
An Analysis of Hard to Predict Branches
Celal Ozturk and Resit Sendag

Department of Electrical, Computer and Biomedical Engineering
University of Rhode Island

Kingston, RI
(cozturk, sendag)@ele.uri.edu

Abstract
Branch prediction accuracy remains to be critical for high

performance and low power. Prior work has studied causes of branch
mispredictions in order to provide insights into how better branch
predictors can be designed. However, most of the previous works
have only considered run-time classification of branch
mispredictions, leaving a large number of mispredictions in an
unknown category. For more comprehensive analysis, in this paper,
we present a detailed source code analysis of branch mispredictions
for SPEC CPU 2000 and Mibench benchmarks. Our analysis show
that constant loop exits, insufficient history lengths, wrong-type
history, array access/pointer references, complex linked list data
structures, changing function inputs, and varying loop counts are the
major causes for most of the branch mispredictions. We further show
that most mispredictions have repetitive patterns that suggest
different design strategies for future branch predictors.

1. Introduction

Branch prediction has been studied extensively for the last
two decades. There have even been two championship branch
prediction (CBP) competitions [1, 2], which have introduced
very sophisticated and accurate branch predictor designs. Yet,
there has not been a comprehensive study on branch
misprediction classification through detailed source-code
analysis of hard-to-predict branches. Most comprehensive
branch misprediction classification was done by Skadron et al
[3]. In their paper, Skadron proposed a taxonomy for run-time
classification of branch mispredictions. This taxonomy
classifies mispredictions as being from one of the following
categories: training, interference in tables, wrong-history, need
both histories simultaneously, and other. Other category
includes insufficient history length or inherently difficult to
predict branch mispredictions that can not be classified by this
taxonomy. Many of the prior work target one or more of the
above problems to improve the accuracy of branch prediction.
[4-11] studied eliminating interference (aliasing) in predictors’
pattern history table/s (PHT), which occurs when two unrelated
branches destructively interfere by using the same prediction
resources. To address wrong-history mispredictions, a number
of hybrid predictors were proposed [6, 12-14]. Because these
predictors include multiple tables with global and local
histories, they also required a mechanism (a meta-predictor) to
choose which predictor to believe at any moment (later
methods used adder trees instead of meta-predictors [15, 16]).
An improvement to this, which could also reduce
mispredictions that need both types of history simultaneously,
was a pseudo-hybrid organization that alloys global and local
history in the same predictor index [17]. Other predictors try to
also reduce mispredictions that need longer histories [18, 19].
These predictors employ multiple prediction tables indexed

with different-length folded histories. Another effort in
reducing mispredictions that need longer histories has been
prediction based on neural networks [16, 20-24]. To mitigate
longer prediction and training times of complex/large
predictors, they are usually cascaded with simple ones [12] or
ahead-pipelined [25]. Finally, to reduce constant loop exit
mispredictions, loop count predictor was proposed [26].

In this paper, we extend prior work on branch misprediction
classification through detailed source code analysis of hard-to-
predict branches. We focus mainly on branches, which can not
be classified by Skadron’s taxonomy. This paper makes the
following contributions:

1. It confirms already known facts about the causes of
branch mispredictions, and extends prior work on
branch misprediction classification by introducing
new classes of mispredictions.

2. It shows that array element accesses or pointer
references, linked list traversals, varying loop counts,
and changing function inputs make harder to predict
branches that depend on them and may require
different ways to improve prediction accuracy.

3. It introduces new type of correlations other than
branch outcome histories.

The remainder of this paper is organized as follows: Section
2 describes the experimental setup. Section 3 presents run-time
classification of branch mispredictions. Section 4 presents
misprediction coverage by top 10 hot branches. In Section 5,
we present a detailed source-code analysis of branch
mispredictions. Section 6 summarizes our findings on source-
code analysis. Section 7 describes some related work, and
Section 8 concludes.

2. Experimental Setup

To collect the results presented in this paper, we have used
sim-bpred simulator from the Simplescalar tool suite [27],
version 3.0d. We also extend this simulator to include Alpha
21264 [12] and Piecewise Linear (PWL) [21] branch
predictors. We used benchmarks from the SPEC CPU 2000
[28] and MiBench [29] benchmark suites. We present the
results for all 26 SPEC CPU 2000 benchmarks when using the
reference input set, but, for the benchmarks with more than one
input set, to reduce the simulation time, we randomly selected
one input set. The input set is listed in parenthesis for the
following list of benchmarks that had more than one input set:
gzip (graphic), vpr (route), gcc (166), art (110), eon
(cook), vortex (ref1), and bzip2 (graphic). For the
MiBench benchmarks, due to compilation problems, we used a

subset of the benchmarks (basicmath, bitcount, dijkstra, fft,
ghostscript, jpeg, patricia, qsort, rsynth, sha, stringsearch, and
susan). These benchmarks were compiled using gcc 4.1.2 at
optimization level O3. For all MiBench benchmarks, we used
the large input set. Overall, we evaluated a total of 38
benchmarks.

To reduce the simulation time of the SPEC CPU 2000
benchmarks, we used multiple 100M instruction simulation
points that we generated using SimPoint tool [30]. Due to their
relatively short simulation time, we ran the MiBench
benchmarks to completion.

3. Run-time Classification of Branch

Mispredictions
We repeat Skadron’s run-time branch misprediction

classification for SPEC CPU 2000 and Mibench benchmarks
with a 4kB (i.e., 16K entries) gshare [6] predictor.
Mispredictions are classified into five groups: conflict,
training, wrong-history, needs both history, and other. To
classify a branch’s misprediction type, we perform a sequence
of tests as described in [3]. Each branch flows down this
sequence of tests until it is categorized or falls through as a
misprediction that could not be categorized.

1) The prediction starts with a gshare predictor. If the
prediction is incorrect, misprediction classification starts.

2) The first step is to test if a gshare predictor with no
aliasing could predict the branch. When the gshare predictor
that is free of aliasing is implemented, the number of table
entries is kept the same (i.e., same history size is used).
However, each table entry remembers all branch references to
that entry by updating their corresponding 2-bit counters.
Therefore, the predictor is free of destructive interference. If
this predictor was able to provide correct prediction, the
misprediction falls into the conflict category. That is, the
predictor under test would predict the branch correctly, but a
destructive interference prevented the predictor from doing so,
and as a result, a conflict misprediction has occurred.

3) The second step uses a 2-bit predictor to predict the
branch. If this prediction is correct, it suggests that the branch
has not been predicted correctly before because the branch
predictor under test has long training time. This is a

misprediction due to training (as mentioned in [3], this is an
approximation.)

4) If the branch misprediction has not been classified in the
previous steps, it may have happened because the branch needs
local history. If a local predictor of the same size, but free of
interference (logically infinite sized predictor), predicts this
branch correctly, it suggests that global history is not
appropriate for this branch because it needs local history, i.e., it
is a wrong type history misprediction.

5) If still not classified, an interference-free predictor that
uses both global and local histories is tested if it can provide
correct prediction for this branch. A correct prediction in this
case suggests the branch needs both types of history, and the
misprediction is classified as “needs both types of history”.
However, if the branch mispredicts with this predictor also, it
falls into the group of other mispredictions as it cannot be
classified by this taxonomy.

By running several predictor organizations of increasing
sophistication simultaneously, our simulator performs the
abovementioned cascade of tests until the branch either predicts
correctly, or the misprediction fails all tests. Remaining
branches are either inherently difficult to predict, or fall into a
category not included in this scheme (e.g., need longer history).
This process categorizes each dynamic branch’s behavior for
gshare branch predictor.

Figure 1 shows the breakdown of the branch misprediction
categories for SPECint, SPECfp, and Mibench benchmarks,
respectively. An interesting observation is that, for most of the
benchmarks, the “other” is the largest category. This is more
pronounced for the following benchmarks: for bzip2, vpr, mcf,
parser, perl, and twolf, about 50% of the mispredictions fall
into the “other” category; And for art, swim, mgrid, lucas,
sixtrack, dijkstra, susan, sha, and bitcount, more than 75% of
the mispredictions fall into the “other” category.

Table 1 summarizes the results by showing average
percentages of each class of mispredictions per benchmark
suite. These results show the importance of wrong type history
along with well known problems of conflicts and training
times. However, we also see that a large percentage of
mispredictions (about 40% on average) can not be categorized
as being from one of the abovementioned misprediction types
using this taxonomy. It must also be noted that, with this

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rl

bm
k

ga
p

vo
rt

ex
bz

ip
2

tw
ol

f
A

V
E

w
up

w
is

e
sw

im
m

gr
id

ap
pl

u
m

es
a

ga
lg

el
ar

t

eq
ua

ke
fa

ce
re

c
am

m
p

lu
ca

s

fm
a3

d
si

xt
ra

ck
ap

si
A

V
E

di
jk

st
ra ff
t

gh
os

ts
cr

ip
t

jp
eg

pa
tr

ic
ia

qs
or

t
rs

yn
th

sh
a

st
ri

ng
se

ar
ch

su
sa

n
bi

tc
ou

nt
A

V
E

SPECint SPECfp Mibench

Conflict Training Needs Other Needs Both Other

Figure 1. Breakdown of misprediction types for 4kB gshare predictor for SPECint, SPECfp and Mibench benchmarks. Our experiments also show that larger
global history decreases mispredictions in conflict, need other and other categories while increasing mispredictions in training category, which is expected.

taxonomy, a branch’s mispredictions may fall into different
categories for different dynamic instances of the branch.
Therefore, this taxonomy can not provide detailed information
about a specific branch. This suggests a further investigation
for important branch instructions. In this paper, after
identifying hot branches through run-time profiling, we
perform source-code analysis in order to provide more insights
into why specific branches mispredict often. This also
identifies branches, which cause mispredictions that go under
the “other” category.

Table 1. Average contribution of misprediction types (%)

 Conflict Training Need
Other

Need
Both

Other

SPECint 14.88 16.51 23.79 4.40 40.42
SPECfp 6.65 11.69 39.52 0.85 41.28
Mibench 2.96 14.94 41.18 3.26 37.65

4. Mispredictions by Hot Branches

Figure 2 shows how hot branch PCs contribute to the
overall mispredictions for SPECint, SPECfp, and Mibench
benchmarks, respectively, when a 4kB gshare branch
predictor is used. On average, for SPECint, top 5, top 10, top
20 static branches cause 39%, 53%, 65% of all mispredictions,
respectively. For SPECfp, top 5, top 10, top 20 static branches
cause 71%, 83%, 92% of all mispredictions, respectively.
Finally, for Mibench, top 5, top 10, top 20 static branches cause
67%, 79%, 87% of all mispredictions, respectively. Majority of
mispredictions are caused by few hot branches.

5. Source Code Analysis for Branch

Misprediction Classification of Hot Branches
This section presents a detailed source code analysis on top

ten hot branch PCs that mispredict most in order to evaluate
why they mispredict, how and if they can be corrected (either
with current methods or others), and if they go under a new
category for mispredictions.

In the analysis, we have used 4kB gshare branch
predictor. When branches are analyzed, however, we have also
tried to see if they still remain important when different (and/or
better) predictors, such as Alpha or PWL, are used to predict
these branches. We have analyzed all SPEC and Mibench
benchmarks written in C.

The rest of this section presents a detailed discussion for
various different branch misprediction types.

5.1. Array Element Access or Pointer References

When a particular branch depend on array access or pointer
references, irregular values loaded from array element accesses
make it difficult to predict this branch. However, in some
cases, the value that each array element stores remain
unchanged for a long time. Due to this address-value
correlation, branch outcome is consistent with the address
values, i.e., the array indices. A branch predictor with local
history length size greater than the number of loop iterations
will be able to capture this type of behavior. However, this is
often impractical.

Examples of branch mispredictions that are caused by array
element accesses or pointer references are found in almost all
benchmarks.

Figures 3a and 3b show assembly and C source codes,
respectively from gcc benchmark that include the most
frequently mispredicted branch (BR1). This branch mispredicts
29.3% of the time and corresponds to 44% of all mispredictions
in gcc. Using longer history for gshare predictor does not help
reduce mispredictions for this branch. A 32KB Piecewise
Linear branch predictor can only slightly help improve the
prediction rate. This is obviously a hard-to-predict branch that
must go under the “other” category with the taxonomy used
earlier. However, we noticed that the “other” category for gcc
was only 31% as shown in Figure 1. This confirms that some
dynamic instances of this branch’s mispredictions were
classified as conflict, training, wrong-history or need both.

Figure 3 shows that BR1 checks if the value loaded into
register $3 by the load LD1 is less than or equal to zero.
Register $3 contains the value of regno_first_uid[j]
(value of jth element of the array) in Figure 3b. Register $2 is
used for calculating and storing the address for
regno_first_uid[j] (see LD1 in Figure 3a). This branch
is executed for 198614 times. There are 41112 different
addresses (i.e., register $2 values) that are used by LD1 and
each of these addresses are accessed for five times. The values
in these addresses (i.e., values ($3) of regno_first_uid
array elements) are very stable or do not change frequently.
The predictor mispredicts at 12166 different addresses (12166

0

20

40

60

80

100

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rl

bm
k

ga
p

vo
rt

ex
bz

ip
2

tw
ol

f
A

V
E

w
up

w
is

e

sw
im

m
gr

id
ap

pl
u

m
es

a
ga

lg
el

ar
t

eq
ua

ke
fa

ce
re

c

am
m

p
lu

ca
s

fm
a3

d
si

xt
ra

ck
ap

si
A

V
E

di
jk

st
ra ff
t

gh
os

ts
cr

ip
t

jp
eg

pa
tr

ic
ia

qs
or

t
rs

yn
th

sh
a

st
ri

ng
se

ar
ch

su
sa

n
ba

si
cm

at
h

bi
tc

ou
nt

A
V

E

SPECint SPECfp Mibench

top 5 top 10 top 20

Figure 2. Contribution of the top 5, top 10, and top 20 branch PCs to overall mispredictions for (a) SPECint, (b) SPECfp, (c) Mibench. 4kB gshare branch predictor.

different values of $2). If there is a misprediction on one
address, misprediction occurs again next time the same address
is loaded (i.e., the same array element is accessed). While very
hard to predict with current techniques, a correlation between
addresses and mispredictions and the stability of data in the
array suggest different methodology for prediction. For
example, mispredictions could be predicted by using register
$2 values, that is, the addresses of the array elements. In fact,
the misprediction can be detected in the earlier iterations of the
loop before it actually happens since this is an array access.
However, naïve implementation could require large storage to
detect this correlation. Further research needs to be done to see
if there is an efficient way for reducing this type of
mispredictions.

 unroll.c:746
 5358c8: 28 00 00 00 lw $2,-17468($28)
 5358d0: 43 00 00 00 addiu $17,$0,64
 5358d8: 5b 00 00 00 slt $2,$17,$2
 5358e0: 05 00 00 00 beq $2,$0,5359f8
 5358e8: 28 00 00 00 lw $11,120($30)
 5358f0: 43 00 00 00 addiu $10,$0,1
 5358f8: 43 00 00 00 addiu $7,$11,64
unroll.c:747
 535900: 28 00 00 00 lw $2,-17360($28)
 535908: 55 00 00 00 sll $6,$17,0x2
 535910: 42 00 00 00 addu $2,$6,$2
 535918: 28 00 00 00 lw $3,0($2) → LD1
 535920: 07 00 00 00 blez $3,5359d0 → BR1

(a)

// unroll.c
746 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop;
++j)
747 if (regno_first_uid[j] > 0 && regno_first_uid[j] <=
max_uid_for_loop → LD1, BR1
748 && uid_luid[regno_first_uid[j]] >= copy_start_luid
749 && regno_last_uid[j] > 0 && regno_last_uid[j] <=
max_uid_for_loop
750 && uid_luid[regno_last_uid[j]] <= copy_end_luid)
751 local_regno[j] = 1;
752 }

(b)
Figure 3. Code snippet for one of the hot PCs in gcc, (a) assembly, (b) C code

In Figure 4, we show another example of this type of
mispredictions for the art benchmark. Misprediction rate for
this branch (BR1) is 8.62%. This corresponds to 8% of all
mispredictions in art when using a 4KB gshare predictor.
Increasing the history size (predictor size) does not reduce the
mispredictions significantly for this branch (i.e., a 256KB
gshare reduces misprediction rate from 8.62% to 8.1%).
Even when using a 256KB PWL predictor misprediction rate
for this branch is 8.2%. However, when a very large and/or
better predictor is used, total mispredictions for art decreases
significantly, which makes this branch far more important
because it then corresponds to 95% of all mispredictions.

Figure 4 shows the source code (assembly and C code)
from art that includes this hot branch (BR1). BR1 checks if
value stored in register $f0 is less than the value stored in
register $f4. $f0 holds the value of f1_layer[ti].X and
$f4 holds the value of theta as shown in Figure 4. Register $3
holds the address of f1_layer[ti] (LD1). BR1 outcomes

depend on the values returned by LD1. BR1 is executed for
340000 times (the loop in figure iterates 34 times, and there is
an outer loop, which is executed 10000 times (not shown in
figure). Register $3 takes 34 different addresses and at all
those addresses, the value in that address
(f1_layer[ti].X) remains unchanged throughout the
simulation. The branch outcome is consistent with the load
addresses (values in register $3). This is another example of
address-value correlation, which suggests that the branch can
be predicted very well by using the value in register $3 (the
address of f1_layer[ti]). This branch also does not
require large storage to remember correlations since there are
only 34 addresses.

scanner.c:419
 401af0: 28 00 00 00 lw $2,-31344($28)
 401af8: 42 00 00 00 addu $6,$0,$0
 401b00: 07 00 00 00 blez $2,401bc8
 401b08: 2b 00 00 00 l.d $f4,-31400($28)
 401b10: 2b 00 00 00 l.d $f6,-31448($28)
 401b18: 42 00 00 00 addu $4,$0,$2
 401b20: 28 00 00 00 lw $3,-31360($28)
scanner.c:421
 401b28: 2b 00 00 00 l.d $f0,16($3) → LD1
 401b30: 93 00 00 00 c.lt.d $f0,$f4
scanner.c:424
 401b38: 7b 00 00 00 mov.d $f2,$f0
scanner.c:421
 401b40: 0b 00 00 00 bc1f 401b58 → BR1

(a)
// scanner.c
419 for (ti=0;ti<numf1s;ti++)
420 {
421 if (f1_layer[ti].X < theta) → LD1, BR1
422 xr = 0;
423 else
424 xr = f1_layer[ti].X;

429 f1_layer[ti].V = xr + b*qr;
430 tnorm += f1_layer[ti].V * f1_layer[ti].V;
431 }1485 return 0;
1486 }

(b)
Figure 4. Code snippet for second top hot PC in art, (a) assembly, (b) C code

The two examples given from gcc and art in this section
show a new class of branch mispredictions, which we call array
element access or pointer references. When data values are
stable, there is chance to reduce mispredictions of this type.
However, if data values change frequently and they are
random, it is not possible to find correlation of any kind for the
mispredictions. We found few examples of this kind in
parser and bzip2.

5.2. Linked List Traversals

A pointer-chasing load, such as node=node→next, that
determines the end of a linked list makes it hard to predict the
branch that depend on it. If the linked list has n nodes, the loop
iterates n times and the branch outcomes would be n-1 times
“taken” followed by a “not taken”. Branch predictors that
exploit correlation in branch outcome histories often fail to
predict these branches accurately. Our analysis shows that
mcf, parser, and dijkstra have significant amount of

hard-to-predict branches of this type. However, at a closer look,
these hard-to-predict branches may be predicted correctly
because, although they do not have regular correlation in
branch histories, they exhibit a type of locality that can be
exploited with different mechanisms. Most components of data
structures in SPEC CPU 2000 and Mibench benchmarks tend
to remain stable. For example, after a linked list is initialized,
the address of the end node remains the same until a new node
is added to the end. In fact, even the order of the node
addresses that is traversed remain the same until there is
insertion or deletion. Therefore, if there are n nodes and if last
m nodes of the linked list remain stable, once node n-m is
accessed, one can predict that branch outcome that depends on
this linked list traversal should be not taken when node n is
reached. If a branch depends on such stable data, address of the
data is sufficient to determine the branch outcome.

Figures 5 and 6 show examples of linked-list-traversal-
caused branch mispredictions for parser and mcf,
respectively. Similar examples are also found in gcc, art,
ammp, jpeg, bzip2, basicmath, dijkstra.

Figure 5 shows the source code (assembly and C code)
from parser that includes a tree structure. In this pointer-
chasing code, the loaded values that determine the branch
outcome are irregular, which makes this branch hard to predict.
Conventional branch predictors fail to provide very accurate
predictions for this type of branches. However, because BR1 in
Figure 5 is mostly taken (92% of the time), a 4KB gshare
predictor is still doing well. The misprediction rate is 8.67%. A
32KB gshare further reduces the misprediction rate to 7.4%.
A 32KB PWL can achieve 6% misprediction rate.

post-process.c:746
 419d70: 28 00 00 00 lw $16,0($18)
 419d78: 05 00 00 00 beq $16,$0,419e80
post-process.c:747
 419d80: 28 00 00 00 lw $3,4($16)
 419d88: 55 00 00 00 sll $2,$3,0x2
 419d90: 42 00 00 00 addu $2,$2,$3
 419d98: 55 00 00 00 sll $2,$2,0x2

 419dc0: 02 00 00 00 jal 416ca0
 419dc8: 06 00 00 00 bne $2,$0,419de0
post-process.c:746
 419dd0: 28 00 00 00 lw $16, 8($16) → LD1
 419dd8: 06 00 00 00 bne $16,$0,419d80 → BR1

(a)
// post-process.c
743 D_tree_leaf * dtl;
744 int d, count;
745 for (d=0; d<N_domains; d++) {
746 for (dtl = domain_array[d].child;

 dtl != NULL; → BR1
 dtl = dtl->next) { → LD1

747 if (ppmatch(selector, pp_link_array[dtl>link].name))
 break;

748 }
(b)

Figure 5. Code snippet for top second hot PC in parser (for one of the
simpoints), (a) assembly, (b) C code.

In Figure 5, branch BR1 checks if the value in register $16
is not equal to NULL. $16 holds the address of dtl. BR1 is

dependent on the pointer-chasing load, LD1
(dtl=dtl→next). LD1 often misses in cache, which means
BR1 resolves late. BR1 is accessed 476293 times. There are
1172 different values for register $16 (dtl addresses). Each
address is accessed about 400 times on average. The values in
these addresses do not change frequently. There are only a few
changes throughout the simulation. Thus, address values ($16)
instead of data loaded from these addresses are sufficient to
know the branch outcome. There is also a pattern in which
addresses follow each other, i.e., few node insertions or
deletions for a long time. Since the data structures are very
stable, register values that hold node address values in previous
iterations of the loop can be used to predict the outcome of the
branch instance that is dependent on the end node in the linked
list.

Another example of linked-list-traversal-caused branch
mispredictions is shown in Figure 6 for the mcf benchmark.
Misprediction rate for this branch (BR1) is 24.3%. This
corresponds 22% of all mispredictions in mcf when using a
4KB gshare predictor. Increasing the history size (predictor
size) does not reduce the mispredictions. A 256KB PWL
predictor also fails to reduce misprediction rate for this branch.
There are total of three branches of this type in mcf, which
correspond to 58% of all mispredictions.

mcfutil.c:96
 4007d8: 42 00 00 00 addu $4,$0,$3
mcfutil.c:98
 4007e0: 28 00 00 00 lw $2,8($4)
 4007e8: 05 00 00 00 beq $2,$0,400828
mcfutil.c:100
 4007f0: 28 00 00 00 lw $3,16($4) → LD1
mcfutil.c:101
 4007f8: 05 00 00 00 beq $3,$0,400810 → BR1
mcfutil.c:84
 400748: 28 00 00 00 lw $2,28($4)
 400750: 06 00 00 00 bne $2,$7,400788

(a)
// mcfutil.c
79 tmp = node = root->child;
80 while(node != root)
81 {
82 while(node)
83 {
 …
94 }
95
96 node = tmp;
97
98 while(node->pred)
99 {
100 tmp = node->sibling; → LD1
101 if(tmp) → BR1
102 {
103 node = tmp;
104 break;
105 }
106 else
107 node = node->pred;
108 }
109 }

(b)
Figure 6. Code snippet for one of the hot PCs in mcf, (a) assembly, (b) C
code

Figure 6 shows the source code from mcf that includes this
hot branch (BR1). BR1 checks if the value in register $3 is
equal to zero. Register $3 holds the address of
node→sibling (value returned by a load, LD1, which is
temp in Figure 6.b), and $4 holds the address of node.

BR1 is accessed for 2579273 times. There are 33111
different values for $4 (LD1 addresses). Every address is
accessed about 78 times. The values at each address change
rarely throughout the simulation. There are 35855 address-
value pairs. Therefore, this branch’s outcome could be
predicted by using the address value in register $4 instead of
the loaded data value in register $3. The top three hot branches
in mcf have the same behavior.

Branch mispredictions that are caused by linked list
traversals as described in this section are very hard to predict
using conventional branch predictors. However, due to address-
value correlations, it is possible to make correct predictions if
corresponding register values (addresses) are used. More
research is needed on how such mechanisms can be built
efficiently with limited hardware budgets. Perhaps, since the
data structures are very stable, a mechanism could be designed
to correct mispredictions before they take place by using
register values that hold node address values in previous
iterations of the loop.

5.3 Varying Loop Counts
This type of mispredictions occurs when a loop is executed

for different number of iterations every time it is accessed.
Almost all of the benchmarks we have tested contain loops
with varying loop counts.

Figure 7 shows a source code example from patricia
with a loop that has varying loop count. Register $6 holds the
value of __nbytes. Initial value of __nbytes is input to the
BYTE_COPY_FWD () function. BR1 checks if the value in
register $6 is greater than zero, and is executed 758584 times.
The input __nbytes has two different values only; 23538
times 4 and 83054 times 8. There is no pattern for the loop
count but it is 8 most of the time. The misprediction rate for
this branch with a 4KB gshare predictor is 14.1%. This
branch could be predicted better by a complex loop predictor
that would use the most common loop count. Because, the
branch is either taken 8 times followed by a not taken or taken
4 times followed by a not taken, a local predictor would also do
well. In fact, a 4KB local predictor is able to reduce to
misprediction rate to 5%. If there was also a pattern of varying
loop counts, a local predictor could even do better. Another
observation we have about this type of mispredictions is that if
there is a pattern, future mispredictions can usually be
predicted.

Varying loop count mispredictions are usually classified as
conflict- or training-caused mispredictions when run-time
classification taxonomy is applied.

5.4 Changing Function Inputs
This type of mispredictions occurs because a branch

depends on an input to a function and this input often changes
next time the function is called and causes unless otherwise
easy to predict branch very hard to predict. We have given two

../sysdeps/generic/memcpy.c:52
 404658: 42 00 00 00 addu $6,$0,$18
 404660: 05 00 00 00 beq $6,$0,404698
 404668: 22 00 00 00 lbu $2,0($16)
 404670: 43 00 00 00 addiu $6,$6,-1
 404678: 43 00 00 00 addiu $16,$16,1
 404680: 30 00 00 00 sb $2,0($17)
 404688: 43 00 00 00 addiu $17,$17,1
 404690: 06 00 00 00 bne $6,$0,404668 → BR1

(a)
//memcpy.c
52 BYTE_COPY_FWD (dstp, srcp, len); → BR1
//memcopy.h
76 #define BYTE_COPY_FWD(dst_bp, src_bp, nbytes)
77 do
78 {
79 size_t __nbytes = (nbytes);
80 while (__nbytes > 0) → BR1
81 {
 …
87 }
88 } while (0)

(b)
Figure 7. Code snippet for the second top hot PC in patricia, (a)
assembly, (b) C code

examples of this type in this section because they show very
different behavior. The first example is from patricia
where changing inputs cause varying loop counts, but easy to
predict with local predictor because there is a pattern for inputs.
The other example is from parser, where there is no pattern
– a truly hard to predict branch. Most benchmarks contain this
type of branch mispredictions.

Figure 8 presents a simple while loop from patricia where a
variable (j) that is a function input checked against zero. Initial
value of j is input to the function. Register $6 holds the value
of j. BR1 checks if the value in register $6 is not equal to
zero. BR1 is executed 405708 times. The input j is182596
times -1 and 40516 times 0. There is a pattern for the branch
behavior. The behavior is 19 times “1 taken, 1 not taken” and 1
time “1 taken, 3 not taken”.

Misprediction rate for this branch (BR1) with 4KB
gshare is 45% ! However, the branch follows a simple
consistent pattern and therefore could be predicted almost
perfectly with a local predictor. Branch predictors that can
exploit very long global histories, such as PWL and LTAGE
could also eliminate the mispredictions for BR1. We also
observe that this branch has also global and local patterns for
mispredictions, which suggests that a mechanism that targets
predictable misprediction patterns can also eliminate these
mispredictions when the branch predictor is gshare.

This branch is predictable because function inputs have a
nice pattern. However, if the inputs were random, this would
have been a hard to predict branch. Such an example is given
from parser in Figure 9. BR1 in Figure 9 has an outcome
that is 45% taken and 55% not taken. Misprediction rate for
this branch (BR1) is 24.4% with a 4KB gshare. A 256KB
gshare predictor, a 256KB local predictor or a 256KB PWL
does not reduce the misprediction rate for BR1 at all. This is an
inherently very hard to predict branch because of the random
data.

../sysdeps/generic/mul_1.c:55
 413be8: 43 00 00 00 addiu $6,$6,1
../sysdeps/generic/mul_1.c:53
 413bf0: 34 00 00 00 sw $3,0($8)
../sysdeps/generic/mul_1.c:55
 413bf8: 43 00 00 00 addiu $8,$8,4
 413c00: 43 00 00 00 addiu $5,$5,4
 413c08: 06 00 00 00 bne $6,$0,413bb0 → BR1

(a)
//mul_1.c
 55 while (++j != 0); → BR1

(b)
Figure 8. Code snippet for top hot PC in patricia, (a) assembly, (b) C

parse.c:186
 414718: 43 00 00 00 addiu $29,$29,-48
 414720: 34 00 00 00 sw $16,24($29)
 414728: 42 00 00 00 addu $16,$0,$4
 414730: 34 00 00 00 sw $17,28($29)
 414738: 42 00 00 00 addu $17,$0,$5
 414740: 34 00 00 00 sw $18,32($29)
 414748: 42 00 00 00 addu $18,$0,$6
 … … ...
parse.c:193
 4147e0: 28 00 00 00 lw $2,-29260($28)
parse.c:194
 4147e8: 24 00 00 00 lh $3,0($4) → LD1
parse.c:193
 4147f0: 43 00 00 00 addiu $2,$2,1
 4147f8: 34 00 00 00 sw $2,-29260($28)
parse.c:194
 414800: 06 00 00 00 bne $3,$16,414858 → BR1
 … … …
 414850: 01 00 00 00 j 414870

(a)
186 Table_connector * table_pointer(int lw, int rw,
Connector *le, Connector *re, int cost) {
188 Table_connector *t;
189 N_hash_lookups++;
190 work_in_hash_lookups++;
191 t = table[hash(lw, rw, le, re, cost)];
192 for (; t != NULL; t = t->next) {
193 work_in_hash_lookups++;
194 if ((t->lw == lw) && → BR1, LD1
 . . .) return t;
195 }
196 return NULL;
197 }

(b)
Figure 9. Code snippet for one of the hot PCs in parser, (a) assembly, (b) C

BR1 checks if the value in register $3 is equal to the
value in register $16. Register $3 holds the value of t->lw
(value returned by LD1) and $16 holds the value of lw.
Register $4 holds the address of t (see LD1). BR1 is accessed
481215 times. There are 46370 different values for $4, which
corresponds to the different addresses of t. Values that are
stored in those addresses remain unchanged. Each different
address is accessed 10 times, on average. Although values in
these addresses do not change, value they are compared to,
lw, changes frequently. Due to this randomness, this branch
can not be predicted well. However, if sufficient hardware
resource (>256KB, i.e., very impractical) is given to store
history for this particular branch, mispredictions can be
eliminated because the branch outcome at any address of t

and lw pair is consistent.

5.5 Wrong Type History

Mispredictions can also occur because the predictor tracks
the wrong type of history for the branch in question: global
instead of local, or vice versa. Run-time branch classification
taxonomy describes wrong-history misses as mispredictions
that occur when a nonconflict-miss/non-training-miss is
correctly predicted using the other type of history. We see this
type of branch mispredictions in all benchmarks that we
studied. This class of mispredictions can be identified by run-
time classification taxonomy, however, we have included it in
our source-code analysis for completeness.

Figure 10 shows an example of wrong-history type
mispredictions from basicmath. Misprediction rate for BR1
is 22.2% (corresponds to 40% of all mispredictions) with a
4KB gshare predictor. A 4KB local predictor eliminates
mispredictions for this branch almost completely (1%
misprediction rate).

In Figure 10, registers $4 and $2 hold the address of and
the value stored in char_ptr, respectively. Register $5 holds
the value of c. LD1 loads the value stored in address $4 and
stores it into $2. BR1 checks if the value in $2 is equal to the
value in $5.

There are 8 different address values for $4 and the values
in these addresses never change. Also, there is a pattern of
length 8 for values in $5 and always repeats itself. Because
branch follows a consistent pattern, it can be predicted very
well with a local predictor. One important observation is that
there is also a misprediction pattern, 7 hits and 2 misses, which
always repeats itself. Our experiments show that wrong-history
type mispredictions often follow patterns, which suggests that
efficient separate mechanisms can be designed to help the
branch predictor by targeting its mispredictions.

../sysdeps/generic/strchr.c:43
 40b9a0: 22 00 00 00 lbu $2,0($4) → LD1
 40b9a8: 05 00 00 00 beq $2,$5,40baf8 → BR1
../sysdeps/generic/strchr.c:45
 40b9b0: 05 00 00 00 beq $2,$0,40bb08
../sysdeps/generic/strchr.c:42
 40b9b8: 43 00 00 00 addiu $4,$4,1

(a)
//strchr.c
 36 c = (unsigned char) c;
 37
 38 /* Handle the first few characters by reading one character at a time.
 39 Do this until CHAR_PTR is aligned on a longword boundary. */
 40 for (char_ptr = s; ((unsigned long int) char_ptr
 41 & (sizeof (longword) - 1)) != 0;
 42 ++char_ptr)
 43 if (*char_ptr == c) → LD1, BR1

(b)
Figure 10. Code snippet for top hot PC in basicmath, (a) assembly, (b) C

5.6 Constant Loop Exits
A loop with a loop count of n, is often taken for n times

followed by a not-taken at the loop exit. For cases when the
loop counts are larger than what branch predictor can
remember, prediction fails at the loop exits. Often, it is difficult
for a global, local, or combined history predictor to keep

sufficient history for this type of branches. Therefore, to target
loop-exit mispredictions, loop predictor [26] was proposed.
Constant loop exit mispredictions can also be put into
insufficient history length or wrong-history type mispredictions
categories.

All benchmarks have constant loop branches, though they
may not mispredict often enough to make the top 10 hot PCs
list that mispredict most. A source-code example for a constant
loop branch from art is shown in Figure 11.

BR1 in Figure 11 is a constant loop branch with a 9.1%
misprediction rate. The loop always iterates for 10 times and
executed 340000 times. gshare predicts BR1 correctly for 10
times and mispredicts the loop exit condition. BR1 checks if
value in register $2 is not equal to zero. Register $2 is reset to
zero if value in register $4 is greater than value in register $8.
$8 corresponds to num2fs and $4 corresponds to tj (see line
449 in Figure 11). numf2s has a constant value, which is 10.
This is not a hard to predict branch. It can be eliminated by a
loop predictor or an 11 bit local history predictor. Since there
are three more branches in the loop, gshare requires a history
length greater than 40 bits in order to eliminate mispredictions
of this branch. Predictors that can exploit long histories, such as
PWL and LTAGE, eliminate this branch’s mispredictions.

scanner.c:449
 401cc8: 42 00 00 00 addu $4,$0,$16
 401cd0: 05 00 00 00 beq $13,$0,401d68
 401cd8: 42 00 00 00 addu $9,$0,$10
 401ce0: 28 00 00 00 lw $8,-31320($28)
 401ce8: 55 00 00 00 sll $2,$16,0x4
 401cf0: 42 00 00 00 addu $5,$2,$14
scanner.c:451
 401cf8: 06 00 00 00 bne $4,$12,401d48
 …
 401d10: 0b 00 00 00 bc1f 401d48
scanner.c:452
 401d18: 28 00 00 00 lw $3,0($9)
 …
 401d40: 71 00 00 00 add.d $f4,$f4,$f0
scanner.c:449
 401d48: 43 00 00 00 addiu $5,$5,16
 401d50: 43 00 00 00 addiu $4,$4,1
 401d58: 5b 00 00 00 slt $2,$4,$8
 401d60: 06 00 00 00 bne $2,$0,401cf8 → BR1

(a)
// scanner.c
441 tnorm =0;
442 tsum=0;
443 tresult = 1;
444 for (ti=0;ti<numf1s;ti++)
445 {
446 tsum = 0;
447 ttemp = f1_layer[ti].P;
448
449 for (tj=spot;tj<numf2s;tj++) → BR1
450 {
451 if ((tj == winner)&&(Y[tj].y > 0))
452 tsum += tds[ti][tj] * d;
453 }
454
455 f1_layer[ti].P = f1_layer[ti].U + tsum;
456
 …

(b)
Figure 11. Code snippet for top hot PC in art, (a) assembly, (b) C code

5.7 Insufficient History Lengths
This type of mispredictions can be eliminated if same type

of predictor is given more history bits. This is not very easy for
a gshare predictor because each additional bit doubles the
size of the predictor. A predictor like PWL or LTAGE will do
much better for this type of branches. Often wrong-history and
constant loop exit mispredictions could be eliminated if the
predictor can exploit longer branch histories. Therefore,
examples in Figures 10 and 11 can also be considered as
insufficient history length mispredictions. However, this does
not mean longer history eliminates only wrong-history or
constant loop exit mispredictions. An example of this is shown
in Figure 12 from gcc. BR1 checks if the loop count (i in
Figure 12.b) that is stored in register $19 (see Figure 12.a) is
greater than or equal to zero. The loop’s start value is the value
returned by GET_RTX_LENGTH(code) as shown in Figure
12.b. The reason that this branch mispredicts is because the
iteration count (i.e., the value returned by the function) varies,
and there is no observed pattern for the loop counts. However,
according to our simulations, these counts are 1, 2, or 3, which
are small values. Therefore, the number of mispredictions can
be reduced by a larger predictor. The misprediction rate for
BR1 is 17.4% with a 4KB gshare predictor. As the size of
the predictor increase the misprediction rate decreases. For
example, 32KB and 256KB gshare predictors reduce the
misprediction rate for this branch to 9.6% and 6%, respectively.

 rtlanal.c:1469
 4ceb88: 43 00 00 00 addiu $17,$17,-4
 4ceb90: 43 00 00 00 addiu $18,$18,-1
 4ceb98: 43 00 00 00 addiu $19,$19,-1
 4ceba0: 0a 00 00 00 bgez $19,4cead8 → BR1

(a)
// rtlanal.c
1469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) → BR1
1470 {
1471 if (fmt[i] == 'e')
1472 {
1473 if (volatile_refs_p (XEXP (x, i)))
1474 return 1;
1475 }
1476 if (fmt[i] == 'E')
1477 {
1478 register int j;
1479 for (j = 0; j < XVECLEN (x, i); j++)
1480 if (volatile_refs_p (XVECEXP (x, i, j)))
1481 return 1;
1482 }
1483 }
1484 }

(b)
Figure 12. Code snippet for second top hot PC in gcc, (a) assembly, (b) C

6. Summary of Findings and Discussion

Our source code analysis confirms that wrong history type,
insufficient history length, and constant loop counts (e.g., >10)
are some of the major causes of branch mispredictions. It also
extends the previous work by introducing new class of
mispredictions. We have found that array element accesses or
pointer references, linked list traversals, varying loop counts,
and changing function inputs make harder to predict branches

that depend on them and may require different ways to improve
prediction accuracy.

Table 2 partially summarizes the source-code analysis
results discussed in Section 5. The table shows the
misprediction classification for top 10 hot branches in SPEC
CPU 2000 and Mibench benchmarks. Each row in the table
shows the number of branches in the top 10 that fall into each
misprediction category and their contributions to
mispredictions (shown as percentages in parentheses). We can
see that mcf, parser, and dijkstra have significant
amount of linked-list-traversal caused mispredictions.
Especially this is most pronounced for mcf (68%). bzip2,
ammp and jpeg’s mispredictions are almost all caused by
array access or pointer references. All benchmarks except
qsort and bitcount has significant amount of
mispredictions caused by array accesses or pointer reference.
basicmath and fft have significant amount of wrong-
history branch mispredictions. Changing function inputs is one
of the most important causes for mispredictions for most of the
Mibench benchmarks. gzip, twolf, dijkstra,
patricia, qsort and fft contain branches that mispredict
because of varying loop counts. Constant loop exit
mispredictions is important for art and sha. Finally, gcc has
significant amount of insufficient history length mispredictions.
Note that all benchmarks have branch mispredictions that fall
into each of the categories in the table, however, they may not
be in the top 10 list that Table 2 covers.

Based on our source-code analysis, we can summarize our
findings as follows:
1. Since few branches correspond to a disproportional amount

of mispredictions, it may be worth performing detailed
source-code analysis on these hot branches.

2. In many cases, misprediction patterns exist. Most
misprediction classes that we observed exhibit some sort of
repeating patterns.

3. Some mispredictions are harder to correct than others.
Mispredictions due to linked list traversals, randomly
varying loop counts, changing inputs to functions are harder
(will require more (and different type) history) than other
types of mispredictions (conflicts, wrong-type history,
constant loops, insufficient history length).

4. Address-value correlation provides some opportunity to
correct mispredictions otherwise not possible, especially for
linked list traversals and array accesses/pointer references.
Data often do not frequently change in addresses. Many
examples in benchmark programs.

5. Constant loop exit, insufficient history length, and wrong-
type history mispredictions can usually be eliminated with
relatively small size of misprediction histories because they
often have regular misprediction patterns.

6. Given a constant hardware budget for branch prediction, it
may be better to have a combination of branch predictor and
a predictor that tracks and reduces mispredictions than
having one complicated branch predictor.

7. Related Work
Skadron et al [3] proposed a unified run-time branch

misprediction classification taxonomy, which classified
mispredictions as being from one of the following categories:
training, conflict, wrong-history, need both histories
simultaneously, and other. Other category includes insufficient
history length or inherently difficult to predict branch
mispredictions. In this paper, we extend Skadron’s work by
performing a detailed source-code analysis of branch
mispredictions and introducing new classes of mispredictions.
Prior to Skadron’s work a number of studies characterized
mispredictions although they were not as comprehensive as [3].
Most of the effort has been on characterizing conflicts (PHT
interference) [4-11]. Some others studied wrong-history [6, 13,
14, 31] and training times [32, 33]. To reduce constant loop
exit mispredictions, loop count predictor was proposed [26].

Table 2. Source-code classification of branch mispredictions
 Array Access

Pointer
Reference

Linked List
Traversal

Wrong Type
History

Changing
Function

Inputs

Varying Loop
Counts

Constant
Loop
Exits

Insufficient
History
Length

Other

GCC 1 / 52% 2 / 16% 1 / 20% 12%
ART 1 / 7% 1 / 91% 2%

PARSER 2 / 19% 5 / 31% 3 / 50% 0%
MCF 5 / 19% 3 / 68% 2 / 13% 0%
JPEG 9 / 96% 1 / 4% 0%
BZIP2 10 / 100% 0%

BASICMATH 1 / 19% 1 / 40% 2 / 40% 1%
DIJKSTRA 1 / 31% 1 / 33% 1 / 33% 3%
PATRICIA 2 / 22% 6 / 52% 2 / 26% 0%

SHA 1 / 14% 6 / 84% 2%
QSORT 7 / 76% 1 / 23% 1%

BITCOUNT 1 / 99% 1%
SUSAN 5 / 58% 5 / 42% 0%

FFT 2 / 12% 2 / 49% 4 / 29% 2 / 10% 0%
GZIP 4 / 57% 5 / 26% 1 / 17% 0%

VORTEX 8 / 52% 2 / 48% 0%
AMMP 1 / 99% 1%
TWOLF 2 / 5% 1 / 3% 2 / 92%

Recent works, such as O-GEHL [18] and TAGE [19], and
neural-based predictors perceptron [16], PWL [21],
Frankenpredictor [23] and others [20, 22, 24] studied ways of
exploiting longer history in order to further improve branch
prediction accuracy.

8. Conclusion
A great deal of prior branch prediction work has focused on

ways to improve prediction accuracy by using local history,
global history, a combination of both with a mechanism of how
to choose which component to believe, multiple predictors with
different histories and sizes, and a number of neural predictors.
Most of the improvements to predictor design have come from
ad-hoc run-time analysis, e.g, running various configurations of
or extensions to a branch predictor.

This paper presents a detailed source-code analysis of
important misprediction types to better understand how to
further improve branch prediction design. Our analysis show
that in addition to the problems – training time, history table
interference, wrong-history mispredictions – found through
run-time classification of branch mispredictions and well
recognized problems such as insufficient history length and
constant loops, array/pointer references, linked list traversals,
varying loop counts and changing function inputs are also
substantial problems for branch prediction. We also show that
some mispredictions depend on loads that exhibit address-value
correlations, which suggests designing mechanisms that
exploits this type of locality. Finally, we show that
mispredictions to a branch often have repetitive patterns, which
also can be exploited possibly by considering a secondary
predictor that targets mispredictions only.

Acknowledgments
This work was supported in part by US National Science

Foundation Grant CCF-0541162.

References
[1] http://www.jilp.org/cbp/ First Championship Branch Prediction

Competition website, 2004.
[2] http://cava.cs.utsa.edu/camino/cbp2/ Second Championship Branch

Prediction Competition website, 2006.
[3] Kevin Skadron, Margaret Martonosi, Douglas W. Clark: A

Taxonomy of Branch Mispredictions, and Alloyed Prediction as a
Robust Solution to Wrong-History Mispredictions. IEEE PACT
2000: 199-206.

[4] P.-Y. Chang, M. Evers, and Y. N. Patt. Improving branch prediction
accuracy by reducing pattern history table interference. IEEE PACT
1996, 48-57.

[5] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge. The bi-mode branch
predictor. 30th International Symp. on Microarchitecture, 4-13,
1997.

[6] S. McFarling. Combining branch predictors. Tech. Note TN-36,
DEC WRL, June 1993.

[7] P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and capacity
aliasing in conditional branch predictors. 24th International
Symposium on Computer Architecture, pages 292-303, June 1997.

[8] S. Sechrest, C.-C. Lee, and T. Mudge. Correlation and aliasing in
dynamic branch predictors. ISCA 23, 22-32, 1995.

[9] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt. The agree
predictor: A mechanism for reducing negative branch history
interference. ISCA-24, pages 284-91, June 1997.

[10] A. R. Talcott, M. Nemirovsky, and R. C. Wood. The influence of
branch prediction table interference on branch prediction scheme
performance. PACT 1995, 89-96, 1995.

[11] C. Young, N. Gloy, and M. D. Smith. A comparative analysis of
schemes for correlated branch prediction. ISCA 22, 276-86, 1995.

[12] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, Vol.
19, No. 2, March-April 1999, pp. 24-36.

[13] P.-Y. Chang, E. Hao, and Y. N. Patt. Alternative implementations of
hybrid branch predictors. 28th Annual International Symposium on
Microarchitecture, pages 252-57, Dec. 1995.

[14] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt. An analysis of
correlation and predictability: What makes two-level branch
predictors work. ISCA-25, pages 52-61, June 1998.

[15] L. N. Vintan and M. Iridon. Towards a high performance neural
branch predictor. In IJCNN’99. International Joint Conference on
Neural Networks. Proceedings., 1999.

[16] D. Jiménez and C. Lin, “Dynamic Branch Prediction with
Perceptrons,” HPCA 2001.

[17] Zhijian Lu, John Lach, Mircea R. Stan, Kevin Skadron: Alloyed
Branch History: Combining Global and Local Branch History for
Robust Performance. Int. Jrnl. of Parallel Programming 31(2): 137-
177 (2003).

[18] André Seznec: Analysis of the O-GEometric History Length Branch
Predictor. ISCA 2005: 394-405.

[19] A. Seznec "The L-TAGE predictor", Journal of Instruction Level
Parallelism, May 2007

[20] D. Jiménez, “Fast Path-Based Neural Branch Prediction,” Int.
Symposium on Microarchitecture, 2004.

[21] D. Jiménez, “Piecewise Linear Branch Prediction,” Int. Symposium
on Computer Architecture, 2005.

[22] A. Seznec, Redundant History Skewed Perceptron Predictors:
pushing limits on global history branch predictors, IRISA Report No
1554, 2003

[23] Gabriel H. Loh, “Deconstructing the Frankenpredictor for
Implementable Branch Predictors,” JILP, vol. 7, pp. 1-10, April,
2005.

[24] Gabriel H. Loh, Daniel A. Jimenez, “Reducing the Power and
Complexity of Path-Based Neural Branch Prediction,” 5th
Workshop on Complexity Effective Design (WCED), pp. 1-8, June
5, 2005.

[25] A. Seznec and A. Fraboulet “Effective ahead pipelining of
instruction block address generation,” ISCA 30, 2003..

[26] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh,
A. Saeed, Z. Sperber, and R. Valentine, “The Intel Pentium M
processor: Microarchitecture and performance,” Intel Technology
Journal, 7(2), pp. 21-33, May 2003.

[27] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,”
University of Wisconsin-Madison CS Dept. Tech. Report #1342,
1997.

[28] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the
New Millenium,” IEEE Computer, Vol. 33, No. 7, July 2000, pp.
28-35.

[29] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R.
Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” Workshop on Workload Characterization, 2001.

[30] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program Behavior,”
ASPLOS, 2002.

[31] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt. An analysis of
correlation and predictability: What makes two-level branch
predictors work. ISCA 25, 52-61, 1998.

[32] T. Juan, S. Sanjeevan, and J. J. Navarro. Dynamic history-length
fitting: A third level of adaptivity for branch prediction. ISCA 25,
156-66, 1998.

[33] D. Jiménez, “Reconsidering Complex Branch Predictors,” HPCA
2003.

