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Abstract

In this study, scattering of plane electromagnetic
waves at the junction formed by a PEC half-plane
and a half-plane with anisotropic conductivity is in~
vestigated. By using Fourier Transform technique
the problem is formulated into a matriz Wiener-
Hopf system and an exact closed-form solution is
obtained for the most general case by factorizing
a 2 x 2 Wiener-Hopf matrixz. Also, four different
special cases are eramined which in all, by using
Fourier Transform technique the problem is formu-
lated into a pair of simultaneous Wiener-Hopf equa-
tions which are decoupled via a polynomial transfor-
mation and solved through the standard procedure.
The diffracted field is expressed in a form suitable
for GTD applications and the effects of the resistiv-
ities of the anisotropic half-plane on the diffraction
coefficient are also investigated.

I. Introduction

As is known, the scattering from any body is a func-
tion of both its geometrical and material properties.
In recent years there has been a renewed interest
in investigating the influence of material properties
on edge diffraction. In particular, the edge diffrac-
tion by a half plane of finite, isotropic conductivity
has been studied by severel authors [1, 2]. In these
works, the electromagnetic property of imperfectly
conducting surface is specified by its scalar resistiv-
ity R = (1/0t) with o being the conductivity, and ¢
is the thickness which is assumed to be small com-
pared with the wavelength. In the most general case,
as noted by Senior[3], the surface resistivity may be
anisotropic supporting electric current sheets in di-
rections parallel to both axes of the plane. For such
a plane located at y = 0, a constant resistivity ten-
sor can be written in the following dyadic form:

R =Ry77 + Ro37 (1)

where 7 and Z denote the unit vectors in Cartesian
coordinate system. Here, Ry and Rg represent

R1 = (1/U¢t)
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and R, = (1/0,t) ®)

with 0, and o, being the conductivities in the =
and z directions, respectively. In this work, scat-
tering of plane electromagnetic waves at the junc-
tion formed by a PEC half-plane and a half-plane
with anisotropic conductivity is considered for the
oblique incidence case. The PEC half-plane is lo-
cated at y = 0,z < Oand at y = 0, z > 0 an-
other half-plane is located with anisotropic resistiv-
ity where the half-plane is of finite resistivities Ry
and R, in the directions 2z and z, respectively (see
Fig.-1). The structure is simulated by standard re-
sistive boundary conditions and the problem is for-
mulated by Fourier transform technique. The for-
mal solution is derived for the diffraction problem
by employing Daniele-Khrapkov method. While an
exact closed form solution is obtained by factorizing
a 2 x 2 Wiener-Hopf matrix, it is quite complicated
not only algebraically, but also it contains no less
than six transcendental functions. This complexity
is not too surprising for this type of anisotropy. The
explicit expressions of the solution can be obtained
for the special case when Ry - Ry << 1. Also, 4
different special cases are examined which in all, by
using. Fourier transform technique, the problem can
be formulated into a pair of simultaneous Wiener-
Hopf equations which are decoupled via a polyno-
mial transformation and solved through the stan-
dard procedure.

II. Formulation of the Problem

A plane electromagnetic wave given by

E_".'(I, Y, Z) — (A;’A;n Ai)e—ikain 8o (x cos ¢po+y sin ¢o)eikz cos 6o
o 3

and satisfying
k.A=0 ()

is incident upon the y = 0 plane where the nega-
tive half of which (z < 0) is PEC, while the pos-
itive half (z > 0) has anisotropic conductivity at
oblique incidence. The time dependence is assumed
as erp(—iwt) and the 2-dependence as exp(ik,) of
the incident field, which are common to all field
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Figure-1. Geometry of the problem.

quantities, will be suppressed throughout the anl-
ysis. In the above expressions 6, is the measure of
obliquity with 8, = 7/2 corresponding to the in-
cidence in a plane perpendicular to the edge. k is
the free-space wave number of the medium and w is
the angular frequency of the field. To make the in-
cident and consequently the scattered field Fourier
integrable with respect to z, we assume that the
wave number has a small positive imaginary part.
Then the lossless case can be obtained by making
Imk — 0 in the final expressions.

The half-plane which assumed to have a finite
conductivity of R; in the z-direction and of Rj in
the 2-direction can be characterised by the follow-
ing general anisotropic resistivity conditions given
by Senior[3] :

7x [E’(z,+0)—E‘(:c,—0)]=0 . £>0 (5

7 x [ixf_ﬂ,"(z,+0)] =
-Rix {I}(z,+0)—f}(z,—0)] » >0 . ()

where 7 is the unit vector directed along the y-axis.
Here, E and H denote the total fields which are

written as the sum of the incident and scattered field
components

B () =E* (H')+ B* (H") )

for all y.

As is known, to obtain the scattered fields, it is
sufficient to consider the z— and z-components of the
electric field. In order to be able to use the above
boundary conditions, the tangential components of

- the magnetic field must also be known. These com-
ponents can be derived easily from E; and E; via

Maxwell’s equations, and _1_{1 order to determine the
representaion for E,, div D = 0 will be used.
For E? and E? which satisfy the reduced wave

equation of the half-plane, one can assume the
following integral representations:

E: =-/Ai (a)e'i""ﬂr("‘)vda-k E; (E'ﬁ) , 20
L

®

E:= / By (a)e™**=*Tvgo + BT (E7) , 320
L

©)

where I' (o) = VNZ =02 with N = \/m =
ksinfp. The square root function I'(a) is defined
in the complex a-plane cut as shown in Fig.-2, such
that ' (0) = N.

1 Ima

Figure-2. Complex a-plane and position of integration
line L, where the regularity band is determined by
Im (&) < Im(N) and Im (a) > Im (V cos ¢o) -

The terms E., and E are defined by

EL (L) = Ry (o) Ale =¥ 420 (10)

E; (Bt) =R, (T;) Ale™*==¥hw | 420 . (11)

In the egs. (8 — 11), the (+) signs together with the
reflection terms are used in y > 0 half space while
the (—) signs together with the transmission terms
are used in ¥y < 0 half space. R; (T3)and R, (T%) de-
note the reflection(transmission) coefficients related
to the z and 2z components of the electric field that
would be reflected(transmitted) if the whole plane
y = 0 were characterized by a constant surface re-
sistance R.

By using Maxwell’s equations and eqns. (8 —11),
H? and HZ can now be obtained as
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.1 o’
H = — / { IF (a)k,Ai (@) - [:l:I‘(a)+ T (a)]
L
‘B (@)} e7io= T (ygq iklwu
(4
(k2 +K}) Bo (T.) AL — kaka R, (T) AL} e7Heottuy

(12)

H:=Jlﬁ’/{[:ﬁl‘(a)+g,’§(—a')'} A;ﬁ;((l)

—iaz+il'(a)y
:tP( )k,B:g: (a)} da +

Fkywp
(ke +

fory>0and y<O.

The spectral coeflicients Ay and By, appearing in
equations (8, 9) and (12, 13) are to be determined
with the aid of the boundary conditions. To obtain
a unique solution, it is also necessary to take into
account the following edge conditions as x — 0:

k2) R (T:) A: — kokoRe (To) AL} e etk

13)

E. = 0(v/&) (14)
=0(1/x) (15)
=0(1) (16)

Now by substituting the scattered field expressions
into the boundary conditions and inverting the re-
sulting integral equations

A (@)=} (2) an)
B, (2) = %5 (@) 18)
B, (2)=B- (@) (19)
(@) =A- (@) (20)
S 14 @)+ - @+ | 225 + | B (@
;NZB @=0 @-5rls @Y
[-——(%lirﬁzlh—%]m(a) (2# Da (@)
+2k =% (g

are obtained, with

{(=N* = k)) AL + koky Ay + koK. ALY
(23)

k YW
and
. 1 i i
3= o { (226 — D) AL+ ek AL — Ieyha A}
(24)

In the above expressions, &7, (@) and &7, (@) are
yet unknown functions regular in the half-plane
Ima > Imk; and Ima < Im N, respectively.

The elimination of Ay («) and By (o) between
(17 — 22) gives a matrix Wiener-Hopf equation writ-
ten in the strip Imk, < Ima < Im N as follows:

G(a)®"(a) =2 (o) + V() (25)
where
20k, —2N? 1
wpl wpl' Ry
G(a) = s
-2(k -—a)+__1_ 2k,
wul’ Ry wpl’
(26)
and
__=h
2t (o — kz)
V(o) = (@7)
)
2ri (o — kz)

where h and j are given by egs. (23) and (24).
Here, p denotes the magnetic permeability of the
surrounding medium. ®*(a), ® (o) and V(a) are

‘column vectors, where the terms &% (a), ®~ (a) are

unknown functions that would be determined later
and V(&) corresponds to the contributions of the
incident and reflected fields as given in (27)

III. Solution of the Wiener-Hopf System

The formal solution is derived for the diffraction
problem by employing Daniele-Khrapkov method.
While an exact closed form solution is obtained by
factorizing a 2 x 2 Wiener-Hopf matrix, it is quite
complicated not only algebraically, but also it con-
tains no less than six transcendental functions. This
complexity is not too surprising for this type of
anisotropy[4]. The explicit expressions of the so-
lution can be obtained for the special case when
R; + Rg << 1. Also, 4 different special cases (Case
for Ry — oo, Case for R; — 00, Case for Ry = 0,
and Case for Ry = 0) are examined which in all, by
using Fourier transform technique, the problem can
be formulated into a pair of simultaneous Wiener-
Hopf equations which are decoupled via a polyno-
mial transformation and solved through the stan-
dard procedure. Here, in this paper we are going
to give the solution of only one special case of the
scalar Wiener-Hopf system; i.e. case for Ry — o0.

Letting Ry — 00, the problem reduces to two si-
multaneous Wiener-Hopf equations:

2ak wpl'] &7
: <I>++[-2N2 ] —®7+V; (28
wpl' (@) ol (@) ~ 2t (28
and
1 o (12 a2\ &t +1 &
wpl () [-2(¥* —0®) & + 20k, 27] = ; +Vi‘29)
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Since ®] and ®7 are both regular functions in the
upper half-plane, the sum of these two functions in
(29) is also regular in the upper half-plane. Let

¥ (a) = -2 (K* — o) &} + 2ak. 07 (30)

0 (29) is reduced into the below form;

w”r, o) ¥t (a)=2; +V, (31)
where V5 is given by (27).

As is seen, the polynomial transformation given in
(30) reduced the simultaneous system of equations
in (28 — 29) into two scalar Wiener-Hopf equations.
Therefore, first eq. (31) will be solved and &7 is
expressed in terms of ®F. Then, eq. (28) will also
be reduced to a scalar equation involving only &7
and ;.

Eqn. (31) is a scalar Wiener-Hopf equation whose
solution is

1

o (@)= (k% — a?)

&7 (o) - Tt () (32)

( )
with
.y _ —IikZo
v (a) = ey P )\/ k: VN +a. (33)
Now, substituting this in eqn. (28) and rearranging
yields

T(2)

T @ E—E =t M@ 69

where
kZoD’lth 113
T(a) = . , 35
@)= "FN  XE dxEna) 39)
with
& = Njoy and & = Nfos , (36)
and
kR R1\?
o1,2 ——T;:Ek (Z_;) — cos? y, @37
and where
+
M(@)=V; + ak, Y {a) (38)

wul (@) (k2 — a?)’

with V; given by (27). The function x (£, o) given
by eqn. (35) is defined as

I (o)
N +¢T (o)
which is factorized in terms of Maliuzhinetz

function[5]. Then performing Wiener-Hopf decom-
position, one obtains

X~ ({1 ) ka:) X~ (§2y ka:) X+ (51; a) X+ ({27 C!)
2mi (o — kg ) (N — k3)

. sin80v/R: (k+a)

T omi(a—ka) (k + k)

x(&a) = =xT(a)x (&)  (39)

of =

(k — kz)sin? 6o Ry (k + @)
T cos?60 (N + @)

.X‘— (§lwkm)X~ (f’«’ykz)XJr (glaa) X+ (5210) kzk’ (40)
cos? 8o (N + a) (N — kz) ’

Since <I) were expressed in terms of ¥+ and CI)Q' in
(32), by using (33)

 kZoV/N e/ X
et ="47ri(a—k:)c(k2N—2'~(’;+( o )

is obtained. Since ®f (a) and ®7 () are now com-
pletely determined, the spectral coefﬁclents Ay and
By can be written from (17-20) to give

Az (o) = & (a), (42)

By (a) = #; (a). (43)

IV. Conclusions

Now, using the expressions of the spectral coeffi-
cients, the diffracted fields given by (8) and (9) can
be obtained by using Steepest Descent method:

N,
B (p8)~ D Bodo,d) S (40

where

D; (80, 0, ¢) =
e/ x* (€1, ~Ncosd)x* (62, ~Ncosd) R,

ivor (1 —cos¢) (1 ~cos¢o) Zo
X" (&1, N cos ¢o) X~ (&2, IV cos ¢o) (1 — sin 6o cos ¢) sin ¢
(cos ¢ -+ cos o) cos ¢o
(45)
with
y = (Losinfocosdo) ¢ gy — sinfosin? do

cos fg sin ¢o
-+ sin 0 sin ¢ cos Pg + cos By cos do }+ { —2sin® 6o sin® do
— cos? 6o + sin 0y cos O cos g — sin G cos Gy sin zz)o}

cos ¢o
46
(l + sin 6o cos ¢o) sin o sin o~ (46)

Here, x (£, @) is the function given in (39) and &2
are defined as follows:

sin 6o . ) (47)
—Zo:h\/(Zo) cos? 6

Also, in a similar manner

12 =

eiN
Dz (007 ¢0) ¢) (48)

p
E: 3 ~
(0, ®) JNp

is obtained, where

e™/*  gin ¢/T — cos go

D, (001 ¢0> ¢) = _2\/2—1—'.1, sin ¢ (cos ¢ + cos ¢0)
VI—cosd

(= sint o) " L2500 fosin’ do
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— cos? By + sin o cos fo cos $o — sin o cos Op sin d)o}
D (60, ¢o, ¢) - (49)

_sin 66 cos ¢ cos O
1 — sin® 8o cos? ¢

with D, (6o, ¢o, $) given by (45-47).

Some numerical results have been obtained for
the diffracted fields where the ambient medium was
taken as free space. The incident plane wave field
strength was assumed to be 1 V/m. the diffracted
field expressions involve the split functions x* (),
which can be written in terms of the Maliuzhinetz
functions, as is done by Uzgéren et al.[5]. By using
approximate formula given by Volakis and Senior[6],
the Maliuzhinetz functions and the diffracted fields
are computed.

Diffraction Coefficient 20 log(Dy")

— Ry/Z2y=10
g
Ry/Z=1

v {66' .,..éoé.r.”nséé, RARAYYW
Observotion Angle ¢

Figure-3. Variation of the diffraction coefficient

201log,o D) with respect to the observation angle for
€10 Yz
different incidence angles and different resistivities.

Figures 3-4 illustrate the variation of the am-
plitude of the x-component (z-component) of the
diffracted field 201log;, ([udl X \/'J\T[)) by the observa-
tion angle for the different values of the normal-
ized resistance R/Zp. The diffracted field expres-
sions given are not uniform and it is expected that
the field will take very large values in the transi-
tion regions. As seen from the Figs., the transition
boundaries are determined by the incidence angle as
(m — ¢0) and (7 + ¢o).

The problem of diffraction from a discontinuity
formed by a PEC and an anisotropic resistive half-
planes is considered for the first time in this work.
Therefore there has been no opportunity to com-
pare the results on Figs. 3-4 with some previously
obtained results to validate the accuracy of our high-
frequency solution. But it should be noted that, for
Ry (R2) = 0, the z-component (z-component) of the
scattered field involves only the reflected term as ex-

pected and this may validate the accuracy of the
solution.
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Figure-4. Variation of the diffraction coefficient

(20log,q D) with respect to the observation angle for
different incidence angles and different resistivities.

For 09 = 7/2 (normal- incidence case) and
R, Ry — 00, the z-component of the diffracted elec-
tric field reduces to the following well-known result
for the PEC half-plane problem in the E, polariza-
tion case:

B ___e""/4 VitcosgoyT+cosp €M
=T\ cos ¢ + cos o VNp
Although this is necessary but not sufficient to es-

tablish the accuracy of our problem, this may be
considered as another check to validate the solution.
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