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Abstract 
Branch prediction accuracy remains to be critical for high 

performance and low power. Prior work has studied causes of branch 
mispredictions in order to provide insights into how better branch 
predictors can be designed. However, most of the previous works 
have only considered run-time classification of branch 
mispredictions, leaving a large number of mispredictions in an 
unknown category. For more comprehensive analysis, in this paper, 
we present a detailed source code analysis of branch mispredictions 
for SPEC CPU 2000 and Mibench benchmarks. Our analysis show 
that constant loop exits, insufficient history lengths, wrong-type 
history, array access/pointer references, complex linked list data 
structures, changing function inputs, and varying loop counts are the 
major causes for most of the branch mispredictions. We further show 
that most mispredictions have repetitive patterns that suggest 
different design strategies for future branch predictors. 

 
1. Introduction 

Branch prediction has been studied extensively for the last 
two decades. There have even been two championship branch 
prediction (CBP) competitions [1, 2], which have introduced 
very sophisticated and accurate branch predictor designs. Yet, 
there has not been a comprehensive study on branch 
misprediction classification through detailed source-code 
analysis of hard-to-predict branches. Most comprehensive 
branch misprediction classification was done by Skadron et al 
[3]. In their paper, Skadron proposed a taxonomy for run-time 
classification of branch mispredictions. This taxonomy 
classifies mispredictions as being from one of the following 
categories: training, interference in tables, wrong-history, need 
both histories simultaneously, and other. Other category 
includes insufficient history length or inherently difficult to 
predict branch mispredictions that can not be classified by this 
taxonomy. Many of the prior work target one or more of the 
above problems to improve the accuracy of branch prediction. 
[4-11] studied eliminating interference (aliasing) in predictors’ 
pattern history table/s (PHT), which occurs when two unrelated 
branches destructively interfere by using the same prediction 
resources. To address wrong-history mispredictions, a number 
of hybrid predictors were proposed [6, 12-14]. Because these 
predictors include multiple tables with global and local 
histories, they also required a mechanism (a meta-predictor) to 
choose which predictor to believe at any moment (later 
methods used adder trees instead of meta-predictors [15, 16]). 
An improvement to this, which could also reduce 
mispredictions that need both types of history simultaneously, 
was a pseudo-hybrid organization that alloys global and local 
history in the same predictor index [17]. Other predictors try to 
also reduce mispredictions that need longer histories [18, 19]. 
These predictors employ multiple prediction tables indexed 

with different-length folded histories. Another effort in 
reducing mispredictions that need longer histories has been 
prediction based on neural networks [16, 20-24]. To mitigate 
longer prediction and training times of complex/large 
predictors, they are usually cascaded with simple ones [12] or 
ahead-pipelined [25]. Finally, to reduce constant loop exit 
mispredictions, loop count predictor was proposed [26].  

In this paper, we extend prior work on branch misprediction 
classification through detailed source code analysis of hard-to-
predict branches. We focus mainly on branches, which can not 
be classified by Skadron’s taxonomy. This paper makes the 
following contributions: 

1. It confirms already known facts about the causes of 
branch mispredictions, and extends prior work on 
branch misprediction classification by introducing 
new classes of mispredictions.  

2. It shows that array element accesses or pointer 
references, linked list traversals, varying loop counts, 
and changing function inputs make harder to predict 
branches that depend on them and may require 
different ways to improve prediction accuracy.  

3. It introduces new type of correlations other than 
branch outcome histories. 

The remainder of this paper is organized as follows: Section 
2 describes the experimental setup. Section 3 presents run-time 
classification of branch mispredictions. Section 4 presents 
misprediction coverage by top 10 hot branches. In Section 5, 
we present a detailed source-code analysis of branch 
mispredictions. Section 6 summarizes our findings on source-
code analysis. Section 7 describes some related work, and 
Section 8 concludes. 

 
2. Experimental Setup 

To collect the results presented in this paper, we have used 
sim-bpred simulator from the Simplescalar tool suite [27], 
version 3.0d. We also extend this simulator to include Alpha 
21264 [12] and Piecewise Linear (PWL) [21] branch 
predictors. We used benchmarks from the SPEC CPU 2000 
[28] and MiBench [29] benchmark suites. We present the 
results for all 26 SPEC CPU 2000 benchmarks when using the 
reference input set, but, for the benchmarks with more than one 
input set, to reduce the simulation time, we randomly selected 
one input set. The input set is listed in parenthesis for the 
following list of benchmarks that had more than one input set: 
gzip (graphic), vpr (route), gcc (166), art (110), eon 
(cook), vortex (ref1), and bzip2 (graphic). For the 
MiBench benchmarks, due to compilation problems, we used a 



subset of the benchmarks (basicmath, bitcount, dijkstra, fft, 
ghostscript, jpeg, patricia, qsort, rsynth, sha, stringsearch, and 
susan). These benchmarks were compiled using gcc 4.1.2 at 
optimization level O3. For all MiBench benchmarks, we used 
the large input set. Overall, we evaluated a total of 38 
benchmarks. 

To reduce the simulation time of the SPEC CPU 2000 
benchmarks, we used multiple 100M instruction simulation 
points that we generated using SimPoint tool [30]. Due to their 
relatively short simulation time, we ran the MiBench 
benchmarks to completion. 

 
3. Run-time Classification of Branch 

Mispredictions 
We repeat Skadron’s run-time branch misprediction 

classification for SPEC CPU 2000 and Mibench benchmarks 
with a 4kB (i.e., 16K entries) gshare [6] predictor. 
Mispredictions are classified into five groups: conflict, 
training, wrong-history, needs both history, and other. To 
classify a branch’s misprediction type, we perform a sequence 
of tests as described in [3]. Each branch flows down this 
sequence of tests until it is categorized or falls through as a 
misprediction that could not be categorized.  

1) The prediction starts with a gshare predictor. If the 
prediction is incorrect, misprediction classification starts.  

2) The first step is to test if a gshare predictor with no 
aliasing  could predict the branch. When the gshare predictor 
that is free of aliasing is implemented, the number of table 
entries is kept the same (i.e., same history size is used). 
However, each table entry remembers all branch references to 
that entry by updating their corresponding 2-bit counters. 
Therefore, the predictor is free of destructive interference. If 
this predictor was able to provide correct prediction, the 
misprediction falls into the conflict category. That is, the 
predictor under test would predict the branch correctly, but a 
destructive interference prevented the predictor from doing so, 
and as a result, a conflict misprediction has occurred.  

3) The second step uses a 2-bit predictor to predict the 
branch. If this prediction is correct, it suggests that the branch 
has not been predicted correctly before because the branch 
predictor under test has long training time. This is a 

misprediction due to  training (as mentioned in [3], this is an 
approximation.)  

4) If the branch misprediction has not been classified in the 
previous steps, it may have happened because the branch needs 
local history. If a local predictor of the same size, but free of 
interference (logically infinite sized predictor), predicts this 
branch correctly, it suggests that global history is not 
appropriate for this branch because it needs local history, i.e., it 
is a wrong type history misprediction. 

5) If still not classified, an interference-free predictor that 
uses both global and local histories is tested if it can provide 
correct prediction for this branch. A correct prediction in this 
case suggests the branch needs both types of history, and the 
misprediction is classified as “needs both types of history”. 
However, if the branch mispredicts with this predictor also, it 
falls into the group of other mispredictions as it cannot be 
classified by this taxonomy.  

By running several predictor organizations of increasing 
sophistication simultaneously, our simulator performs the 
abovementioned cascade of tests until the branch either predicts 
correctly, or the misprediction fails all tests. Remaining 
branches are either inherently difficult to predict, or fall into a 
category not included in this scheme (e.g., need longer history). 
This process categorizes each dynamic branch’s behavior for 
gshare branch predictor.  

Figure 1 shows the breakdown of the branch misprediction 
categories for SPECint, SPECfp, and Mibench benchmarks, 
respectively. An interesting observation is that, for most of the 
benchmarks, the “other” is the largest category. This is more 
pronounced for the following benchmarks: for bzip2, vpr, mcf, 
parser, perl, and twolf, about 50% of the mispredictions fall 
into the “other” category; And for art, swim, mgrid, lucas, 
sixtrack, dijkstra, susan, sha, and bitcount, more than 75% of 
the mispredictions fall into the “other” category.  

Table 1 summarizes the results by showing average 
percentages of each class of mispredictions per benchmark 
suite. These results show the importance of wrong type history 
along with well known problems of conflicts and training 
times. However, we also see that a large percentage of 
mispredictions (about 40% on average) can not be categorized 
as being from one of the abovementioned misprediction types 
using this taxonomy. It must also be noted that, with this 
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Figure 1. Breakdown of misprediction types for 4kB gshare predictor for SPECint, SPECfp and Mibench benchmarks. Our experiments also show that larger 
global history decreases mispredictions in conflict, need other and other categories while increasing mispredictions in training category, which is expected. 



taxonomy, a branch’s mispredictions may fall into different 
categories for different dynamic instances of the branch. 
Therefore, this taxonomy can not provide detailed information 
about a specific branch. This suggests a further investigation 
for important branch instructions. In this paper, after 
identifying hot branches through run-time profiling, we 
perform source-code analysis in order to provide more insights 
into why specific branches mispredict often. This also 
identifies branches, which cause mispredictions that go under 
the “other” category. 

 
Table 1. Average contribution of misprediction types (%) 

 Conflict Training Need  
Other 

Need  
Both 

Other 

SPECint 14.88 16.51 23.79 4.40 40.42 
SPECfp 6.65 11.69 39.52 0.85 41.28 
Mibench 2.96 14.94 41.18 3.26 37.65 

 
4. Mispredictions by Hot Branches 

Figure 2 shows how hot branch PCs contribute to the 
overall mispredictions for SPECint, SPECfp, and Mibench 
benchmarks, respectively, when a 4kB gshare branch 
predictor is used. On average, for SPECint, top 5, top 10, top 
20 static branches cause 39%, 53%, 65% of all mispredictions, 
respectively. For SPECfp, top 5, top 10, top 20 static branches 
cause 71%, 83%, 92% of all mispredictions, respectively. 
Finally, for Mibench, top 5, top 10, top 20 static branches cause 
67%, 79%, 87% of all mispredictions, respectively. Majority of 
mispredictions are caused by few hot branches.  

 
5. Source Code Analysis for Branch 

Misprediction Classification of Hot Branches 
This section presents a detailed source code analysis on top 

ten hot branch PCs that mispredict most in order to evaluate 
why they mispredict, how and if they can be corrected (either 
with current methods or others), and if they go under a new 
category for mispredictions. 

In the analysis, we have used 4kB gshare branch 
predictor. When branches are analyzed, however, we have also 
tried to see if they still remain important when different (and/or 
better) predictors, such as Alpha or PWL, are used to predict 
these branches. We have analyzed all SPEC and Mibench 
benchmarks written in C.  

The rest of this section presents a detailed discussion for 
various different branch misprediction types. 
 
5.1. Array Element Access or Pointer References 

When a particular branch depend on array access or pointer 
references, irregular values loaded from array element accesses 
make it difficult to predict this branch. However, in some 
cases, the value that each array element stores remain 
unchanged for a long time. Due to this address-value 
correlation, branch outcome is consistent with the address 
values, i.e., the array indices. A branch predictor with local 
history length size greater than the number of loop iterations 
will be able to capture this type of behavior. However, this is 
often impractical.  

Examples of branch mispredictions that are caused by array 
element accesses or pointer references are found in almost all 
benchmarks. 

Figures 3a and 3b show assembly and C source codes, 
respectively from gcc benchmark that include the most 
frequently mispredicted branch (BR1). This branch mispredicts 
29.3% of the time and corresponds to 44% of all mispredictions 
in gcc. Using longer history for gshare predictor does not help 
reduce mispredictions for this branch. A 32KB Piecewise 
Linear branch predictor can only slightly help improve the 
prediction rate. This is obviously a hard-to-predict branch that 
must go under the “other” category with the taxonomy used 
earlier. However, we noticed that the “other” category for gcc 
was only 31% as shown in Figure 1. This confirms that some 
dynamic instances of this branch’s mispredictions were 
classified as conflict, training, wrong-history or need both.  

Figure 3 shows that BR1 checks if the value loaded into 
register $3 by the load LD1 is less than or equal to zero. 
Register $3 contains the value of regno_first_uid[j] 
(value of jth element of the array) in Figure 3b. Register $2 is 
used for calculating and storing the address for 
regno_first_uid[j] (see LD1 in Figure 3a). This branch 
is executed for 198614 times. There are 41112 different 
addresses (i.e., register $2 values) that are used by LD1 and 
each of these addresses are accessed for five times. The values 
in these addresses (i.e., values ($3) of regno_first_uid 
array elements) are very stable or do not change frequently. 
The predictor mispredicts at 12166 different addresses (12166 
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Figure 2. Contribution of the top 5, top 10, and top 20 branch PCs to overall mispredictions for (a) SPECint, (b) SPECfp, (c) Mibench. 4kB gshare branch predictor.



different values of $2). If there is a misprediction on one 
address, misprediction occurs again next time the same address 
is loaded (i.e., the same array element is accessed). While very 
hard to predict with current techniques, a correlation between 
addresses and mispredictions and the stability of data in the 
array suggest different methodology for prediction. For 
example, mispredictions could be predicted by using register 
$2 values, that is, the addresses of the array elements. In fact, 
the misprediction can be detected in the earlier iterations of the 
loop before it actually happens since this is an array access. 
However, naïve implementation could require large storage to 
detect this correlation. Further research needs to be done to see 
if there is an efficient way for reducing this type of 
mispredictions. 

  unroll.c:746 
  5358c8:       28 00 00 00     lw $2,-17468($28)  
  5358d0:       43 00 00 00     addiu $17,$0,64  
  5358d8:       5b 00 00 00     slt $2,$17,$2  
  5358e0:       05 00 00 00     beq $2,$0,5359f8  
  5358e8:       28 00 00 00     lw $11,120($30)  
  5358f0:       43 00 00 00     addiu $10,$0,1  
  5358f8:       43 00 00 00     addiu $7,$11,64  
unroll.c:747 
  535900:       28 00 00 00     lw $2,-17360($28)  
  535908:       55 00 00 00     sll $6,$17,0x2  
  535910:       42 00 00 00     addu $2,$6,$2  
  535918:       28 00 00 00     lw $3,0($2) → LD1 
  535920:       07 00 00 00     blez $3,5359d0 → BR1 

(a) 

//  unroll.c  
746     for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; 
++j) 
747       if (regno_first_uid[j] > 0 && regno_first_uid[j] <= 
max_uid_for_loop → LD1, BR1 
748           && uid_luid[regno_first_uid[j]] >= copy_start_luid 
749           && regno_last_uid[j] > 0 && regno_last_uid[j] <= 
max_uid_for_loop 
750           && uid_luid[regno_last_uid[j]] <= copy_end_luid) 
751         local_regno[j] = 1; 
752   } 

(b) 
Figure 3. Code snippet for one of the hot PCs in gcc, (a) assembly, (b) C code 

In Figure 4, we show another example of this type of 
mispredictions for the art benchmark. Misprediction rate for 
this branch (BR1) is 8.62%. This corresponds to 8% of all 
mispredictions in art when using a 4KB gshare predictor.  
Increasing the history size (predictor size) does not reduce the 
mispredictions significantly for this branch (i.e., a 256KB 
gshare reduces misprediction rate from 8.62% to 8.1%). 
Even when using a 256KB PWL predictor misprediction rate 
for this branch is 8.2%.  However, when a very large and/or 
better predictor is used, total mispredictions for art decreases 
significantly, which makes this branch far more important 
because it then corresponds to 95% of all mispredictions. 

Figure 4 shows the source code (assembly and C code) 
from art that includes this hot branch (BR1). BR1 checks if 
value stored in register $f0 is less than the value stored in 
register $f4. $f0 holds the value of f1_layer[ti].X and 
$f4 holds the value of theta as shown in Figure 4. Register $3 
holds the address of f1_layer[ti] (LD1). BR1 outcomes 

depend on the values returned by LD1. BR1 is executed for 
340000 times (the loop in figure iterates 34 times, and there is 
an outer loop, which is executed 10000 times (not shown in 
figure). Register $3 takes 34 different addresses and at all 
those addresses, the value in that address 
(f1_layer[ti].X) remains unchanged throughout the 
simulation. The branch outcome is consistent with the load 
addresses (values in register $3). This is another example of 
address-value correlation, which suggests that the branch can 
be predicted very well by using the value in register $3 (the 
address of f1_layer[ti]). This branch also does not 
require large storage to remember correlations since there are 
only 34 addresses. 

scanner.c:419 
  401af0:       28 00 00 00     lw $2,-31344($28) 
  401af8:       42 00 00 00     addu $6,$0,$0 
  401b00:       07 00 00 00     blez $2,401bc8  
  401b08:       2b 00 00 00     l.d $f4,-31400($28) 
  401b10:       2b 00 00 00     l.d $f6,-31448($28) 
  401b18:       42 00 00 00     addu $4,$0,$2 
  401b20:       28 00 00 00     lw $3,-31360($28) 
scanner.c:421 
  401b28:       2b 00 00 00     l.d $f0,16($3) → LD1 
  401b30:       93 00 00 00     c.lt.d $f0,$f4 
scanner.c:424 
  401b38:       7b 00 00 00     mov.d $f2,$f0 
scanner.c:421 
  401b40:       0b 00 00 00     bc1f 401b58 → BR1 

(a) 
//  scanner.c 
419       for (ti=0;ti<numf1s;ti++) 
420       { 
421            if (f1_layer[ti].X < theta) → LD1, BR1 
422                   xr = 0; 
423            else 
424                   xr = f1_layer[ti].X; 
 . . .            . . .  
429            f1_layer[ti].V = xr + b*qr; 
430            tnorm += f1_layer[ti].V * f1_layer[ti].V; 
431       }1485   return 0; 
1486 } 

(b) 
Figure 4. Code snippet for second top hot PC in art, (a) assembly, (b) C code 

The two examples given from gcc and art in this section 
show a new class of branch mispredictions, which we call array 
element access or pointer references. When data values are 
stable, there is chance to reduce mispredictions of this type. 
However, if data values change frequently and they are 
random, it is not possible to find correlation of any kind for the 
mispredictions. We found few examples of this kind in 
parser and bzip2. 

 
5.2. Linked List Traversals 

A pointer-chasing load, such as node=node→next, that 
determines the end of a linked list makes it hard to predict the 
branch that depend on it.  If the linked list has n nodes, the loop 
iterates n times and the branch outcomes would be n-1 times 
“taken” followed by a “not taken”. Branch predictors that 
exploit correlation in branch outcome histories often fail to 
predict these branches accurately. Our analysis shows that 
mcf, parser, and dijkstra have significant amount of 



hard-to-predict branches of this type. However, at a closer look, 
these hard-to-predict branches may be predicted correctly 
because, although they do not have regular correlation in 
branch histories, they exhibit a type of locality that can be 
exploited with different mechanisms. Most components of data 
structures in SPEC CPU 2000 and Mibench benchmarks tend 
to remain stable. For example, after a linked list is initialized, 
the address of the end node remains the same until a new node 
is added to the end. In fact, even the order of the node 
addresses that is traversed remain the same until there is 
insertion or deletion. Therefore, if there are n nodes and if last 
m nodes of the linked list remain stable, once node n-m is 
accessed, one can predict that branch outcome that depends on 
this linked list traversal should be not taken when node n is 
reached. If a branch depends on such stable data, address of the 
data is sufficient to determine the branch outcome.  

Figures 5 and 6 show examples of linked-list-traversal-
caused branch mispredictions for parser and mcf, 
respectively. Similar examples are also found in gcc, art, 
ammp, jpeg, bzip2, basicmath, dijkstra. 

Figure 5 shows the source code (assembly and C code) 
from parser that includes a tree structure. In this pointer-
chasing code, the loaded values that determine the branch 
outcome are irregular, which makes this branch hard to predict. 
Conventional branch predictors fail to provide very accurate 
predictions for this type of branches. However, because BR1 in 
Figure 5 is mostly taken (92% of the time), a 4KB gshare 
predictor is still doing well. The misprediction rate is 8.67%. A 
32KB gshare further reduces the misprediction rate to 7.4%. 
A 32KB PWL can achieve 6% misprediction rate.  

post-process.c:746 
  419d70:       28 00 00 00     lw $16,0($18)  
  419d78:       05 00 00 00     beq $16,$0,419e80  
post-process.c:747 
  419d80:       28 00 00 00     lw $3,4($16)  
  419d88:       55 00 00 00     sll $2,$3,0x2  
  419d90:       42 00 00 00     addu $2,$2,$3  
  419d98:       55 00 00 00     sll $2,$2,0x2   
      . . .                . . .                 . . .  
  419dc0:       02 00 00 00     jal 416ca0  
  419dc8:       06 00 00 00     bne $2,$0,419de0  
post-process.c:746 
  419dd0:       28 00 00 00     lw $16, 8($16) → LD1 
  419dd8:       06 00 00 00     bne $16,$0,419d80 → BR1 

(a) 
//  post-process.c 
743     D_tree_leaf * dtl; 
744     int d, count; 
745     for (d=0; d<N_domains; d++) { 
746         for (dtl = domain_array[d].child;  

        dtl != NULL;   → BR1 
        dtl = dtl->next) {  → LD1 

747             if (ppmatch(selector, pp_link_array[dtl>link].name)) 
     break;  

748         } 
(b) 

Figure 5. Code snippet for top second hot PC in parser (for one of the 
simpoints), (a) assembly, (b) C code. 

In Figure 5, branch BR1 checks if the value in register $16 
is not equal to NULL. $16 holds the address of dtl. BR1 is 

dependent on the pointer-chasing load, LD1 
(dtl=dtl→next). LD1 often misses in cache, which means 
BR1 resolves late. BR1 is accessed 476293 times. There are 
1172 different values for register $16 (dtl addresses). Each 
address is accessed about 400 times on average. The values in 
these addresses do not change frequently. There are only a few 
changes throughout the simulation. Thus, address values ($16) 
instead of data loaded from these addresses are sufficient to 
know the branch outcome. There is also a pattern in which 
addresses follow each other, i.e., few node insertions or 
deletions for a long time. Since the data structures are very 
stable, register values that hold node address values in previous 
iterations of the loop can be used to predict the outcome of the 
branch instance that is dependent on the end node in the linked 
list. 

Another example of linked-list-traversal-caused branch 
mispredictions is shown in Figure 6 for the mcf benchmark. 
Misprediction rate for this branch (BR1) is 24.3%. This 
corresponds 22% of all mispredictions in mcf when using a 
4KB gshare predictor.  Increasing the history size (predictor 
size) does not reduce the mispredictions. A 256KB PWL 
predictor also fails to reduce misprediction rate for this branch. 
There are total of three branches of this type in mcf, which 
correspond to 58% of all mispredictions.  

mcfutil.c:96 
  4007d8:       42 00 00 00     addu $4,$0,$3  
mcfutil.c:98 
  4007e0:       28 00 00 00     lw $2,8($4)  
  4007e8:       05 00 00 00     beq $2,$0,400828  
mcfutil.c:100 
  4007f0:       28 00 00 00     lw $3,16($4)  → LD1 
mcfutil.c:101 
  4007f8:       05 00 00 00     beq $3,$0,400810 → BR1 
mcfutil.c:84 
  400748:       28 00 00 00     lw $2,28($4) 
  400750:       06 00 00 00     bne $2,$7,400788 

(a) 
//  mcfutil.c 
79     tmp = node = root->child; 
80     while( node != root ) 
81     { 
82         while( node )  
83         { 
 … 
94         }  
95 
96         node = tmp; 
97 
98         while( node->pred ) 
99         { 
100             tmp = node->sibling;  → LD1 
101             if( tmp )  → BR1 
102             { 
103                 node = tmp; 
104                 break; 
105             } 
106             else 
107                 node = node->pred; 
108         } 
109     } 

(b) 
Figure 6. Code snippet for one of the hot PCs in mcf, (a) assembly, (b) C 
code 



Figure 6 shows the source code from mcf that includes this 
hot branch (BR1). BR1 checks if the value in register $3 is 
equal to zero. Register $3 holds the address of 
node→sibling (value returned by a load, LD1, which is 
temp in Figure 6.b), and $4 holds the address of node. 

BR1 is accessed for 2579273 times. There are 33111 
different values for $4 (LD1 addresses). Every address is 
accessed about 78 times. The values at each address change 
rarely throughout the simulation. There are 35855 address-
value pairs. Therefore, this branch’s outcome could be 
predicted by using the address value in register $4 instead of 
the loaded data value in register $3. The top three hot branches 
in mcf have the same behavior.  

Branch mispredictions that are caused by linked list 
traversals as described in this section are very hard to predict 
using conventional branch predictors. However, due to address-
value correlations, it is possible to make correct predictions if 
corresponding register values (addresses) are used. More 
research is needed on how such mechanisms can be built 
efficiently with limited hardware budgets. Perhaps, since the 
data structures are very stable, a mechanism could be designed 
to correct mispredictions before they take place by using 
register values that hold node address values in previous 
iterations of the loop. 

5.3 Varying Loop Counts 
This type of mispredictions occurs when a loop is executed 

for different number of iterations every time it is accessed.  
Almost all of the benchmarks we have tested contain loops 
with varying loop counts.  

Figure 7 shows a source code example from patricia 
with a loop that has varying loop count.  Register $6 holds the 
value of __nbytes. Initial value of __nbytes is input to the 
BYTE_COPY_FWD () function. BR1 checks if the value in 
register $6 is greater than zero, and is executed 758584 times.  
The input __nbytes has two different values only; 23538 
times 4 and 83054 times 8. There is no pattern for the loop 
count but it is 8 most of the time. The misprediction rate for 
this branch with a 4KB gshare predictor is 14.1%. This 
branch could be predicted better by a complex loop predictor 
that would use the most common loop count. Because, the 
branch is either taken 8 times followed by a not taken or taken 
4 times followed by a not taken, a local predictor would also do 
well. In fact, a 4KB local predictor is able to reduce to 
misprediction rate to 5%. If there was also a pattern of varying 
loop counts, a local predictor could even do better. Another 
observation we have about this type of mispredictions is that if 
there is a pattern, future mispredictions can usually be 
predicted. 

Varying loop count mispredictions are usually classified as 
conflict- or training-caused mispredictions when run-time 
classification taxonomy is applied. 

5.4 Changing Function Inputs 
This type of mispredictions occurs because a branch 

depends on an input to a function and this input often changes 
next time the function is called and causes unless otherwise 
easy to predict branch very hard to predict.  We have given two  

../sysdeps/generic/memcpy.c:52 
  404658:       42 00 00 00     addu $6,$0,$18 
  404660:       05 00 00 00     beq $6,$0,404698 
  404668:       22 00 00 00     lbu $2,0($16) 
  404670:       43 00 00 00     addiu $6,$6,-1 
  404678:       43 00 00 00     addiu $16,$16,1 
  404680:       30 00 00 00     sb $2,0($17) 
  404688:       43 00 00 00     addiu $17,$17,1 
  404690:       06 00 00 00     bne $6,$0,404668 → BR1 

(a) 
//memcpy.c 
52   BYTE_COPY_FWD (dstp, srcp, len); →  BR1 
//memcopy.h 
76 #define BYTE_COPY_FWD(dst_bp, src_bp, nbytes) 
77   do 
78     { 
79       size_t __nbytes = (nbytes); 
80       while (__nbytes > 0)  →  BR1 
81         { 
 … 
87         } 
88     } while (0) 

(b) 
Figure 7. Code snippet for the second top hot PC in patricia, (a) 
assembly, (b) C code 

examples of this type in this section because they show very 
different behavior. The first example is from patricia 
where changing inputs cause varying loop counts, but easy to 
predict with local predictor because there is a pattern for inputs. 
The other example is from parser, where there is no pattern 
– a truly hard to predict branch. Most benchmarks contain this 
type of branch mispredictions.  

Figure 8 presents a simple while loop from patricia where a 
variable (j) that is a function input checked against zero. Initial 
value of j is input to the function. Register $6 holds the value 
of j. BR1 checks if the value in register $6 is not equal to 
zero. BR1 is executed 405708 times. The input j is182596 
times -1 and 40516 times 0. There is a pattern for the branch 
behavior. The behavior is 19 times “1 taken, 1 not taken” and 1 
time “1 taken, 3 not taken”. 

Misprediction rate for this branch (BR1) with 4KB 
gshare is 45% ! However, the branch follows a simple 
consistent pattern and therefore could be predicted almost 
perfectly with a local predictor. Branch predictors that can 
exploit very long global histories, such as PWL and LTAGE 
could also eliminate the mispredictions for BR1. We also 
observe that this branch has also global and local patterns for 
mispredictions, which suggests that a mechanism that targets 
predictable misprediction patterns can also eliminate these 
mispredictions when the branch predictor is gshare. 

This branch is predictable because function inputs have a 
nice pattern. However, if the inputs were random, this would 
have been a hard to predict branch. Such an example is given 
from parser in Figure 9. BR1 in Figure 9 has an outcome 
that is 45% taken and 55% not taken. Misprediction rate for 
this branch (BR1) is 24.4% with a 4KB gshare. A 256KB 
gshare predictor, a 256KB local predictor or a 256KB PWL 
does not reduce the misprediction rate for BR1 at all. This is an 
inherently very hard to predict branch because of the random 
data. 



../sysdeps/generic/mul_1.c:55 
  413be8:       43 00 00 00     addiu $6,$6,1 
../sysdeps/generic/mul_1.c:53 
  413bf0:       34 00 00 00     sw $3,0($8) 
../sysdeps/generic/mul_1.c:55 
  413bf8:       43 00 00 00     addiu $8,$8,4 
  413c00:       43 00 00 00     addiu $5,$5,4 
  413c08:       06 00 00 00     bne $6,$0,413bb0  → BR1 

(a) 
//mul_1.c 
  55   while (++j != 0); → BR1 

(b) 
Figure 8. Code snippet for top hot PC in patricia, (a) assembly, (b) C 

parse.c:186 
  414718:       43 00 00 00     addiu $29,$29,-48 
  414720:       34 00 00 00     sw $16,24($29)  
  414728:       42 00 00 00     addu $16,$0,$4  
  414730:       34 00 00 00     sw $17,28($29)  
  414738:       42 00 00 00     addu $17,$0,$5  
  414740:       34 00 00 00     sw $18,32($29)  
  414748:       42 00 00 00     addu $18,$0,$6 
      …           …                 ... 
parse.c:193 
  4147e0:       28 00 00 00     lw $2,-29260($28) 
parse.c:194 
  4147e8:       24 00 00 00     lh $3,0($4) → LD1 
parse.c:193 
  4147f0:       43 00 00 00     addiu $2,$2,1 
  4147f8:       34 00 00 00     sw $2,-29260($28) 
parse.c:194 
  414800:       06 00 00 00     bne $3,$16,414858 → BR1 
   …  …  … 
  414850:       01 00 00 00     j 414870 

(a) 
186 Table_connector * table_pointer(int lw, int rw,  
Connector *le,  Connector *re, int cost) { 
188     Table_connector *t; 
189     N_hash_lookups++; 
190     work_in_hash_lookups++; 
191     t = table[hash(lw, rw, le, re, cost)]; 
192     for (; t != NULL; t = t->next) { 
193         work_in_hash_lookups++; 
194         if ((t->lw == lw) &&  → BR1, LD1 
         . . . )  return t; 
195     } 
196     return NULL; 
197 } 

(b) 
Figure 9. Code snippet for one of the hot PCs in parser, (a) assembly, (b) C  

BR1 checks if the value in register $3 is equal to the 
value in register $16. Register $3 holds the value of t->lw 
(value returned by LD1) and $16 holds the value of lw. 
Register $4 holds the address of t (see LD1). BR1 is accessed 
481215 times. There are 46370 different values for $4, which 
corresponds to the different addresses of t. Values that are 
stored in those addresses remain unchanged. Each different 
address is accessed 10 times, on average. Although values in 
these addresses do not change, value they are compared to, 
lw, changes frequently. Due to this randomness, this branch 
can not be predicted well. However, if sufficient hardware 
resource (>256KB, i.e., very impractical) is given to store 
history for this particular branch, mispredictions can be 
eliminated because the branch outcome at any address of t 
 

and lw pair is consistent. 
 
5.5 Wrong Type History 

Mispredictions can also occur because the predictor tracks 
the wrong type of history for the branch in question: global 
instead of local, or vice versa. Run-time branch classification 
taxonomy describes wrong-history misses as mispredictions 
that occur when a nonconflict-miss/non-training-miss is 
correctly predicted using the other type of history. We see this 
type of branch mispredictions in all benchmarks that we 
studied. This class of mispredictions can be identified by run-
time classification taxonomy, however, we have included it in 
our source-code analysis for completeness.  

Figure 10 shows an example of wrong-history type 
mispredictions from basicmath. Misprediction rate for BR1 
is 22.2% (corresponds to 40% of all mispredictions) with a 
4KB gshare predictor. A 4KB local predictor eliminates 
mispredictions for this branch almost completely (1% 
misprediction rate). 

In Figure 10, registers $4 and $2 hold the address of and 
the value stored in char_ptr, respectively. Register $5 holds 
the value of c. LD1 loads the value stored in address $4 and 
stores it into $2. BR1 checks if the value in $2 is equal to the 
value in $5. 

There are 8 different address values for $4 and the values 
in these addresses never change. Also, there is a pattern of 
length 8 for values in $5 and always repeats itself. Because 
branch follows a consistent pattern, it can be predicted very 
well with a local predictor. One important observation is that 
there is also a misprediction pattern, 7 hits and 2 misses, which 
always repeats itself. Our experiments show that wrong-history 
type mispredictions often follow patterns, which suggests that 
efficient separate mechanisms can be designed to help the 
branch predictor by targeting its mispredictions. 

../sysdeps/generic/strchr.c:43 
  40b9a0:       22 00 00 00     lbu $2,0($4)  → LD1 
  40b9a8:       05 00 00 00     beq $2,$5,40baf8 → BR1 
../sysdeps/generic/strchr.c:45 
  40b9b0:       05 00 00 00     beq $2,$0,40bb08 
../sysdeps/generic/strchr.c:42 
  40b9b8:       43 00 00 00     addiu $4,$4,1 

(a) 
//strchr.c 
     36   c = (unsigned char) c; 
     37  
     38   /* Handle the first few characters by reading one character at a time. 
     39      Do this until CHAR_PTR is aligned on a longword boundary.  */ 
     40   for (char_ptr = s; ((unsigned long int) char_ptr 
     41                       & (sizeof (longword) - 1)) != 0; 
     42        ++char_ptr) 
     43     if (*char_ptr == c)  → LD1, BR1 

(b) 
Figure 10. Code snippet for top hot PC in basicmath, (a) assembly, (b) C  

5.6 Constant Loop Exits 
A loop with a loop count of n, is often taken for n times 

followed by a not-taken at the loop exit. For cases when the 
loop counts are larger than what branch predictor can 
remember, prediction fails at the loop exits. Often, it is difficult 
for a global, local, or combined history predictor to keep 



sufficient history for this type of branches. Therefore, to target 
loop-exit mispredictions, loop predictor [26] was proposed. 
Constant loop exit mispredictions can also be put into 
insufficient history length or wrong-history type mispredictions 
categories.  

All benchmarks have constant loop branches, though they 
may not mispredict often enough to make the top 10 hot PCs 
list that mispredict most. A source-code example for a constant 
loop branch from art is shown in Figure 11.  

BR1 in Figure 11 is a constant loop branch with a 9.1% 
misprediction rate. The loop always iterates for 10 times and 
executed 340000 times. gshare predicts BR1 correctly for 10 
times and mispredicts the loop exit condition. BR1 checks if 
value in register $2 is not equal to zero. Register $2 is reset to 
zero if value in register $4 is greater than value in register $8. 
$8 corresponds to num2fs and $4 corresponds to tj (see line 
449 in Figure 11). numf2s has a constant value, which is 10. 
This is not a hard to predict branch. It can be eliminated by a 
loop predictor or an 11 bit local history predictor. Since there 
are three more branches in the loop, gshare requires a history 
length greater than 40 bits in order to eliminate mispredictions 
of this branch. Predictors that can exploit long histories, such as 
PWL and LTAGE, eliminate this branch’s mispredictions. 

scanner.c:449 
  401cc8:       42 00 00 00     addu $4,$0,$16 
  401cd0:       05 00 00 00     beq $13,$0,401d68  
  401cd8:       42 00 00 00     addu $9,$0,$10 
  401ce0:       28 00 00 00     lw $8,-31320($28) 
  401ce8:       55 00 00 00     sll $2,$16,0x4 
  401cf0:       42 00 00 00     addu $5,$2,$14 
scanner.c:451 
  401cf8:       06 00 00 00     bne $4,$12,401d48  
  … 
  401d10:       0b 00 00 00     bc1f 401d48  
scanner.c:452 
  401d18:       28 00 00 00     lw $3,0($9) 
 … 
  401d40:       71 00 00 00     add.d $f4,$f4,$f0 
scanner.c:449 
  401d48:       43 00 00 00     addiu $5,$5,16 
  401d50:       43 00 00 00     addiu $4,$4,1 
  401d58:       5b 00 00 00     slt $2,$4,$8 
  401d60:       06 00 00 00     bne $2,$0,401cf8 → BR1 

(a) 
//  scanner.c 
441       tnorm =0; 
442       tsum=0; 
443       tresult = 1; 
444       for (ti=0;ti<numf1s;ti++) 
445       { 
446         tsum = 0; 
447         ttemp = f1_layer[ti].P; 
448 
449         for (tj=spot;tj<numf2s;tj++)  → BR1 
450         { 
451            if ((tj == winner)&&(Y[tj].y > 0)) 
452                  tsum += tds[ti][tj] * d; 
453         } 
454 
455         f1_layer[ti].P = f1_layer[ti].U + tsum; 
456 
 … 

(b) 
Figure 11. Code snippet for top hot PC in art, (a) assembly, (b) C code 

5.7 Insufficient History Lengths 
This type of mispredictions can be eliminated if same type 

of predictor is given more history bits. This is not very easy for 
a gshare predictor because each additional bit doubles the 
size of the predictor. A predictor like PWL or LTAGE will do 
much better for this type of branches. Often wrong-history and 
constant loop exit mispredictions could be eliminated if the 
predictor can exploit longer branch histories. Therefore, 
examples in Figures 10 and 11 can also be considered as 
insufficient history length mispredictions. However, this does 
not mean longer history eliminates only wrong-history or 
constant loop exit mispredictions. An example of this is shown 
in Figure 12 from gcc. BR1 checks if the loop count (i in 
Figure 12.b) that is stored in register $19 (see Figure 12.a) is 
greater than or equal to zero. The loop’s start value is the value 
returned by GET_RTX_LENGTH(code) as shown in Figure 
12.b. The reason that this branch mispredicts is because the 
iteration count (i.e., the value returned by the function) varies, 
and there is no observed pattern for the loop counts. However, 
according to our simulations, these counts are 1, 2, or 3, which 
are small values. Therefore, the number of mispredictions can 
be reduced by a larger predictor. The misprediction rate for 
BR1 is 17.4% with a 4KB gshare predictor. As the size of 
the predictor increase the misprediction rate decreases. For 
example, 32KB and 256KB gshare predictors reduce the 
misprediction rate for this branch to 9.6% and 6%, respectively. 

  rtlanal.c:1469 
  4ceb88:       43 00 00 00     addiu $17,$17,-4  
  4ceb90:       43 00 00 00     addiu $18,$18,-1  
  4ceb98:       43 00 00 00     addiu $19,$19,-1  
  4ceba0:       0a 00 00 00     bgez $19,4cead8 → BR1 

(a) 
//  rtlanal.c 
1469     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) → BR1 
1470       { 
1471         if (fmt[i] == 'e') 
1472           { 
1473             if (volatile_refs_p (XEXP (x, i))) 
1474               return 1; 
1475           } 
1476         if (fmt[i] == 'E') 
1477           { 
1478             register int j; 
1479             for (j = 0; j < XVECLEN (x, i); j++) 
1480               if (volatile_refs_p (XVECEXP (x, i, j))) 
1481                 return 1; 
1482           } 
1483       } 
1484   } 

(b) 
Figure 12. Code snippet for second top hot PC in gcc, (a) assembly, (b) C 

 
6. Summary of Findings and Discussion 

Our source code analysis confirms that wrong history type, 
insufficient history length, and constant loop counts (e.g., >10) 
are some of the major causes of branch mispredictions. It also 
extends the previous work by introducing new class of 
mispredictions. We have found that array element accesses or 
pointer references, linked list traversals, varying loop counts, 
and changing function inputs make harder to predict branches 



that depend on them and may require different ways to improve 
prediction accuracy. 

Table 2 partially summarizes the source-code analysis 
results discussed in Section 5. The table shows the 
misprediction classification for top 10 hot branches in SPEC 
CPU 2000 and Mibench benchmarks. Each row in the table 
shows the number of branches in the top 10 that fall into each 
misprediction category and their contributions to 
mispredictions (shown as percentages in parentheses). We can 
see that mcf, parser, and dijkstra have significant 
amount of linked-list-traversal caused mispredictions. 
Especially this is most pronounced for mcf (68%). bzip2, 
ammp and jpeg’s mispredictions are almost all caused by 
array access or pointer references. All benchmarks except 
qsort and bitcount has significant amount of 
mispredictions caused by array accesses or pointer reference. 
basicmath and fft have significant amount of wrong-
history branch mispredictions. Changing function inputs is one 
of the most important causes for mispredictions for most of the 
Mibench benchmarks. gzip, twolf, dijkstra, 
patricia, qsort and fft contain branches that mispredict 
because of varying loop counts. Constant loop exit 
mispredictions is important for art and sha. Finally, gcc has 
significant amount of insufficient history length mispredictions. 
Note that all benchmarks have branch mispredictions that fall 
into each of the categories in the table, however, they may not 
be in the top 10 list that Table 2 covers. 

Based on our source-code analysis, we can summarize our 
findings as follows: 
1. Since few branches correspond to a disproportional amount 

of mispredictions, it may be worth performing detailed 
source-code analysis on these hot branches. 

2. In many cases, misprediction patterns exist. Most 
misprediction classes that we observed exhibit some sort of 
repeating patterns. 

3. Some mispredictions are harder to correct than others. 
Mispredictions due to linked list traversals, randomly 
varying loop counts, changing inputs to functions are harder 
(will require more (and different type) history) than other 
types of mispredictions (conflicts, wrong-type history, 
constant loops, insufficient history length). 

4. Address-value correlation provides some opportunity to 
correct mispredictions otherwise not possible, especially for 
linked list traversals and array accesses/pointer references. 
Data often do not frequently change in addresses. Many 
examples in benchmark programs. 

5. Constant loop exit, insufficient history length, and wrong-
type history mispredictions can usually be eliminated with 
relatively small size of misprediction histories because they 
often have regular misprediction patterns. 

6. Given a constant hardware budget for branch prediction, it 
may be better to have a combination of branch predictor and 
a predictor that tracks and reduces mispredictions than 
having one complicated branch predictor. 

7. Related Work 
Skadron et al [3] proposed a unified run-time branch 

misprediction classification taxonomy, which classified 
mispredictions as being from one of the following categories: 
training, conflict, wrong-history, need both histories 
simultaneously, and other. Other category includes insufficient 
history length or inherently difficult to predict branch 
mispredictions. In this paper, we extend Skadron’s work by 
performing a detailed source-code analysis of branch 
mispredictions and introducing new classes of mispredictions. 
Prior to Skadron’s work a number of studies characterized 
mispredictions although they were not as comprehensive as [3]. 
Most of the effort has been on characterizing conflicts (PHT 
interference) [4-11]. Some others studied wrong-history [6, 13, 
14, 31] and training times [32, 33]. To reduce constant loop 
exit mispredictions, loop count predictor was proposed [26].

Table 2. Source-code classification of branch mispredictions 
 Array Access 

Pointer 
Reference 

Linked List 
Traversal 

Wrong Type 
History 

Changing 
Function 

Inputs 

Varying Loop
Counts 

Constant 
Loop 
Exits 

Insufficient 
History 
Length 

Other 

GCC 1 / 52%   2 / 16%   1 / 20% 12% 
ART 1 / 7%     1 / 91%  2% 

PARSER 2 / 19% 5 / 31%  3 / 50%    0% 
MCF 5 / 19% 3 / 68%  2 / 13%    0% 
JPEG 9 / 96%     1 / 4%  0% 
BZIP2 10 / 100%       0% 

BASICMATH 1 / 19%  1 / 40% 2 / 40%    1% 
DIJKSTRA 1 / 31% 1 / 33%   1 / 33%   3% 
PATRICIA 2 / 22%   6 / 52% 2 / 26%   0% 

SHA 1 / 14%     6 / 84%  2% 
QSORT    7 / 76% 1 / 23%   1% 

BITCOUNT    1 / 99%    1% 
SUSAN 5 / 58%   5 / 42%    0% 

FFT 2 / 12%  2 / 49% 4 / 29% 2 / 10%   0% 
GZIP 4 / 57%   5 / 26% 1 / 17%   0% 

VORTEX 8 / 52%   2 / 48%    0% 
AMMP 1 / 99%       1% 
TWOLF 2 / 5%   1 / 3% 2 / 92%    



Recent works, such as O-GEHL [18] and TAGE [19], and 
neural-based predictors perceptron [16], PWL [21], 
Frankenpredictor [23] and others [20, 22, 24] studied ways of 
exploiting longer history in order to further improve branch 
prediction accuracy. 

8. Conclusion 
A great deal of prior branch prediction work has focused on 

ways to improve prediction accuracy by using local history, 
global history, a combination of both with a mechanism of how 
to choose which component to believe, multiple predictors with 
different histories and sizes, and a number of neural predictors. 
Most of the improvements to predictor design have come from 
ad-hoc run-time analysis, e.g, running various configurations of 
or extensions to a branch predictor.  

This paper presents a detailed source-code analysis of 
important misprediction types to better understand how to 
further improve branch prediction design. Our analysis show 
that in addition to the problems – training time, history table 
interference, wrong-history mispredictions – found through 
run-time classification of branch mispredictions and well 
recognized problems such as insufficient history length and 
constant loops, array/pointer references, linked list traversals, 
varying loop counts and changing function inputs are also 
substantial problems for branch prediction. We also show that 
some mispredictions depend on loads that exhibit address-value 
correlations, which suggests designing mechanisms that 
exploits this type of locality. Finally, we show that 
mispredictions to a branch often have repetitive patterns, which 
also can be exploited possibly by considering a secondary 
predictor that targets mispredictions only. 
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