1) bits 3 to 
6 of the PC match the NMPC field and 2) Branch 
predictor’s predicted direction is the same as the 
NMPDr register.



It is important to note that the output of the BMP 
is a prediction of the distance and address of the next-
to-be-mispredicted branch. This output is 
fundamentally different than the predicted direction 
that is the output of conventional branch predictors (i.e., 
a direction).

Updating the MPBT: To track the number of 
correct branches between mispredictions, the BMP 
uses an 8-bit branch counter, the BCR, which 
increments each time a branch commits. After a branch 
misprediction, the BMP updates the 1) 8-bit NMPD 
field with the value of the BCR register, 2) 4-bit 
NMPC field with bits 3 to 6 of the misprediction 
branch’s PC, and 3) 1-bit NMPDr field with the 
predicted direction (which was wrong) for the 
corresponding MPBT entry.

Evicting MPBT Entries: A BMP prediction is 
considered to be correct when the NMPC and NMPDr 
fields match the PC and predicted direction, 
respectively, after the NMPD register decrements to 
zero. Correct predictions set the used bit for that entry. 
However, to protect the MPBT from evictions based 
on a single BMP misprediction and/or aliasing, it takes 
two incorrect predictions to evict an MPBT entry; the 
first incorrect prediction clears the used bit only, while 
second clears all fields.

Power Efficiency of the BMP: Since 1) the BMP 
is essentially dormant for most of time, 2) the BMP is 
small, and 3) Small BMPs can still significantly 
improve the branch prediction accuracy, the BMP is 
both extremely energy and power efficient. Section 4.3
evaluates the energy-efficiency of the BMP. 

3. Analysis of Why the BMP Works 
In this section, we analyze why misprediction 

patterns occur and how the BMP helps to correct future 
mispredictions. Section 3.1 investigates whether or not 
branch prediction table conflicts account for the 
majority of the mispredictions that the BMP corrects. 
In Section 3.2, we discuss a synthetic code example to 
show why misprediction distance is a good metric for 
predicting future branch mispredictions, why 
conventional predictors fail, and BMP succeeds. And, 
finally, in Section 3.3, we give two code snippets from 
SPEC INT benchmarks, where the BMP works well.

3.1. Branch Predictor Conflicts
To investigate why and where a BMP helps to 

correct branch mispredictions, we first check whether 
the BMP primarily corrects mispredictions that are the 
result of conflicts in branch predictor table, i.e., 
aliasing. Conflicts occur when multiple branch-history 
pairs share the same location in the branch predictor 
table. Figure 2 shows percentage of branch 

mispredictions corrected by BMP that are due to the 
conflicts for varying sizes of gshare branch predictor. 
This figure shows the average behavior of 8 selected 
SPEC benchmarks (gcc, eon, perlbmk, gap, vortex, 
mesa, fma3d, and apsi) where the BMP does very well. 
To filter out the impact of fixed loop counts, 
benchmarks where both BMP and a loop predictor do 
well are not included.
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Figure 2. Percentage reduction in the branch 
misprediction rate with a 0.5KB BMP for varying 
sizes of a gshare branch predictor

Figure 2 shows that, for a constant 0.5KB-sized
BMP, the percentage of mispredictions corrected by 
BMP that are due to conflicts in the branch predictor 
table decreases as the branch predictor size increases, 
from 60% when using 0.25KB branch predictor to less 
than 4% for 64KB and larger branch predictors. Since 
the percentage of the mispredictions due to conflicts 
decreases dramatically for increasing branch predictor 
sizes (From 68% for a 0.25KB gshare to 1.8% for a 
1MB gshare (not shown)) and since the BMP can 
reduce the overall branch misprediction rate by about 
50% for different sizes of the gshare predictor, as 
shown in Figure 2, we conclude that the BMP does not 
primarily correct mispredictions that are due to 
conflicts in the branch predictor tables, but corrects
mispredictions due to other non-capacity-based reasons.

3.2. A Synthetic, Representative Code Example
To understand the causes of branch mispredictions that 
are not due to conflicts, we analyze profile data and the 
source code for 8 SPEC 2000 benchmarks. We 
observed that in these benchmarks, 30% to 60% of the 
mispredictions that are corrected by the BMP are due 
to loop branches that have varying loop counts, which 
are longer than what a branch predictor can distinguish, 
or have early loop exits, such as a break in a for or a 
while loop. Figure 3 presents a synthetic, but 
representative, code snippet. Variations of this example 
code occur in all benchmarks (see Figure 5), often with 
unstable loop counts or early loop exits.  This example



Figure 3. A code example where BMP works well.

Figure 4. Snippet from gcc. Line 3 has a high 
branch misprediction rate

Figure 5. Code snippet of memset() from glibc, 

which is used extensively by vortex. Line 2 has 
high a branch misprediction rate because the 
number of loop iterations of this loop depends on 
len.

shows a simple loop whose loop count alternates 
between 100 and 150. The exit branch for the for
loop will be mispredicted for as many times as the 
while loop condition is true. In the example, 150 bits 
of history is needed to eliminate the mispredictions at 
the loop exit. Simulations confirm that various branch 
predictors with a 256KB hardware budget and an 8KB 

loop predictor mispredict the loop exit branch every 
time. By contrast, a 4-entry BMP can easily correct all 
of these mispredictions by predicting the next 
misprediction distance, which is either 101 or 151. 

Another example where the BMP works is an 
early exit branch inside a for loop, which further 
complicates the branch history. This type of behavior is 
also often seen in the benchmarks that we studied. The 
early exit branch inside the for loop will be 
mispredicted often when it is taken. In the same 
manner that the BMP corrected mispredictions for the 
for loop in Figure 3, BMP can also correct this type of 
misprediction, while the other branch predictors that 
we tested do not.

In summary, the code in Figure 3 shows that a 
BMP is an alternative approach to exploit long branch 
histories. While some advanced branch predictors have 
been proposed, such as neural predictors [12] or the O-
GEHL predictor [20], they are much more complex 
and larger than a simple BMP, and therefore they are 
not suited for embedded processors. The BMP 
complements conventional branch predictors to exploit 
very long histories without increasing the hardware 
complexity and delay.

3.3. Two Code Examples from SPECint 2000 
In this section, we show two examples where the 

BMP complements the branch predictors. The first 
example is the pseudo code from the gcc benchmark as 
shown in Figure 4. At the register transfer language 
(RTL) optimization stage, gcc uses a chained hash 
table to store all the RTL expressions within a basic 
block (the RTL expressions between two labels, which
is not necessarily the same as the basic blocks found in 
a later compilation pass) and applies common sub-
expression elimination (CSE). Each bucket of the hash 
table is a linked list of RTL expressions that have the 
same hash code. During the CSE process, the hash 
table and its linked lists are traversed several times, in 
order to ensure that the expressions whose values are 
changed by storing a new expression are properly 
handled.

Execution profiles show that the code in line 3 
causes many branch mispredictions, even though the 
same linked list or the sequence of linked lists is 
traversed repeatedly. One of the reasons is that the 
number of branches is too large to be captured by 
global history. Another reason is because of the 
varying linked list data. Our results show that using the 
pattern of mispredictions in conjunction with the 
global branch history can effectively correct the 
mispredictions in line 3.

The next example illustrates when a BMP captures 
the behavior of loops with varying loop trip counts that

1: for (p = table[hash]; p; p = next)
{
2:   next = p->next_same_hash;

3:   if (GET_CODE (p->exp) != REG
4:      || REGNO (p->exp)

>= FIRST_PSEUDO_REGISTER)
5:    continue;
...
6:   remove_from_table (p, hash);
}

   memset (dstp, c, len) {
   /* fills the first len bytes of the 
memory area pointed to by dstp with the 
constant byte c 
    */
    /* setup codes */

1:  xlen = len / 8;
2:  while (xlen > 0)
    { 
      /* fill the memory pointed by dstp 8-
byte by 8-byte 
      */
3:    dstp += 8;
4:    xlen -= 1;
    }

    /* fill rest of bytes */
  }



branch predictors mispredict. Most loops have varying 
loop trip counts. For example, memory manipulation 
functions such as memset() or memcpy() contain a 
main loop that is bounded by the size of memory area 
to be modified (See Figure 5). vortex uses these two 
memory manipulation functions extensively. 
Traditional branch predictors perform very poorly in 
determining when the loop will exit, because the sizes 
of the fields in a record may vary. By using a BMP, 
which uses misprediction history and distance, we are 
able to capture the size of the fields and apply it across 
records of the same structure. As a result, the BMP 
significantly reduces the number of branch 
mispredictions.

4. Performance and Energy-Efficiency of 
Complementary Branch Predictors

In this section, we present four sets of results: 1) 
The reduction in the branch misprediction rate due to 
using a complementary branch predictor in conjunction 
with static, bimodal, and gshare branch predictors
(Section 4.2), 2) The comparison between a loop 
predictor (LP) and BMP (Section 4.3), 3) The 
improvement in the processor performance (CPI) after 
adding a complementary branch predictor (Section 4.4), 
and 4) The energy-efficiency (EDP) of complementary 
branch predictors (Section 4.5).

4.1. Evaluation Methodology
To collect the results presented in this paper, we 

implemented the BMP in sim-bpred from the 
Simplescalar tool suite [3], version 3.0d and in the 
wattch [2], version 1.02. We used the former 
simulator due to its simulation speed to quantify the 
branch prediction accuracy of the measured branch 
predictors with and without the BMP, while we used 
the latter simulator to measure the impact on IPC and 
energy-delay product (EDP). To evaluate the efficacy 
of the BMP over the range of branch predictors that are 
typically found typical current-generation embedded 
processors and likely next-generation processors, we 
evaluated the following predictors: static (Predict taken 
for backwards branches and not-taken for forward 
branches), bimodal, and gshare [14]. For the bimodal 
and gshare branch predictors, we varied the size of 
these predictors to use a hardware budget of 0.25KB 
(1024 entries) to 4KB (16,384 entries). We chose these 
branch predictors and sizes based on the sizes of 
branch predictors in current-generation embedded 
processors such as Freescale Semiconductor’s e300, 
e500, and e600 [7] processors; ARM’s ARM11 and 
ARM12 [1] processors; MIPS’s 4K, 5K, 24K, 34K, 
20K processors [13], and PA Semi’s PA64T [25]. 
Table 1 shows the processor configuration, which was 

heavily based on the PA64T since it is the most 
advanced processor, for the IPC and EDP results that 
are presented in this section. The size of the BMP 
ranged from less than 0.03KB (16 entries) to less than 
2KB (1024 entries).

In this paper, we used benchmarks from the SPEC
2000 [10] and MiBench [8] benchmark suites. For the 
SPEC 2000 benchmarks, we downloaded pre-compiled 
Alpha binaries from [23]. We present the results for all 
26 SPEC 2000 benchmarks when using the 
reference input set, but, for the benchmarks with 
more than one input set, to reduce the simulation time, 
we randomly selected one input set. The input set is 
listed in parenthesis for the following list of 
benchmarks that had more than one input set (input set 
used): gzip (graphic), vpr (route), gcc (166), art (110), 
eon (cook), vortex (ref1), and bzip2 (graphic). For the 
MiBench benchmarks, due to compilation problems, 
we used a subset of the benchmarks (basicmath, 
bitcount, dijkstra, fft, ghostscript, jpeg, patricia, qsort, 
rsynth, sha, stringsearch, and susan). These 
benchmarks were compiled using a Compaq/DEC C 
compiler with full optimization. For all MiBench 
benchmarks, we used the large input set. Overall, we 
evaluated a total of 38 benchmarks.

Table 1. Processor Configuration
Parameter Configuration

Issue 
Policy/Width

Policy: Out-of-order; Width: 4-way 
fetch, decode, issue, commit

Instruction
Window

Queue entries: 16 instruction fetch 
queue, 64 reorder buffer, 32 load-store 
queue

Branch 
Predictor

Misprediction latency: 20 cycles, 
Link stack entries: 16, Branch 
Target Buffer: 512-entry, 4-way 
associative

Execution 
Units

1 branch unit, 1 load-store unit, 3/1 
simple/complex integer units, 1/1 
simple/complex floating-point units 

MSS
Ports: 2, Memory latency: 100 
cycles, Width: 16 bytes

Caches

L1: Split; 32KB, 4-way associative, 
32B lines, LRU, 2 cycle latency
L2: Unified; 1024KB, 8-way 
associative, 64B lines, LRU, 12 cycle 
latency

MMUs
Page size: 4KB; TLBs: Split; 128-
entry, fully associative, 12 cycle 
latency

To reduce the simulation time of the SPEC 2000 
benchmarks, we used multiple 100M instruction 
simulation points [22] that we generated using 
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SimPoint 1.1 with a max_K of 10 and with 7 random
seeds. We used the 100M instructions preceding the 
simulation interval to warm-up the branch predictor, 
BMP, and pipeline. Due to their relatively short 
simulation time, we ran the MiBench benchmarks to 
completion.

4.2. Reduction in the Branch Misprediction 
Rate Due to Adding a BMP

Figure 6 shows average branch misprediction rate 
for the integer, floating-point, and MiBench suites for 
the three branch predictors and across all hardware 
budgets. The height of each bar represents the average 
branch misprediction rate for the “Base” configuration, 
e.g., no BMP, while the height of each segment shows 
the number of additional branch mispredictions that 
were removed by adding extra BMP entries. Therefore, 
the height of the bottom two segments shows the 
average branch misprediction rate for the 
Base+BMP256 configuration, while the 
Base+BMP256 segment shows the percentage of 
branches that were previously mispredicted and that 
are now converted to correct predictions when using a 
256-entry BMP. For example, for the static branch 
predictor, the average branch misprediction rate for the 
integer, floating-point, and MiBench benchmarks is 
28.2%, 19.7%, and 27.1%, respectively. Adding a 16-
entry BMP reduces the average branch misprediction 
rates to 17.4%, 6.9%, and 16.5%, respectively (i.e., the 
height of the bottom four segments) while adding 
another 48 MPBT entries, for a total of 64, further 
reduces the average branch misprediction rates to 
12.8%, 4.3%, 11.4%, respectively (i.e., the height of 
the bottom 3 segments). 

The results in Figure 6 show several key results. 

First, and most importantly, complementary branch 
predictors can significantly reduce the branch 
misprediction rate for all branch predictors across a 
wide range of applications. The results also show that 
even small BMPs can significantly reduce the number 
of branch mispredictions, although large BMPs yield 
more significant reductions, albeit with diminishing 
returns. The results are particularly dramatic for the 
static branch predictor. The results show that adding a 
1024-entry BMP reduces the average branch 
misprediction rate from 28.2%, 19.7%, and 27.1% for 
the integer, floating-point, and MiBench suites, 
respectively, to 6.4%, 2.3% and 3.6%, respectively. 
This result is extremely significant since many 
embedded processors (e.g., Freescale Semiconductor’s 
e300 and MIPS’ 4K and 5K processors) use static 
branch prediction; instead of replacing the static branch 
predictor with a dynamic branch predictor (which 
consumes a significant amount of chip area and power 
and is non-trivial to integrate into the pipeline), adding
a complementary branch predictor like the BMP can 
yield branch prediction accuracy that is similar to that 
of dynamic predictors, but with significantly less 
design effort.

Although increasing the hardware budget of the 
branch predictor reduces the branch misprediction rate, 
the results in Figure 6 show that allocating part of that 
bit budget to a BMP instead will, in most cases, reduce 
the branch misprediction rate by a larger amount than 
devoting the entire bit budget to a larger conventional 
branch predictor. For example, for the MiBench 
benchmarks, increasing the size of the branch predictor 
from 0.25KB to 4KB reduces the misprediction rate 
from 3.9% to 2.1%. By contrast, adding a 256-entry 
MPBT to the 0.25KB configuration (for a total bit 
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Figure 8. Percentage reduction in branch misprediction rate with BMP (baseline bimodal or gshare 
branch predictor is 1KB) for SPECfp 2000 benchmarks.
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Figure 9. Percentage reduction in branch misprediction rate with BMP (baseline bimodal or gshare 
branch predictor is 1KB) for MiBench benchmarks.

budget of 0.69KB (0.25KB for the branch predictor
and 0.44KB for the BMP)) reduces the average branch 
misprediction rate to 1.7%. Therefore, as this result

shows, adding a small BMP to a conventional branch 
predictor can simultaneously reduce both the total bit 
budget and the branch misprediction rate. Furthermore,



0

10

20

30

40

50

60

70

80

static bimod gshare static bimod gshare static bimod gshare

INT FP Mibench

LP

BMP

Figure 10. Percentage reduction in the branch 
misprediction rate with a 128 byte loop predictor 
(LP) or BMP. The sizes of the baseline dynamic 
branch predictors are 1KB.

0.0

0.5

1.0

1.5

2.0

2.5

In
te

ge
r

Fl
oa

t

M
iB

en
ch

0.
25

K

1.
00

K

4.
00

K

0.
25

K

1.
00

K

4.
00

K

0.
25

K

1.
00

K

4.
00

K

0.
25

K

1.
00

K

4.
00

K

0.
25

K

1.
00

K

4.
00

K

0.
25

K

1.
00

K

4.
00

K

Integer FP MiBench Integer FP MiBench

Static Bimodal gshare

C
yc

le
s 

P
er

 In
st

ru
ct

io
n

Base

Base+BMP64

Base+BMP256

Figure 11. Reduction in CPI due to adding a BMP

since the BMP is not on the processor’s critical path
(as is the case for a conventional branch predictor) and 
since MPBT is not accessed every cycle, BMP-based 
branch predictors should also have lower branch 
predictor access latencies and lower power 
consumption.

Finally, the results in Figure 6 show that although 
the BMP can reduce the branch misprediction rate for 
all suites, it yields the largest benefit for the floating-
point benchmarks, followed by the MiBench and 
integer suites. Figures 7, 8, and 9 show the reduction in 
the branch misprediction rate due to the BMP for 
individual benchmarks.

4.3. Comparison with Loop Predictor
Before presenting more results, it is important to 

note that BMP does not only target loop branches, 
which is the case for loop predictors [9] (LP). There 
are several significant differences between the BMP 
and a LP. First of all, the BMP is not limited only to 
loops, but rather can target all types of branches.
Second, the LP uses local history to make predictions 
while the BMP uses different types of global history 
(e.g., global misprediction history) to make its 
predictions.  Third, the LP makes a prediction for every 

branch, while the BMP only makes a prediction after a 
mispredicted branch. Therefore, the BMP is accessed 
less frequently, which is important for power reasons, 
and is not on the processor’s critical path. Finally, 
since the LP competes with other constituent predictors 
within the branch predictor, even if it is chosen as the 
highest confidence prediction, its prediction may not 
be different than the predictions from the other 
constituent predictors, i.e., may predict correctly 
anyways. By contrast, the BMP only makes predictions 
for branches that are frequently mispredicted, i.e., 
unlikely to be predicted correctly.

To quantify the performance difference between a 
LP and a BMP, we implemented the loop predictor that 
was described in [21]. Figure 10 shows the percentage 
reduction of the branch misprediction rates when a 128 
byte LP or BMP added to a static, a 1KB bimodal, or a 
1KB gshare branch predictor. The results show that the 
BMP reduces the branch misprediction rate more 
significantly than the LP does. The difference is most
pronounced for SPECint, where loop predictor 
performs poorly.

4.4. Reduction in the CPI Due to Adding a 
BMP

Figure 11 shows CPI for the processor 
configuration given in Table 1 for the base branch 
predictor and with a 16-entry and 256-entry BMP. The
format for Figure 11 is similar to that of Figure 6 in 
that the height of the bar represents the CPI of the base 
processor configuration while the heights of the 
bottom-most and second-from-the-bottom segments 
represent the CPI after adding 256-entry and 16-entry 
BMPs, respectively. Due to time constraints, in this 
sub-section and the next two, we only present the 
results for 3 branch predictor sizes (0.25KB, 1KB, and 
4KB) and for 2 BMP sizes (64 and 256 entries).

The results in Figure 11 show that adding a 64-
entry BMP to the static predictor yields average 
speedups of 20.0% to 53.6%, while a 256-entry BMP 
yields average speedups of 21.7% to 93.0%. These 
results indicate that complementary branch predictors 
like the BMP yield significant performance 
improvements, which coupled with its small size (112 
bytes for the 64-entry BMP) and its ease of 
implementation into the pipeline (off of the critical 
path and accessed only after mispredictions), makes it 
a very attractive add-on for embedded processors with 
static branch predictors.

For the 1KB bimodal branch predictor, the average 
speedup due to a BMP of 64 (256) entries ranges from 
4.5% to 14.6% (5.1% to 18.3%), while the 
corresponding average speedups for the 1KB gshare 
branch predictor range from 2.0% to 3.4% (2.1% to 
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Figure 12. Improvement in branch predictor energy-efficiency due to adding a BMP. In the figure, lower is 
better.

5.33%). Although the average speedups when the
gshare branch predictor is the baseline predictor are not 
as impressive as the speedups for static and bimodal, 
the speedup is greater than 10% for several 
benchmarks (e.g., gzip, eon, and bitcount) when adding 
a 256-entry BMP.

The key results from Figure 11 are: 1) The BMP 
improves the performance for all three branch 
predictors and for all three branch predictor sizes, 2) 
Larger BMPs yield larger performance improvements 
than smaller ones, but with diminishing returns, and 3) 
For some branch predictor configurations, using part of 
the bit budget for a BMP yields higher performance 
than devoting the entire bit budget to a conventional 
branch predictor, e.g., 1) 0.25KB bimodal with a 64-
entry BMP vs. a 1KB or 4KB bimodal or 2) 1KB 
gshare with a 256-entry BMP vs. 4KB gshare for the 
integer and floating-point benchmarks.

4.5. Improvement in the Energy-Efficiency Due 
to Adding a BMP

The results in Sections 4.2 and 4.4 present the 
performance potential of the BMP, in terms of 
reducing the branch misprediction rate and the 
execution time (CPI). Recall from Section 2 that, in 
contrast with conventional branch predictors, the BMP 
is accessed only after branch mispredictions, or, in 
other words, relatively infrequently. Fewer accesses 
mean that the BMP is more energy-efficient. Note that 
when the branch predictor has a higher branch 
prediction accuracy, the number of BMP accesses 
drops proportionally. In essence, there is an implicit 
control mechanism built into the BMP to reduce its 
energy consumption when it is not needed to improve 
the branch prediction accuracy.

The remainder of this section presents the 
potential for energy reduction by using a BMP. All of 

the results that we present in this section were based on 
using cc3 clocking in wattch.

4.5.1. Energy-Efficiency of Branch Predictors with 
Complementary Branch Predictors

Figure 12 shows the improvement in the branch 
predictor’s energy-efficiency due to adding the BMP. 
To quantify the branch predictor’s energy-efficiency, 
we use the product of the branch misprediction rate and 
the branch predictor’s energy per (committed) branch 
instruction, or:

BranchesCommitted

nConsumptioEnergy Predictor Branch 

BranchesCommitted

BranchesedMispredict

EfficiencyEnergy Predictor Branch 





Note that, when using a BMP, the energy consumption 
of the branch predictor includes both the power of the 
branch predictor and the BMP. To make the 
comparison of energy-efficiency easier across the 
different branch predictor sizes, for each branch 
predictor, we normalize the energy-efficiency with 
respect to the energy-efficiency for the Base 0.25KB 
branch predictor. Therefore, for each branch predictor 
and suite, the Base 0.25KB bar will always be 1. 
Consequently, in this figure, since the static branch 
predictor essentially consumes zero energy, 
normalization is impossible, so we omit the 
presentation of the static branch predictor 
configurations.

The results in Figure 12 yield several key results. 
First, since the BMP is significantly smaller and less 
frequently accessed than the branch predictor and since 
the results in Section 4.2 show that it significantly 
reduces the branch misprediction rate, it is not 
surprisingly to see that BMP-based branch predictors 
are significantly more energy-efficient than the same 
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Figure 13. Improvement in processor energy-efficiency due to adding a BMP

size branch predictor without a BMP, even though
BMP-based branch predictors are slightly larger. More 
specifically, a 0.25KB bimodal branch predictor with a 
256-entry BMP is 40.6%, 89.8%, and 78.3% more 
energy-efficient than a 0.25KB bimodal branch 
predictor without the BMP for the integer, floating-
point, and MiBench benchmarks, respectively. For a 
4KB gshare branch predictor, adding a 256-entry BMP 
yields a 22.9% 85.9%, and 32.3% improvement in the 
energy-efficiency of a 4KB gshare branch predictor 
without a BMP.

Second, in most cases, a smaller branch predictor 
with a BMP is more energy-efficient than a larger 
branch predictor without a BMP. For example, for the 
MiBench benchmarks, a 1KB gshare branch predictor 
with a 256-entry BMP is 6% more energy-efficient
than a 4KB branch predictor without the BMP. 
Furthermore, across all the benchmarks, a 0.25KB 
bimodal branch predictor with 64-entry BMP is 
substantially less power-hungry than a 4KB bimodal 
branch predictor without BMP.

Third, with only two exceptions (0.25KB and 4KB 
gshare branch predictor for the integer benchmarks), 
increasing the number of BMP entries from 64 to 256 
improves the overall energy-efficiency of the branch 
predictor. By contrast, without a BMP, increasing the 
bit budget of the branch predictor only improves its 
energy-efficiency in half of the cases. The key 
conclusion from this result is that not only are 
complementary branch predictors more scalable from a 
timing point-of-view (since they are not on the critical 
path), but they are more scalable from an energy-
efficiency point-of-view.

4.5.2. Energy-Efficiency of Processors with 
Complementary Branch Predictors

Figure 13 shows the improvement in an embedded 
processor’s energy-efficiency when using a BMP as 

compared to not using a BMP. The results in Figure 13
are normalized in the same way as were the results in 
Figure 12, namely, with respect to the 0.25KB branch 
predictor for each configuration and suite. In this figure, 
the metric for energy-efficiency is energy-delay 
product (EDP).

From Figure 13, we see that processors with a 
BMP are more energy-efficient than processors 
without a BMP, for the same size branch predictor. For 
processors with a static predictor, adding a 256-entry 
BMP improves the processor’s energy-efficiency by 
49.6%, 27.7%, and 64.6% for the integer, floating-
point, and MiBench benchmarks. For a 1KB bit budget, 
the energy-efficiency of the processor for the other two 
branch predictors for 256-entry BMP, ranges from 
2.8% (gshare, floating-point) to 20.3% (bimodal, 
MiBench).

Furthermore, with the exception of the gshare 
branch predictor and the MiBench benchmarks, 
processors that use a 256-entry BMP are 1.8% to  
21.0% energy-efficient than processors without a BMP, 
but that have a branch predictor that is four times
larger. For the MiBench benchmarks, the energy-
efficiency of a 0.25KB and 1KB gshare branch 
predictor with a 256-entry BMP is 17.4% and 0.9% 
lower than a 1KB and 4KB, respectively, gshare 
branch predictor. However, it is important to note that 
the latter processors with have larger chip areas (and 
consequently higher fabrication costs) and possibly 
higher branch predictor access times (which are not 
modeled here). 

5. Related Work
Sendag et al. [19] introduced the concept of 

complementary branch predictors and developed a 
mechanism that helped to correct future branch 
mispredictions without increasing the size of the 
branch predictor. This paper builds and extends on that 



idea in several ways. First, it studies the predictability 
of branch mispredictions. Second, it analyzes the 
potential of using complementary branch predictors 
with branch predictors that are typically found in 
embedded processors. Third, it quantifies the 
performance impact (CPI) that a BMP can have on the 
processor.  Fourth, it evaluates the potential speedup in 
the execution time due to using a complementary 
branch predictor in an embedded processor. Fifth, it 
analyzes the power efficiency of BMP-based branch 
predictors.  Finally, it analyzes the code to determine 
why the BMP can successfully predict frequently 
mispredicted branches.

The majority of power reduction techniques 
concentrate on eliminating dynamic power requirement 
of branch predictor and BTB. Parikh et al. [16] propose 
eliminating unnecessary lookups to the branch 
predictor and BTB for non-branch instructions using 
hardware filters or compiler-generated hints. It also
suggests that exploiting banked branch predictor
organizations can reduce branch predictor access time 
and power. In [18], they propose a software-
programmable BTB, named ACBTB, which can adapt 
to application control flow information extracted by the 
compiler/linker. They claim that this mechanism can 
also guarantee an access hit in branch target resolution. 
Baniasaidi and Moshovos propose using a branch 
prediction predictor [4] and a selective predictor access 
(SEPAS) [5], in addition to gating the access of branch 
predictor and BTB, to eliminate accesses to the sub-
predictors in a hybrid branch predictor by exploiting
the temporal and sub-predictor locality of branches. 
SEPAS also removes branch predictor and BTB 
updates that store information that already exists in the 
predictor, further lowering the power requirement of 
branch predictor and BTB. Chaver et al. in [6] propose 
a similar scheme which gates the access to hybrid 
branch predictor and uses an adaptive BTB which 
dynamically downsizes itself for applications that are 
not BTB-size sensitive.

In addition to reducing the dynamic power 
dissipation, another important avenue of research 
focuses on reducing the static power leakage. Hu et al.
[11] deactivate the branch predictor, sub-predictor 
and/or branch predictor banks when there are no 
branch instructions to be predicted. While this 
mechanism reduces power consumption, access to a 
hibernating predictor block results in extra wake-up 
delay. To mitigate this problem, Monchiero et al.
propose to introduce new hint instruction, HI, for 
upcoming branches [15]. The decoder logic activates 
the branch predictor as soon as a HI instruction is 
fetched. This instruction also triggers the branch 
predictor to use the information encoded in the 
instruction to determine if the target is readily available. 

Yang and Orailoglu [24] use compiler hints to pre-
activate the branch predictor and BTB.

The aforementioned techniques focus on directly 
lowering the power consumption of branch predictors, 
dynamically or statically. In [17], Pasricha and 
Veidenbaum analyze this problem from the 
application/system operation point-of-view. They 
examine the effects of context switch on the branch 
predictor accuracy and show that context switch 
introduces branch predictor and BTB pollution. Based 
on this observation, they propose a storage-efficient 
mechanism to dump branch predictor’s contents during 
a context switch to reduce pollution.

In stark contrast to all of the previous work, our 
BMP design attacks the power efficiency problem from 
a different angle. We combine a smaller branch 
predictor, simple or complex, with a simple BMP to 
achieve high (or higher) prediction accuracy. Since this 
approach is orthogonal to the aforementioned 
techniques, it can be used in conjunction with them.
Our results show that our approach not only can 
improve the energy-efficiency of the branch 
predictor/processor like the other techniques, but can 
also improve the branch prediction accuracy/IPC 
performance, which is separates it from the other 
techniques.

6. Conclusion
Since embedded processors need to have branch 

predictors with high branch prediction accuracy to 
achieve good performance, computer architects have 
proposed branch predictors that are increasingly more 
complex and/or larger. Unfortunately, the cost of these 
more aggressive branch predictors are higher 
prediction latencies and misprediction penalties, which 
offset the higher prediction accuracy, in addition to 
larger chip area and increased power consumption.

To address this problem, in this paper, we propose 
adding complementary branch predictors to the 
existing branch predictors of embedded processors. By 
concentrating on making predictions for only the 
subset of branches that degrade the processor's 
performance, a complementary branch predictor
requires less area and is accessed less frequently. 
Consequently, it is inherently more power efficient.

To quantify the efficacy of this approach, we 
implemented a branch misprediction predictor (BMP), 
which uses the branch misprediction history to predict 
which future branch will be mispredicted next and 
when that will occur. The BMP then flips the branch 
predictor's predicted direction for this branch. Since we 
do not alter branch predictor's working mechanism, a 
complementary branch predictor can improve the 
accuracy of any branch predictor. Moreover, it can also 



be used in conjunction with other energy reduction 
techniques for branch predictors, such as access gating 
for branch predictors and BTB as well as dynamically 
deactivating the branch predictor and its sub-
components.

Our results show that adding a small 16-entry (28 
byte) BMP reduces the branch misprediction rate of 
static, bimodal, and gshare branch predictors by an 
average of 51.0%, 42.5%, and 39.8%, respectively, 
across 38 SPEC 2000 and MiBench benchmarks. 
Furthermore, a 256-entry BMP yields an average 
speedup up to 67.3% and improves the energy-
efficiency of the branch predictor and processor up to 
97.8% and 23.6%, respectively.
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