
Low Power/Area Branch Prediction Using Complementary Branch Predictors

Resit Sendag1, Joshua J. Yi2, Peng-fei Chuang3, and David J. Lilja3

1 – Electrical and Computer Engineering
University of Rhode Island

Kingston, Rhode Island

2 – Networking and Multimedia Group
Freescale Semiconductor, Inc.

Austin, The Great State of Texas

3 – Electrical and Computer Engineering
University of Minnesota – Twin Cities

Minneapolis, Minnesota

Abstract
Although high branch prediction accuracy is

necessary for high performance, it typically comes at
the cost of larger predictor tables and/or more complex
prediction algorithms. Unfortunately, large predictor
tables and complex algorithms require more chip area
and have higher power consumption, which precludes
their use in embedded processors. As an alternative to
large, complex branch predictors, in this paper, we
investigate adding complementary branch predictors
(CBP) to embedded processors to reduce their power
consumption and/or improve their branch prediction
accuracy. A CBP differs from a conventional branch
predictor in that it focuses only on frequently
mispredicted branches while letting the conventional
branch predictor predict the more predictable ones. Our
results show that adding a small 16-entry (28 byte)
CBP reduces the branch misprediction rate of static,
bimodal, and gshare branch predictors by an average of
51.0%, 42.5%, and 39.8%, respectively, across 38
SPEC 2000 and MiBench benchmarks. Furthermore, a
256-entry CBP improves the energy-efficiency of the
branch predictor and processor up to 97.8% and 23.6%,
respectively. Finally, in addition to being very energy-
efficient, a CBP can also improve the processor
performance and, due to its simplicity, can be easily
added to the pipeline of any processor.

1. Introduction
High branch prediction accuracy is a necessary

component for high performance in today’s processors.
Processor designers typically increase the branch
predictor’s prediction accuracy by using more complex
algorithms and larger prediction tables. Unfortunately,
this approach is difficult to implement in embedded
processors for several reasons. First, due to longer
training times, higher prediction latencies, and a higher

misprediction penalty, a more complex and/or larger
branch predictor may actually result in a net
performance loss, despite its higher prediction
accuracy [12]. Second, the larger chip areas and higher
power consumption of larger and more complex branch
predictors may make them too large and/or power
hungry. Finally, for reasons including implementation
difficulty, cost, and design time, processor designers
are unlikely to significantly increase the size of the
branch predictors in their current-generation processors,
much less replace them altogether, e.g., replacing a
static branch predictor with a dynamic one.

To favorably address the trade-off between the
branch predictor’s performance and power/area, in this
paper, we propose adding complementary branch
predictors [19] to the conventional (existing) branch
predictors of embedded processors. The key difference
in how complementary and conventional branch
predictors make branch predictions is that
complementary branch predictors only make
predictions for the subset of branches that degrade the
processor’s performance, namely, frequently
mispredicted branches. Therefore, instead of making
branch predictions for all branch instructions, which is
very costly from a power consumption point-of-view
and puts the branch predictor on the critical path of the
pipeline (thus increasing the branch misprediction
penalty), complementary branch predictors
complement the conventional branch predictor by only
making predictions for the branches that the branch
predictor has trouble predicting accurately.
Complementary branch predictors are based on the fact
that patterns of branch mispredictions exist for all
branch predictors, and can be detected and exploited to
improve the processor’s branch predictor accuracy.

To quantify the efficacy of this approach, we
implemented the branch misprediction predictor

(BMP). This mechanism uses the branch misprediction
history to predict which future branch will mispredict
next and when that will occur. Then, before the
misprediction actually occurs, the BMP changes the
prediction to avoid a misprediction (and the subsequent
recovery) so the processor can continue executing
down the correct-path. Since it only focuses on the
mispredicted branches, it can improve the branch
prediction accuracy of any branch predictor, static or
dynamic, simple or complex. Also, the BMP can be
added to any conventional branch predictor. Therefore,
it offers a different, more efficient approach of
partitioning the branch predictor’s hardware budget.
Furthermore, since they target future branches only, it
is not on the processor’s critical path.

This paper makes the following contributions:

1. We propose adding complementary branch
predictors to: A) Improve the performance or
energy-efficiency and B) Reduce the chip area
(cost) of embedded processors.

2. We show how complementary branch
predictors can be designed and implemented
with the branch predictors commonly found in
embedded processors.

3. We show that complementary branch predictors
can significantly improve the branch prediction
accuracy of the branch predictors in embedded
processors for SPEC 2000 and MiBench
benchmarks, and can significantly improve the
IPC and EDP of those processors, as compared
to larger conventional branch predictors.

The remainder of this paper is organized as
follows: Section 2 describes the implementation the
BMP in more detail. Section 3 presents a code example
where the branch predictor fails, but the BMP correctly
predicts the branch direction. Section 4 describes the
evaluation methodology and presents the BMP
performance (prediction accuracy, power consumption
reduction, and EDP) results. Finally, Section 5 presents
some related work and Section 6 concludes.

2. Complementary Branch Prediction: The
Branch Misprediction Predictor

2.1. Description
Our BMP uses a simple mechanism to detect

branch misprediction patterns. Namely, it counts the
number of committed branches (the distance) between
consecutive branch mispredictions for that particular
context (i.e., index). The distance represents a
prediction as to when the next branch misprediction
will occur.

2.2. Implementation and Operation
The main component of the BMP is the MPBT, or

the mispredicted branch table, which is shown in
Figure 1. The width of each MPBT entry is 14 bits
wide; 4 bits for the PC, 8 bits for the distance, 1 used
bit, and 1 prediction direction (taken/not taken) bit. We
form the index to the MPBT by XOR-ing the folded
PC (i.e., bits 2 to 9 of the PC XOR-ed with bits 10 to
17 of the PC) of current mispredicted branch with a
concatenation of the global history bits (GHist) and
global misprediction history bits (GMPHist), and with
the branch misprediction distance (BCR), which is the
number of branches between the last two
mispredictions.

Figure 1. BMP components and operation. For
simplicity, this figure only shows major
components. f is logic that generates the MPBT
index while f* intervenes to correct potential
mispredictions. Note that the MPBT is only
accessed and updated after a mispredicted
branch, and the BCR and the NMPD are updated
on committed and fetched branches, respectively.

Misprediction Prediction: After a branch
misprediction, the BMP uses the index to access the
MPBT and the corresponding entry is copied into: 1)
The 8-bit misprediction distance (NMPD) register and
a 2) 5-bit register that holds the 4-bit next-to-be-
mispredicted PC (NMPC) and a 1-bit T/NT field
(NMPDr).

For every branch that is fetched, the NMPD
decrements. For every committed branch, the BCR
increments. When a misprediction occurs, the BCR
register is reset and the BMP also copies new values
into the NMPD, NMPC, and NMPDr registers. When
the NMPD decrements to zero, the BMP predicts that
the next branch instruction will be mispredicted and
corrects the predicted direction only if the: 1) bits 3 to
6 of the PC match the NMPC field and 2) Branch
predictor’s predicted direction is the same as the
NMPDr register.

It is important to note that the output of the BMP
is a prediction of the distance and address of the next-
to-be-mispredicted branch. This output is
fundamentally different than the predicted direction
that is the output of conventional branch predictors (i.e.,
a direction).

Updating the MPBT: To track the number of
correct branches between mispredictions, the BMP
uses an 8-bit branch counter, the BCR, which
increments each time a branch commits. After a branch
misprediction, the BMP updates the 1) 8-bit NMPD
field with the value of the BCR register, 2) 4-bit
NMPC field with bits 3 to 6 of the misprediction
branch’s PC, and 3) 1-bit NMPDr field with the
predicted direction (which was wrong) for the
corresponding MPBT entry.

Evicting MPBT Entries: A BMP prediction is
considered to be correct when the NMPC and NMPDr
fields match the PC and predicted direction,
respectively, after the NMPD register decrements to
zero. Correct predictions set the used bit for that entry.
However, to protect the MPBT from evictions based
on a single BMP misprediction and/or aliasing, it takes
two incorrect predictions to evict an MPBT entry; the
first incorrect prediction clears the used bit only, while
second clears all fields.

Power Efficiency of the BMP: Since 1) the BMP
is essentially dormant for most of time, 2) the BMP is
small, and 3) Small BMPs can still significantly
improve the branch prediction accuracy, the BMP is
both extremely energy and power efficient. Section 4.3
evaluates the energy-efficiency of the BMP.

3. Analysis of Why the BMP Works
In this section, we analyze why misprediction

patterns occur and how the BMP helps to correct future
mispredictions. Section 3.1 investigates whether or not
branch prediction table conflicts account for the
majority of the mispredictions that the BMP corrects.
In Section 3.2, we discuss a synthetic code example to
show why misprediction distance is a good metric for
predicting future branch mispredictions, why
conventional predictors fail, and BMP succeeds. And,
finally, in Section 3.3, we give two code snippets from
SPEC INT benchmarks, where the BMP works well.

3.1. Branch Predictor Conflicts
To investigate why and where a BMP helps to

correct branch mispredictions, we first check whether
the BMP primarily corrects mispredictions that are the
result of conflicts in branch predictor table, i.e.,
aliasing. Conflicts occur when multiple branch-history
pairs share the same location in the branch predictor
table. Figure 2 shows percentage of branch

mispredictions corrected by BMP that are due to the
conflicts for varying sizes of gshare branch predictor.
This figure shows the average behavior of 8 selected
SPEC benchmarks (gcc, eon, perlbmk, gap, vortex,
mesa, fma3d, and apsi) where the BMP does very well.
To filter out the impact of fixed loop counts,
benchmarks where both BMP and a loop predictor do
well are not included.

0

10

20

30

40

50

60

0.25k 1k 4k 16k 64k 256k 1m

Conflict mispredictions in BP Non-conflict mispredictions in BP

Figure 2. Percentage reduction in the branch
misprediction rate with a 0.5KB BMP for varying
sizes of a gshare branch predictor

Figure 2 shows that, for a constant 0.5KB-sized
BMP, the percentage of mispredictions corrected by
BMP that are due to conflicts in the branch predictor
table decreases as the branch predictor size increases,
from 60% when using 0.25KB branch predictor to less
than 4% for 64KB and larger branch predictors. Since
the percentage of the mispredictions due to conflicts
decreases dramatically for increasing branch predictor
sizes (From 68% for a 0.25KB gshare to 1.8% for a
1MB gshare (not shown)) and since the BMP can
reduce the overall branch misprediction rate by about
50% for different sizes of the gshare predictor, as
shown in Figure 2, we conclude that the BMP does not
primarily correct mispredictions that are due to
conflicts in the branch predictor tables, but corrects
mispredictions due to other non-capacity-based reasons.

3.2. A Synthetic, Representative Code Example
To understand the causes of branch mispredictions that
are not due to conflicts, we analyze profile data and the
source code for 8 SPEC 2000 benchmarks. We
observed that in these benchmarks, 30% to 60% of the
mispredictions that are corrected by the BMP are due
to loop branches that have varying loop counts, which
are longer than what a branch predictor can distinguish,
or have early loop exits, such as a break in a for or a
while loop. Figure 3 presents a synthetic, but
representative, code snippet. Variations of this example
code occur in all benchmarks (see Figure 5), often with
unstable loop counts or early loop exits. This example

Figure 3. A code example where BMP works well.

Figure 4. Snippet from gcc. Line 3 has a high
branch misprediction rate

Figure 5. Code snippet of memset() from glibc,

which is used extensively by vortex. Line 2 has
high a branch misprediction rate because the
number of loop iterations of this loop depends on
len.

shows a simple loop whose loop count alternates
between 100 and 150. The exit branch for the for
loop will be mispredicted for as many times as the
while loop condition is true. In the example, 150 bits
of history is needed to eliminate the mispredictions at
the loop exit. Simulations confirm that various branch
predictors with a 256KB hardware budget and an 8KB

loop predictor mispredict the loop exit branch every
time. By contrast, a 4-entry BMP can easily correct all
of these mispredictions by predicting the next
misprediction distance, which is either 101 or 151.

Another example where the BMP works is an
early exit branch inside a for loop, which further
complicates the branch history. This type of behavior is
also often seen in the benchmarks that we studied. The
early exit branch inside the for loop will be
mispredicted often when it is taken. In the same
manner that the BMP corrected mispredictions for the
for loop in Figure 3, BMP can also correct this type of
misprediction, while the other branch predictors that
we tested do not.

In summary, the code in Figure 3 shows that a
BMP is an alternative approach to exploit long branch
histories. While some advanced branch predictors have
been proposed, such as neural predictors [12] or the O-
GEHL predictor [20], they are much more complex
and larger than a simple BMP, and therefore they are
not suited for embedded processors. The BMP
complements conventional branch predictors to exploit
very long histories without increasing the hardware
complexity and delay.

3.3. Two Code Examples from SPECint 2000
In this section, we show two examples where the

BMP complements the branch predictors. The first
example is the pseudo code from the gcc benchmark as
shown in Figure 4. At the register transfer language
(RTL) optimization stage, gcc uses a chained hash
table to store all the RTL expressions within a basic
block (the RTL expressions between two labels, which
is not necessarily the same as the basic blocks found in
a later compilation pass) and applies common sub-
expression elimination (CSE). Each bucket of the hash
table is a linked list of RTL expressions that have the
same hash code. During the CSE process, the hash
table and its linked lists are traversed several times, in
order to ensure that the expressions whose values are
changed by storing a new expression are properly
handled.

Execution profiles show that the code in line 3
causes many branch mispredictions, even though the
same linked list or the sequence of linked lists is
traversed repeatedly. One of the reasons is that the
number of branches is too large to be captured by
global history. Another reason is because of the
varying linked list data. Our results show that using the
pattern of mispredictions in conjunction with the
global branch history can effectively correct the
mispredictions in line 3.

The next example illustrates when a BMP captures
the behavior of loops with varying loop trip counts that

1: for (p = table[hash]; p; p = next)
{
2: next = p->next_same_hash;

3: if (GET_CODE (p->exp) != REG
4: || REGNO (p->exp)

>= FIRST_PSEUDO_REGISTER)
5: continue;
...
6: remove_from_table (p, hash);
}

 memset (dstp, c, len) {
 /* fills the first len bytes of the
memory area pointed to by dstp with the
constant byte c
 */
 /* setup codes */

1: xlen = len / 8;
2: while (xlen > 0)
 {
 /* fill the memory pointed by dstp 8-
byte by 8-byte
 */
3: dstp += 8;
4: xlen -= 1;
 }

 /* fill rest of bytes */
 }

branch predictors mispredict. Most loops have varying
loop trip counts. For example, memory manipulation
functions such as memset() or memcpy() contain a
main loop that is bounded by the size of memory area
to be modified (See Figure 5). vortex uses these two
memory manipulation functions extensively.
Traditional branch predictors perform very poorly in
determining when the loop will exit, because the sizes
of the fields in a record may vary. By using a BMP,
which uses misprediction history and distance, we are
able to capture the size of the fields and apply it across
records of the same structure. As a result, the BMP
significantly reduces the number of branch
mispredictions.

4. Performance and Energy-Efficiency of
Complementary Branch Predictors

In this section, we present four sets of results: 1)
The reduction in the branch misprediction rate due to
using a complementary branch predictor in conjunction
with static, bimodal, and gshare branch predictors
(Section 4.2), 2) The comparison between a loop
predictor (LP) and BMP (Section 4.3), 3) The
improvement in the processor performance (CPI) after
adding a complementary branch predictor (Section 4.4),
and 4) The energy-efficiency (EDP) of complementary
branch predictors (Section 4.5).

4.1. Evaluation Methodology
To collect the results presented in this paper, we

implemented the BMP in sim-bpred from the
Simplescalar tool suite [3], version 3.0d and in the
wattch [2], version 1.02. We used the former
simulator due to its simulation speed to quantify the
branch prediction accuracy of the measured branch
predictors with and without the BMP, while we used
the latter simulator to measure the impact on IPC and
energy-delay product (EDP). To evaluate the efficacy
of the BMP over the range of branch predictors that are
typically found typical current-generation embedded
processors and likely next-generation processors, we
evaluated the following predictors: static (Predict taken
for backwards branches and not-taken for forward
branches), bimodal, and gshare [14]. For the bimodal
and gshare branch predictors, we varied the size of
these predictors to use a hardware budget of 0.25KB
(1024 entries) to 4KB (16,384 entries). We chose these
branch predictors and sizes based on the sizes of
branch predictors in current-generation embedded
processors such as Freescale Semiconductor’s e300,
e500, and e600 [7] processors; ARM’s ARM11 and
ARM12 [1] processors; MIPS’s 4K, 5K, 24K, 34K,
20K processors [13], and PA Semi’s PA64T [25].
Table 1 shows the processor configuration, which was

heavily based on the PA64T since it is the most
advanced processor, for the IPC and EDP results that
are presented in this section. The size of the BMP
ranged from less than 0.03KB (16 entries) to less than
2KB (1024 entries).

In this paper, we used benchmarks from the SPEC
2000 [10] and MiBench [8] benchmark suites. For the
SPEC 2000 benchmarks, we downloaded pre-compiled
Alpha binaries from [23]. We present the results for all
26 SPEC 2000 benchmarks when using the
reference input set, but, for the benchmarks with
more than one input set, to reduce the simulation time,
we randomly selected one input set. The input set is
listed in parenthesis for the following list of
benchmarks that had more than one input set (input set
used): gzip (graphic), vpr (route), gcc (166), art (110),
eon (cook), vortex (ref1), and bzip2 (graphic). For the
MiBench benchmarks, due to compilation problems,
we used a subset of the benchmarks (basicmath,
bitcount, dijkstra, fft, ghostscript, jpeg, patricia, qsort,
rsynth, sha, stringsearch, and susan). These
benchmarks were compiled using a Compaq/DEC C
compiler with full optimization. For all MiBench
benchmarks, we used the large input set. Overall, we
evaluated a total of 38 benchmarks.

Table 1. Processor Configuration
Parameter Configuration

Issue
Policy/Width

Policy: Out-of-order; Width: 4-way
fetch, decode, issue, commit

Instruction
Window

Queue entries: 16 instruction fetch
queue, 64 reorder buffer, 32 load-store
queue

Branch
Predictor

Misprediction latency: 20 cycles,
Link stack entries: 16, Branch
Target Buffer: 512-entry, 4-way
associative

Execution
Units

1 branch unit, 1 load-store unit, 3/1
simple/complex integer units, 1/1
simple/complex floating-point units

MSS
Ports: 2, Memory latency: 100
cycles, Width: 16 bytes

Caches

L1: Split; 32KB, 4-way associative,
32B lines, LRU, 2 cycle latency
L2: Unified; 1024KB, 8-way
associative, 64B lines, LRU, 12 cycle
latency

MMUs
Page size: 4KB; TLBs: Split; 128-
entry, fully associative, 12 cycle
latency

To reduce the simulation time of the SPEC 2000
benchmarks, we used multiple 100M instruction
simulation points [22] that we generated using

0

5

10

15

20

25

30

In
te

ge
r

Fl
oa

t

M
iB

en
ch

0.
50

K

1.
00

K

2.
00

K

4.
00

K

0.
50

K

1.
00

K

2.
00

K

4.
00

K

0.
50

K

1.
00

K

2.
00

K

4.
00

K

0.
50

K

1.
00

K

2.
00

K

4.
00

K

0.
50

K

1.
00

K

2.
00

K

4.
00

K

0.
50

K

1.
00

K

2.
00

K

4.
00

K

INT FP MiBench INT FP MiBench

static bimodal gshare

B
ra

nc
h

M
is

pr
ed

ic
tio

n
R

at
e

(%
)

Base

Base+BMP16

Base+BMP64

Base+BMP256

Base+BMP1024

Figure 6. Reduction in the branch misprediction rate due to adding a BMP. The height of each bar
represents the average branch misprediction rate without a BMP while the height of each segment shows
the number of additional branch mispredictions that were removed by adding BMP entries. In this figure,
smaller is better.

SimPoint 1.1 with a max_K of 10 and with 7 random
seeds. We used the 100M instructions preceding the
simulation interval to warm-up the branch predictor,
BMP, and pipeline. Due to their relatively short
simulation time, we ran the MiBench benchmarks to
completion.

4.2. Reduction in the Branch Misprediction
Rate Due to Adding a BMP

Figure 6 shows average branch misprediction rate
for the integer, floating-point, and MiBench suites for
the three branch predictors and across all hardware
budgets. The height of each bar represents the average
branch misprediction rate for the “Base” configuration,
e.g., no BMP, while the height of each segment shows
the number of additional branch mispredictions that
were removed by adding extra BMP entries. Therefore,
the height of the bottom two segments shows the
average branch misprediction rate for the
Base+BMP256 configuration, while the
Base+BMP256 segment shows the percentage of
branches that were previously mispredicted and that
are now converted to correct predictions when using a
256-entry BMP. For example, for the static branch
predictor, the average branch misprediction rate for the
integer, floating-point, and MiBench benchmarks is
28.2%, 19.7%, and 27.1%, respectively. Adding a 16-
entry BMP reduces the average branch misprediction
rates to 17.4%, 6.9%, and 16.5%, respectively (i.e., the
height of the bottom four segments) while adding
another 48 MPBT entries, for a total of 64, further
reduces the average branch misprediction rates to
12.8%, 4.3%, 11.4%, respectively (i.e., the height of
the bottom 3 segments).

The results in Figure 6 show several key results.

First, and most importantly, complementary branch
predictors can significantly reduce the branch
misprediction rate for all branch predictors across a
wide range of applications. The results also show that
even small BMPs can significantly reduce the number
of branch mispredictions, although large BMPs yield
more significant reductions, albeit with diminishing
returns. The results are particularly dramatic for the
static branch predictor. The results show that adding a
1024-entry BMP reduces the average branch
misprediction rate from 28.2%, 19.7%, and 27.1% for
the integer, floating-point, and MiBench suites,
respectively, to 6.4%, 2.3% and 3.6%, respectively.
This result is extremely significant since many
embedded processors (e.g., Freescale Semiconductor’s
e300 and MIPS’ 4K and 5K processors) use static
branch prediction; instead of replacing the static branch
predictor with a dynamic branch predictor (which
consumes a significant amount of chip area and power
and is non-trivial to integrate into the pipeline), adding
a complementary branch predictor like the BMP can
yield branch prediction accuracy that is similar to that
of dynamic predictors, but with significantly less
design effort.

Although increasing the hardware budget of the
branch predictor reduces the branch misprediction rate,
the results in Figure 6 show that allocating part of that
bit budget to a BMP instead will, in most cases, reduce
the branch misprediction rate by a larger amount than
devoting the entire bit budget to a larger conventional
branch predictor. For example, for the MiBench
benchmarks, increasing the size of the branch predictor
from 0.25KB to 4KB reduces the misprediction rate
from 3.9% to 2.1%. By contrast, adding a 256-entry
MPBT to the 0.25KB configuration (for a total bit

0

10

20

30

40

50

60

70

80

90

100

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf Ave

R
ed

uc
tio

n
in

 B
ra

nc
h

M
is

pr
ed

ic
tio

n
R

at
e

1024 Entries

256 Entries

64 Entries

16 Entries

Figure 7. Percentage reduction in branch misprediction rate with BMP (baseline bimodal or gshare
branch predictor is 1KB) for SPECint 2000 benchmarks.

0

10

20

30

40

50

60

70

80

90

100

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

wupwise swim mgrid applu mesa galagel art equake facerec ammp lucas fma3d sixtrack apsi Ave

R
ed

uc
tio

n
in

 B
ra

nc
h

M
is

pr
ed

ic
tio

n
R

at
e

16 Entries 64 Entries

256 Entries 1024 Entries

Figure 8. Percentage reduction in branch misprediction rate with BMP (baseline bimodal or gshare
branch predictor is 1KB) for SPECfp 2000 benchmarks.

0

10

20

30

40

50

60

70

80

90

100

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

S
ta

tic

B
im

od
al

gs
ha

re

dijkstra fft ghostscript jpeg patricia qsort rsynth sha stringsearch susan basicmath bitcount Ave

R
ed

uc
tio

n
in

 B
ra

nc
h

M
is

pr
ed

ic
tio

n
R

at
e

16 Entries 64 Entries

256 Entries 1024 Entries

Figure 9. Percentage reduction in branch misprediction rate with BMP (baseline bimodal or gshare
branch predictor is 1KB) for MiBench benchmarks.

budget of 0.69KB (0.25KB for the branch predictor
and 0.44KB for the BMP)) reduces the average branch
misprediction rate to 1.7%. Therefore, as this result

shows, adding a small BMP to a conventional branch
predictor can simultaneously reduce both the total bit
budget and the branch misprediction rate. Furthermore,

0

10

20

30

40

50

60

70

80

static bimod gshare static bimod gshare static bimod gshare

INT FP Mibench

LP

BMP

Figure 10. Percentage reduction in the branch
misprediction rate with a 128 byte loop predictor
(LP) or BMP. The sizes of the baseline dynamic
branch predictors are 1KB.

0.0

0.5

1.0

1.5

2.0

2.5

In
te

ge
r

Fl
oa

t

M
iB

en
ch

0.
25

K

1.
00

K

4.
00

K

0.
25

K

1.
00

K

4.
00

K

0.
25

K

1.
00

K

4.
00

K

0.
25

K

1.
00

K

4.
00

K

0.
25

K

1.
00

K

4.
00

K

0.
25

K

1.
00

K

4.
00

K

Integer FP MiBench Integer FP MiBench

Static Bimodal gshare

C
yc

le
s

P
er

 In
st

ru
ct

io
n

Base

Base+BMP64

Base+BMP256

Figure 11. Reduction in CPI due to adding a BMP

since the BMP is not on the processor’s critical path
(as is the case for a conventional branch predictor) and
since MPBT is not accessed every cycle, BMP-based
branch predictors should also have lower branch
predictor access latencies and lower power
consumption.

Finally, the results in Figure 6 show that although
the BMP can reduce the branch misprediction rate for
all suites, it yields the largest benefit for the floating-
point benchmarks, followed by the MiBench and
integer suites. Figures 7, 8, and 9 show the reduction in
the branch misprediction rate due to the BMP for
individual benchmarks.

4.3. Comparison with Loop Predictor
Before presenting more results, it is important to

note that BMP does not only target loop branches,
which is the case for loop predictors [9] (LP). There
are several significant differences between the BMP
and a LP. First of all, the BMP is not limited only to
loops, but rather can target all types of branches.
Second, the LP uses local history to make predictions
while the BMP uses different types of global history
(e.g., global misprediction history) to make its
predictions. Third, the LP makes a prediction for every

branch, while the BMP only makes a prediction after a
mispredicted branch. Therefore, the BMP is accessed
less frequently, which is important for power reasons,
and is not on the processor’s critical path. Finally,
since the LP competes with other constituent predictors
within the branch predictor, even if it is chosen as the
highest confidence prediction, its prediction may not
be different than the predictions from the other
constituent predictors, i.e., may predict correctly
anyways. By contrast, the BMP only makes predictions
for branches that are frequently mispredicted, i.e.,
unlikely to be predicted correctly.

To quantify the performance difference between a
LP and a BMP, we implemented the loop predictor that
was described in [21]. Figure 10 shows the percentage
reduction of the branch misprediction rates when a 128
byte LP or BMP added to a static, a 1KB bimodal, or a
1KB gshare branch predictor. The results show that the
BMP reduces the branch misprediction rate more
significantly than the LP does. The difference is most
pronounced for SPECint, where loop predictor
performs poorly.

4.4. Reduction in the CPI Due to Adding a
BMP

Figure 11 shows CPI for the processor
configuration given in Table 1 for the base branch
predictor and with a 16-entry and 256-entry BMP. The
format for Figure 11 is similar to that of Figure 6 in
that the height of the bar represents the CPI of the base
processor configuration while the heights of the
bottom-most and second-from-the-bottom segments
represent the CPI after adding 256-entry and 16-entry
BMPs, respectively. Due to time constraints, in this
sub-section and the next two, we only present the
results for 3 branch predictor sizes (0.25KB, 1KB, and
4KB) and for 2 BMP sizes (64 and 256 entries).

The results in Figure 11 show that adding a 64-
entry BMP to the static predictor yields average
speedups of 20.0% to 53.6%, while a 256-entry BMP
yields average speedups of 21.7% to 93.0%. These
results indicate that complementary branch predictors
like the BMP yield significant performance
improvements, which coupled with its small size (112
bytes for the 64-entry BMP) and its ease of
implementation into the pipeline (off of the critical
path and accessed only after mispredictions), makes it
a very attractive add-on for embedded processors with
static branch predictors.

For the 1KB bimodal branch predictor, the average
speedup due to a BMP of 64 (256) entries ranges from
4.5% to 14.6% (5.1% to 18.3%), while the
corresponding average speedups for the 1KB gshare
branch predictor range from 2.0% to 3.4% (2.1% to

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.2
5K

1.0
0K

4.0
0K

0.2
5K

1.0
0K

4.0
0K

0.2
5K

1.0
0K

4.0
0K

0.2
5K

1.0
0K

4.0
0K

0.2
5K

1.0
0K

4.0
0K

0.2
5K

1.0
0K

4.0
0K

Integer FP MiBench Integer FP MiBench

Bimodal gshare

No
rm

ali
ze

d (
Mi

sp
red

ict
ion

 * B
P E

ne
rgy

) /
Br

 in
str

uc
tio

n^
2 Base Base+BMP16 Base+BMP256

Figure 12. Improvement in branch predictor energy-efficiency due to adding a BMP. In the figure, lower is
better.

5.33%). Although the average speedups when the
gshare branch predictor is the baseline predictor are not
as impressive as the speedups for static and bimodal,
the speedup is greater than 10% for several
benchmarks (e.g., gzip, eon, and bitcount) when adding
a 256-entry BMP.

The key results from Figure 11 are: 1) The BMP
improves the performance for all three branch
predictors and for all three branch predictor sizes, 2)
Larger BMPs yield larger performance improvements
than smaller ones, but with diminishing returns, and 3)
For some branch predictor configurations, using part of
the bit budget for a BMP yields higher performance
than devoting the entire bit budget to a conventional
branch predictor, e.g., 1) 0.25KB bimodal with a 64-
entry BMP vs. a 1KB or 4KB bimodal or 2) 1KB
gshare with a 256-entry BMP vs. 4KB gshare for the
integer and floating-point benchmarks.

4.5. Improvement in the Energy-Efficiency Due
to Adding a BMP

The results in Sections 4.2 and 4.4 present the
performance potential of the BMP, in terms of
reducing the branch misprediction rate and the
execution time (CPI). Recall from Section 2 that, in
contrast with conventional branch predictors, the BMP
is accessed only after branch mispredictions, or, in
other words, relatively infrequently. Fewer accesses
mean that the BMP is more energy-efficient. Note that
when the branch predictor has a higher branch
prediction accuracy, the number of BMP accesses
drops proportionally. In essence, there is an implicit
control mechanism built into the BMP to reduce its
energy consumption when it is not needed to improve
the branch prediction accuracy.

The remainder of this section presents the
potential for energy reduction by using a BMP. All of

the results that we present in this section were based on
using cc3 clocking in wattch.

4.5.1. Energy-Efficiency of Branch Predictors with
Complementary Branch Predictors

Figure 12 shows the improvement in the branch
predictor’s energy-efficiency due to adding the BMP.
To quantify the branch predictor’s energy-efficiency,
we use the product of the branch misprediction rate and
the branch predictor’s energy per (committed) branch
instruction, or:

BranchesCommitted

nConsumptioEnergy Predictor Branch

BranchesCommitted

BranchesedMispredict

EfficiencyEnergy Predictor Branch





Note that, when using a BMP, the energy consumption
of the branch predictor includes both the power of the
branch predictor and the BMP. To make the
comparison of energy-efficiency easier across the
different branch predictor sizes, for each branch
predictor, we normalize the energy-efficiency with
respect to the energy-efficiency for the Base 0.25KB
branch predictor. Therefore, for each branch predictor
and suite, the Base 0.25KB bar will always be 1.
Consequently, in this figure, since the static branch
predictor essentially consumes zero energy,
normalization is impossible, so we omit the
presentation of the static branch predictor
configurations.

The results in Figure 12 yield several key results.
First, since the BMP is significantly smaller and less
frequently accessed than the branch predictor and since
the results in Section 4.2 show that it significantly
reduces the branch misprediction rate, it is not
surprisingly to see that BMP-based branch predictors
are significantly more energy-efficient than the same

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Int
eg

er

Flo
at

Mi
Be

nc
h

0.2
5K

1.0
0K

4.0
0K

0.2
5K

1.0
0K

4.0
0K

0.2
5K

1.0
0K

4.0
0K

0.2
5K

1.0
0K

4.0
0K

0.2
5K

1.0
0K

4.0
0K

0.2
5K

1.0
0K

4.0
0K

Integer FP MiBench Integer FP MiBench

Static Bimodal gshare

No
rm

ali
ze

d P
roc

es
so

r E
DP

Base Base+BMP16 Base+BMP256

Figure 13. Improvement in processor energy-efficiency due to adding a BMP

size branch predictor without a BMP, even though
BMP-based branch predictors are slightly larger. More
specifically, a 0.25KB bimodal branch predictor with a
256-entry BMP is 40.6%, 89.8%, and 78.3% more
energy-efficient than a 0.25KB bimodal branch
predictor without the BMP for the integer, floating-
point, and MiBench benchmarks, respectively. For a
4KB gshare branch predictor, adding a 256-entry BMP
yields a 22.9% 85.9%, and 32.3% improvement in the
energy-efficiency of a 4KB gshare branch predictor
without a BMP.

Second, in most cases, a smaller branch predictor
with a BMP is more energy-efficient than a larger
branch predictor without a BMP. For example, for the
MiBench benchmarks, a 1KB gshare branch predictor
with a 256-entry BMP is 6% more energy-efficient
than a 4KB branch predictor without the BMP.
Furthermore, across all the benchmarks, a 0.25KB
bimodal branch predictor with 64-entry BMP is
substantially less power-hungry than a 4KB bimodal
branch predictor without BMP.

Third, with only two exceptions (0.25KB and 4KB
gshare branch predictor for the integer benchmarks),
increasing the number of BMP entries from 64 to 256
improves the overall energy-efficiency of the branch
predictor. By contrast, without a BMP, increasing the
bit budget of the branch predictor only improves its
energy-efficiency in half of the cases. The key
conclusion from this result is that not only are
complementary branch predictors more scalable from a
timing point-of-view (since they are not on the critical
path), but they are more scalable from an energy-
efficiency point-of-view.

4.5.2. Energy-Efficiency of Processors with
Complementary Branch Predictors

Figure 13 shows the improvement in an embedded
processor’s energy-efficiency when using a BMP as

compared to not using a BMP. The results in Figure 13
are normalized in the same way as were the results in
Figure 12, namely, with respect to the 0.25KB branch
predictor for each configuration and suite. In this figure,
the metric for energy-efficiency is energy-delay
product (EDP).

From Figure 13, we see that processors with a
BMP are more energy-efficient than processors
without a BMP, for the same size branch predictor. For
processors with a static predictor, adding a 256-entry
BMP improves the processor’s energy-efficiency by
49.6%, 27.7%, and 64.6% for the integer, floating-
point, and MiBench benchmarks. For a 1KB bit budget,
the energy-efficiency of the processor for the other two
branch predictors for 256-entry BMP, ranges from
2.8% (gshare, floating-point) to 20.3% (bimodal,
MiBench).

Furthermore, with the exception of the gshare
branch predictor and the MiBench benchmarks,
processors that use a 256-entry BMP are 1.8% to
21.0% energy-efficient than processors without a BMP,
but that have a branch predictor that is four times
larger. For the MiBench benchmarks, the energy-
efficiency of a 0.25KB and 1KB gshare branch
predictor with a 256-entry BMP is 17.4% and 0.9%
lower than a 1KB and 4KB, respectively, gshare
branch predictor. However, it is important to note that
the latter processors with have larger chip areas (and
consequently higher fabrication costs) and possibly
higher branch predictor access times (which are not
modeled here).

5. Related Work
Sendag et al. [19] introduced the concept of

complementary branch predictors and developed a
mechanism that helped to correct future branch
mispredictions without increasing the size of the
branch predictor. This paper builds and extends on that

idea in several ways. First, it studies the predictability
of branch mispredictions. Second, it analyzes the
potential of using complementary branch predictors
with branch predictors that are typically found in
embedded processors. Third, it quantifies the
performance impact (CPI) that a BMP can have on the
processor. Fourth, it evaluates the potential speedup in
the execution time due to using a complementary
branch predictor in an embedded processor. Fifth, it
analyzes the power efficiency of BMP-based branch
predictors. Finally, it analyzes the code to determine
why the BMP can successfully predict frequently
mispredicted branches.

The majority of power reduction techniques
concentrate on eliminating dynamic power requirement
of branch predictor and BTB. Parikh et al. [16] propose
eliminating unnecessary lookups to the branch
predictor and BTB for non-branch instructions using
hardware filters or compiler-generated hints. It also
suggests that exploiting banked branch predictor
organizations can reduce branch predictor access time
and power. In [18], they propose a software-
programmable BTB, named ACBTB, which can adapt
to application control flow information extracted by the
compiler/linker. They claim that this mechanism can
also guarantee an access hit in branch target resolution.
Baniasaidi and Moshovos propose using a branch
prediction predictor [4] and a selective predictor access
(SEPAS) [5], in addition to gating the access of branch
predictor and BTB, to eliminate accesses to the sub-
predictors in a hybrid branch predictor by exploiting
the temporal and sub-predictor locality of branches.
SEPAS also removes branch predictor and BTB
updates that store information that already exists in the
predictor, further lowering the power requirement of
branch predictor and BTB. Chaver et al. in [6] propose
a similar scheme which gates the access to hybrid
branch predictor and uses an adaptive BTB which
dynamically downsizes itself for applications that are
not BTB-size sensitive.

In addition to reducing the dynamic power
dissipation, another important avenue of research
focuses on reducing the static power leakage. Hu et al.
[11] deactivate the branch predictor, sub-predictor
and/or branch predictor banks when there are no
branch instructions to be predicted. While this
mechanism reduces power consumption, access to a
hibernating predictor block results in extra wake-up
delay. To mitigate this problem, Monchiero et al.
propose to introduce new hint instruction, HI, for
upcoming branches [15]. The decoder logic activates
the branch predictor as soon as a HI instruction is
fetched. This instruction also triggers the branch
predictor to use the information encoded in the
instruction to determine if the target is readily available.

Yang and Orailoglu [24] use compiler hints to pre-
activate the branch predictor and BTB.

The aforementioned techniques focus on directly
lowering the power consumption of branch predictors,
dynamically or statically. In [17], Pasricha and
Veidenbaum analyze this problem from the
application/system operation point-of-view. They
examine the effects of context switch on the branch
predictor accuracy and show that context switch
introduces branch predictor and BTB pollution. Based
on this observation, they propose a storage-efficient
mechanism to dump branch predictor’s contents during
a context switch to reduce pollution.

In stark contrast to all of the previous work, our
BMP design attacks the power efficiency problem from
a different angle. We combine a smaller branch
predictor, simple or complex, with a simple BMP to
achieve high (or higher) prediction accuracy. Since this
approach is orthogonal to the aforementioned
techniques, it can be used in conjunction with them.
Our results show that our approach not only can
improve the energy-efficiency of the branch
predictor/processor like the other techniques, but can
also improve the branch prediction accuracy/IPC
performance, which is separates it from the other
techniques.

6. Conclusion
Since embedded processors need to have branch

predictors with high branch prediction accuracy to
achieve good performance, computer architects have
proposed branch predictors that are increasingly more
complex and/or larger. Unfortunately, the cost of these
more aggressive branch predictors are higher
prediction latencies and misprediction penalties, which
offset the higher prediction accuracy, in addition to
larger chip area and increased power consumption.

To address this problem, in this paper, we propose
adding complementary branch predictors to the
existing branch predictors of embedded processors. By
concentrating on making predictions for only the
subset of branches that degrade the processor's
performance, a complementary branch predictor
requires less area and is accessed less frequently.
Consequently, it is inherently more power efficient.

To quantify the efficacy of this approach, we
implemented a branch misprediction predictor (BMP),
which uses the branch misprediction history to predict
which future branch will be mispredicted next and
when that will occur. The BMP then flips the branch
predictor's predicted direction for this branch. Since we
do not alter branch predictor's working mechanism, a
complementary branch predictor can improve the
accuracy of any branch predictor. Moreover, it can also

be used in conjunction with other energy reduction
techniques for branch predictors, such as access gating
for branch predictors and BTB as well as dynamically
deactivating the branch predictor and its sub-
components.

Our results show that adding a small 16-entry (28
byte) BMP reduces the branch misprediction rate of
static, bimodal, and gshare branch predictors by an
average of 51.0%, 42.5%, and 39.8%, respectively,
across 38 SPEC 2000 and MiBench benchmarks.
Furthermore, a 256-entry BMP yields an average
speedup up to 67.3% and improves the energy-
efficiency of the branch predictor and processor up to
97.8% and 23.6%, respectively.

Acknowledgments
This research is supported in part by US National

Science Foundation grant CCF-0541162, the
University of Minnesota Supercomputing Institute.

References
[1] http://www.arm.com
[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A

Framework for Architectural-Level Power Analysis
and Optimizations,” International Symposium on
Computer Architecture, 2000.

[3] D. Burger and T. Austin, “The Simplescalar Tool Set,
Version 2.0,” University of Wisconsin-Madison
Computer Sciences Department Technical Report
#1342, 1997.

[4] A. Baniasadi and A. Moshovos, “Branch predictor
prediction: a power-aware branch predictor for high
performance processors,” International Conference
on Computer Design, 2002.

[5] A. Baniasadi and A. Moshovos, “SEPAS: A highly
accurate energy-efficient branch predictor,”
International Symposium on Low Power Electronics
and Design, 2004.

[6] D. Chaver, L. Pinuel, M. Prieto, F. Tirado, and M.
Huang, “Branch prediction on demand: an energy-
efficient solution,” International Symposium on Low
Power Electronics and Design, 2003.

[7] http://www.freescale.com
[8] M. Gauthus, J. Ringenberg, D. Ernst, T. Austin, T.

Mudge, and R. Brown, “MiBench: A free,
commercially representative embedded benchmark
suite,” Workshop on Workload Characterization,
2001.

[9] Gochman et al. “The Intel Pentium-M processor:
Microarchitecture and performance,” Intel
Technology Journal, 7(2), pp. 21-33, 2003.

[10] J. Henning, “SPEC CPU CPU2000: Measuring CPU
Performance in the New Millennium,” IEEE
Computer, Vol. 33, No. 7, July 2000, pp. 28-35.

[11] Z. Hu, P. Juang, K. Skadron, D. Clark, and M.
Martonosi, “Applying decay strategies to branch

predictors for leakage energy savings,” International
Conference on Computer Design, 2002.

[12] D. Jiménez, “Piecewise Linear branch prediction,”
International Symposium on Computer Architecture,
2005.

[13] http://www.mips.com
[14] S. McFarling, “Combining Branch Predictors,”

Digital Western Research Laboratory Technical
Report TN-36M, 1993.

[15] M. Monchiero, G. Palermo, M. Sami, C. Silvano, V.
Zaccaria, and R. Zafalon, “Low-power branch
prediction techniques for VLIW architectures: A
compiler hints based approach,” The VLSI Journal,
Vol. 38, No. 3, pp. 515-524, Jan. 2005.

[16] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M.
R. Stan, “Power issues related to branch prediction,”
International Symposium on High-Performance
Computer Architecture, 2002.

[17] S. Pasricha and A. Veidenbaum, “Improving Branch
Prediction Accuracy in Embedded Processors in the
Presence of Context Switches,” International
Conference on Computer Design, 2003.

[18] P. Petrov and A. Orailoglu, “Low-power branch
target buffer for application-specific embedded
processors,” IEE Transactions on Computers and
Digital Techniques, Vol. 152, No. 4, pp. 482-488,
July 2005.

[19] R. Sendag, J. Yi, and P. Chuang, “Branch
Misprediction Prediction: Complementary Branch
Predictors,” IEEE Computer Architecture Letters,
2007.

[20] A. Seznec, “Analysis of the O-GEHL predictor,”
International Symposium on Computer Architecture,
2005.

[21] A. Seznec, “A 256 Kbits L-TAGE branch predictor,”
Journal of Instruction Level Parallelism, 2006.

[22] T. Sherwood, E. Perelman, G. Hamerly, and B.
Calder, “Automatically Characterizing Large Scale
Program Behavior,” International Conference on
Architectural Support for Programming Languages
and Operating Systems, 2002.

[23] http://www.23.com/benchmarks.html
[24] C. Yang and A. Orailoglu, “Power Efficient Branch

Prediction through Early Identification of Branch
Addresses,” International conference on Compilers,
Architecture and Synthesis for Embedded Systems,
2006.

[25] T. Yeh, “The Low-Power High-Performance
Architecture of the PWRficient Processor Family,”
Hot Chips, 2006.

