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THIS ARTICLE PRESENTS POSITION STATEMENTS AND A QUESTION-AND-ANSWER SESSION

BY PANELISTS AT THE 4TH WORKSHOP ON COMPUTER ARCHITECTURE RESEARCH

DIRECTIONS. THE SUBJECT OF THE DEBATE WAS NEW TECHNOLOGIES AND THEIR IMPACT

ON FUTURE ARCHITECTURES.

......The third minipanel from the
2015 Workshop on Computer Architecture
Research Directions, held in conjunction
with the 42nd International Symposium on
Computer Architecture, featured two experts
discussing different technologies and their
impact on future architectures. What are
these new technologies, where are they going,
and what is going to happen to them? More
specifically, this panel focused on the follow-
ing questions:

� Is quantum computing likely to have
a wide impact on the development of
computing machines, or will it
remain of interest only to computer
science theoreticians?

� Will on-chip optical interconnect
become practical?

� How would you, the panelists, char-
acterize what is happening to Moore’s
law and Dennard scaling?

� Will approximate computing find a
place in computers? How will the
user be made aware of it?

� What new memory technologies are
the most promising, and how will
they change the way we design mem-
ory systems and computers?

The first expert panelist was Fred Chong,
the Seymour Goodman Professor of Com-
puter Architecture in the Department of

Computer Science at the University of Chi-
cago. Chong argued in favor of the promise
of new technologies—an optimistic view.
The second panelist, Igor Markov, a professor
of electrical engineering and computer sci-
ence at the University of Michigan, took a
more pessimistic position and outlined the
limitations of the new technologies.

Each panelist had 10 minutes to present
his position statement, after which the mod-
erator, Trevor Mudge, asked the panelists a
few questions. The floor then opened up to
the audience to ask questions.

Frederic T. Chong: Emerging Technologies
through Rose-Colored Glasses
Emerging technologies will play a key role in
addressing the gap between the needs of big
data and Moore’s law improvements to
CMOS. At one extreme, quantum computa-
tion offers both the largest gains and the
most risk. Early quantum machines with 5 to
7 bits were built 15 years ago.1 Recently,
there has been significant investment and
engineering to develop quantum computa-
tion. The D-Wave machine is an example,
which gives a notion of the engineering prog-
ress and the scale of machines that can be
built. Over the last couple of years, there has
been quite substantial investment by Google,
Microsoft, and IBM. The federal government
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has also invested $700 million into supercon-
ducting devices. Interestingly, to some extent,
the size of quantum devices or quantum com-
puters that have been built has been a little bit
artificially limited by the funding that we
receive.

I think we are at the cusp of some great
scaling in terms of quantum machines and
quantum devices. In the next few years, the
goal is to build machines on the order of 100
quantum bits and then scale basically expo-
nentially past that.

The big questions with quantum computa-
tion are, What can be physically built? What is
the scaling progress that has been made? What
is it good for? But, most important of all, what
quantum algorithms do we have? That is
probably the most difficult aspect of it. The
National Institute of Standards (NIST) has a
comprehensive catalog of all the known quan-
tum algorithms, called the Quantum Algo-
rithm Zoo (http://math.nist.gov/quantum/
zoo). Figure 1 shows the number of quantum
algorithms that existed over time, including
variations on certain algorithms. It shows that
the number of quantum algorithms has grown
quite substantially over the years. Around the
year 2000, we were not very high up on the
curve, and there was a lot of discussion as to
where this was going. Our DARPA program
manager at the time, Mike Foster, was quite
optimistic. He said, “Well, this is still early in
the development of quantum algorithms. We
still have a lot more to do.”

There has been a lot of interest in quan-
tum computation in terms of cryptography,
but more recently, there is some optimism
that we will have algorithms that are good for
searching, machine learning, and other kinds
of pattern optimization problems. There is a
lot more to do here, but there is cause for
optimism.

Quantum Devices Also Offer Promising
Improvements in Classical Computations
One thing that is very interesting in the near
term is the use of quantum devices and quan-
tum coherence for classical circuits and
latency-critical computations. HP has designed
an optical router that uses quantum coher-
ence.2 It consists of an array of resonators,
which are coherent. It performs optical packet
routing by doing global corner-to-corner rout-

ing using the quantum coherence of those
devices in a very low-latency manner. This
example illustrates that there is a large, unex-
plored area of what we could do with quantum
computation. For classical tasks, there is a
potentially interesting impact.

Impact of Emerging Technologies on Future
Architectures
Systems and architectures will need to adapt
to the unique properties of new devices. There
has been a lot of work in looking at using 3D
geometries for different kinds of high-density,
high-bandwidth memory systems. I also think
there will be some impact in terms of persis-
tent memories. In many persistent memory
technologies, there are some unusual dynamic
tradeoffs, particularly in terms of the density,
endurance, and persistence of storage. As
such, there could be entirely different designs
for memory systems in a way that we do not
expect.

Impact on Computation Models
Building machines with future technologies
will require a paradigm shift at the user and
compiler levels and some explicit tolerance to
variation and errors at the device level.
Emerging technologies—even CMOS tech-
nologies—will require that we have error-
and variation-tolerant computation models
exposed to the user and the application. The
challenge will be bounding the desired and
achievable error. There are a few successful
high-level approximation examples. FlexJava
provides software-level encoding of the errors
that can be tolerated from approximate com-
puting.3 In the area of big data, approximate
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Figure 1. Number of quantum algorithms

over time. Data taken from the Quantum

Algorithm Zoo (http://math.nist.gov/

quantum/zoo).

.............................................................

JULY/AUGUST 2016 49



HADOOP has recently shown that, given a
statistical solution, it can use sampling to
generate an approximate result with a
bounded error.4

I believe that for big data or high-
dimensional problems that generate big data,
the energy and time constraints will prevent
us from covering the entire space. From an
application point of view, we may expect to
see a requirement for approximation. One
way of achieving approximation is sampling.
For example, importance sampling is a very
common technique that is used in computa-
tional science and data analysis. I think that
given this confluence of technology and appli-
cation space, approximate computation will
become critical for large-scale computations.

Igor L. Markov: Fundamental Limits to
Computation and What to Do about Them
The death march of Moore’s law motivates us
to discuss obstacles to computing and ways to
circumvent them. Currently, there are a vari-
ety of emerging technologies including 3D
circuits, as well as exotic possibilities such as
quantum computing and carbon nanotubes.
But revolutionary new opportunities often
harbor grave limitations. For example, the
promise of asymptotic runtime improvements
through quantum computing may be offset
by heavy implementation constants and very
narrow markets. More modest steps may offer
a viable path to higher-performance comput-
ing. In any case, new breakthroughs will
require concerted improvements in switching
elements, memories, interconnect, full-chip
optimization, architecture platforms, com-
pilers, and runtime support. Betting on such
emerging technologies is exciting and risky,
but one thing is clear: the free ride on the back
of Moore’s law is over, and researchers must
now distinguish worthwhile directions from
dead ends.

Limits on Manufacturing
Over the last 40 years, the electronics industry
accomplished amazing feats of integration by
putting many system components on a single
chip. For example, an iPad3 would have quali-
fied as a top 300 supercomputer in 1993, in
terms of Linpack performance. Although
there have been improvements in architecture

and circuit optimization, most of this progress
has been due to materials. But the progress
due to materials is coming to an end. The
immediate obstacle is optical lithography,
which is an engineering and cost problem;
one could use electron beams for manufactur-
ing, but that is extremely slow and extremely
costly.

Limits on Interconnects and Transistors
Jeffrey Davis and his colleagues classified the
limits of devices and interconnects as funda-
mental, material, device, circuit, and/or sys-
tem.5 For example, Dennard scaling is a
circuit and system trend.6 Dennard scaling
theory shows how to keep power consump-
tion of semiconductor ICs constant while
increasing their density. Dennard scaling,
however, broke down about 10 years ago.4

Moore’s law, which is more of a device-scaling
trend, continues, but without the same large-
scale improvements that it enjoyed in the past.
At present, it is clear that Moore’s law will
continue scaling down to 7-nm features and
perhaps even 2 nm, but probably not below
that. After that, there are atomic limits that
are more fundamental. Transistors are limited
by their smallest feature—the width of the
gate dielectric—which recently reached the
size of several atoms. With such small features,
a few missing atoms could alter transistor per-
formance, and manufacturing variation makes
all transistors slightly different in ways that are
difficult to predict.

Energy-Time Limits
One of the main obstacles to the improve-
ment of modern electronics is the manage-
ment of system power and energy.7 Generally,
the faster the computation, the more energy it
consumes. But actual power/performance
tradeoffs depend on the physical scale. Analy-
sis of fundamental limits reflects available
energy resources, properties of the physical
space, power-dissipation constraints, and
energy waste.

In the 1960s, Yakir Aharonov and David
Bohm studied how much energy was needed
to reliably switch 1 bit.8 Considering 0 and 1
as different energy levels, the smaller the
energy gap between them, the more time is
spent to switch. To switch faster, the energy
gap has to be adjusted. Numerically, this is
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expressed by the Heisenberg uncertainty prin-
ciple in the energy-time form, but the technol-
ogies that we use today are nowhere close to
the Heisenberg uncertainty for switching
between 0 and 1. At first, quantum comput-
ing and working with individual quantum
bits might seem energy efficient. However, the
quantum devices used for quantum comput-
ing currently do not scale to large sizes, are
energy inefficient at the system level, rely on
fragile components, and require heavy fault-
tolerance overhead.9

In a 1959 talk, Richard Feynman sug-
gested that there was “plenty of room at the
bottom,” which forecasted the miniaturization
of electronics. Today, with relatively little
physical room left, there is plenty of energy at
the bottom. If this energy is tapped for com-
puting, how can the resulting heat be
removed? Recycling heat into mass or electric-
ity seems to be ruled out by energy conversion
limits and the acceptable thermal envelope.
Individual quantum devices now approach
energy limits for switching, whereas nonquan-
tum devices remain orders of magnitude
away.4 Such energy considerations suggest yet
another obstacle to simulating quantum
physics on conventional computers (abstract
models aside). Quantum computers can be
instrumental, but fault-tolerance overhead off-
sets their potential benefits in practice, and
empirical evidence of quantum speedups has
not been compelling so far.10,11 Moreover, in
terms of computational complexity, quantum
computers cannot attain significant advantage
for many types of problems. The lack of con-
sistent general-purpose speedup limits the
benefits of several emerging technologies in
mature applications with diverse algorithmic
steps, for example, computer-aided design
and Web search.

Asymptotic Space-Time Limits
The theoretical limits on energy and power
are very loose, and practical technologies
might never approach some of them. Reason-
ably tight limits are rare. David Fisher
employed asymptotic runtime estimates to
study limits to parallelism and dimensionality
(for example, 2D, 3D), the latter of which
makes his work more interesting.12 He
assumed a sequential computation with T(n)
steps for input size of n, and limits the per-

formance of its parallel variants that can use
an unbounded d-dimensional grid of parallel
processors communicating at a finite speed
(for example, bounded by the speed of light).
He found that the parallel runtime requires
T ðnÞ1=ðdþ1Þ steps. This result undermines the
N-fold speedup assumed in Gustafson’s law
for N processors on appropriately sized input
data.13

Fisher’s results indicate a relatively tight
limit in that many parallel computations
today are limited by several forms of commu-
nication and synchronization. As wires get
slower relative to gates at each new technology
node, interconnects are responsible for most
of the circuit delay.14 Exploring Fisher’s results
in two and three dimensions shows that a
sequential computation with T(n) steps
requires T ðnÞ1=3 steps in 2D and T ðnÞ1=4 in
3D. If the time to execute is T ðnÞ1=3 steps in
2D, then 3D integration asymptotically
reduces t to t3=4. This speedup is significant
but not dramatic and requires scaling in all
three dimensions, which is hard and expensive
with today’s die-stacking technologies with rel-
atively thick through-silicon vias (TSVs).
Monolithic 3D integration seems to be a
more viable solution. It enables the fabrication
of 3D ICs with multiple transistor layers and
ultra-dense vertical connectivity between
layers.

Questions
This section presents an edited transcription
of the question-and-answer session.

Quantum Computers
Trevor Mudge: Is quantum computing likely to
have a wide impact on the development of
computing machines, or will it remain of inter-
est only to computer science theoreticians?

Fred Chong: The big questions with quan-
tum computation are what can be physically
built, what is the scaling progress that can be
made, and what is it good for? What quan-
tum algorithms do we have? If you look at
the number of quantum algorithms that have
existed over time, you’ll see it has been grow-
ing quite substantially. I think there has been
a lot of interest in quantum computation in
terms of cryptography, but more recently
there’s some optimism that we’ll have
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algorithms that are good for search machine
learning and other kinds of pattern optimiza-
tion problems. There’s a lot more to do here,
but there’s cause for optimism.

Igor Markov: There has been amazing
progress on quantum simulation in the last
10 to 15 years. Systems that Feynman wanted
to simulate, and for which he suggested
quantum computers, can now be simulated
very quickly on nonquantum computers.
But, of course, not everything can be simu-
lated, and interesting questions remain. Pho-
tosynthesis is one such example. If we
understood photosynthesis better and were
able to generate energy from the sun more
efficiently, that would be great. Such under-
standing could be developed with the help of
physically accurate simulation, which has
been challenging because photosynthesis
involves quantum physics. But one way or
another, this is currently a science challenge,
not an engineering one.

I don’t believe that in 10 years there will be
quantum computers on anyone’s desk. I don’t
think quantum computers will do any useful
engineering tasks—but maybe some science-
related tasks. First of all, and most fundamen-
tally, the qubits are flaky. They decohere
quickly. You need to restore them, and the
necessary error correction requires much
larger circuits. For example, for Shor’s algo-
rithm (number factoring) you need circuits
having many thousands of qubits, which are
completely unrealistic today. Fred is very opti-
mistic about where quantum computers could
be, assuming there will be sufficient funding.
Even if you assumed that quantum computers
improved at a Moore’s law rate—which is a
huge assumption and completely unreason-
able right now—in 10 years, scaling 2 times
every 18 months; you still miss the stage
where Shor’s algorithm could be used. And
even if you get this algorithm to work and get
all the science done, how big of a market is
there for Shor’s algorithm?

How about quantum machine learning?
Google and Microsoft mention this as a
promising direction, but I do not see any evi-
dence that suggests that. It’s a good science
project, but you cannot assume that this will
work commercially. A while back, an algo-
rithm from MIT claimed to solve large linear
systems on a quantum computer, but it

doesn’t actually solve linear systems. It only
allows you to answer some questions about
the solutions of linear systems, which is a lot
less compelling. In machine learning, you’re
dealing with a lot of data, and, currently,
quantum computers are not great with a lot
of data; they answer yes-or-no questions with
a high degree of certainty. So, I’m negative on
the engineering aspects of quantum comput-
ing, but as far as science goes, this is all
worthwhile.

Mudge: What about the development of
D-Wave machines as examples of quantum
computers?

Chong: Quantum computation is one of
the few technologies that we have that prom-
ise of some sort of exponential gain to deal
with the exponential gap that we had in the
last decade. Quantum computing is a high-
risk, high-payoff kind of proposition.

There’s been a fair amount of hype
around this D-Wave machine, which is
actually a quantum machine and not exactly
a digital quantum computer, but I think it
still gives some notion of the engineering
progress that’s been made and the scale of
machines that can be built.

Markov: First of all, the D-Wave is sort of
a running joke in the field. What can the D-
Wave computer currently do, as compared to
conventional computers? Even The Economist
magazine opined on this: a quantum com-
puter would be both slower and faster at the
same time. D-Wave employs physicists that
are doing a lot of great physics. Beyond D-
Wave, good theoretical progress is made in
the field of quantum information processing.
But as far as conventional computing goes, a
laptop can simulate what D-Wave chips can
do and can finish the task faster. This point is
worth repeating: whatever the D-Wave chip
does, a laptop can literally simulate it faster,
and if you have GPGPUs, FPGAs, or multi-
processing systems, you get four to five times
the speedup. Maybe D-Wave will come up
with a better chip, but at the moment, it’s
their challenge, not ours.

Mudge: Okay Fred, what was your reac-
tion to Igor’s less-than-positive statements
about D-Wave and some of the new experi-
ments in quantum computing?

Chong: There certainly has been a lot of
skepticism about D-Wave in terms of the
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practical utility of the machine. You can
think about quantum computation as sort of
a contest of two exponentials. You have cer-
tain algorithms that have exponential gain,
but you also have potentially exponential cost
in controlling the coherence and noise of the
machines. One solution is lots of engineering
to break down the exponential costs of mak-
ing the machines. There are a few end runs
that people are looking at. There are topolog-
ical codes and topological machines. A tech-
nology switch may dramatically reduce the
amount of error correction you need, and
there are some physical techniques that peo-
ple use to control noise. It’s clearly an expen-
sive proposition in terms of the number of
quantum bits and energy, as Igor mentions,
but I think there’s quite a lot of effort in
terms of controlling those overheads. It’s hard
to say where that will go.

Approximate Computing
Mudge: Will approximate computing find a
place in computers? How will the user be
made aware of it?

Chong: I think emerging technologies will
havealargeeffectoncomputermodelsandincon-
junctionwithapplicationanddatatrends.Emerg-
ing technologies—even CMOS technology—
require that we have error- and variation-
tolerant computer models exposed to the user
and the application. The challenge, of course,
is to bound the desired and achievable errors
of those devices.

There’s been a lot of work in this area—
for example, Flex Java. When we look at big
data problems or high-dimensional problems
that generate big data, energy- and time-
constrained computation simply cannot
cover the entire space. From an application
point of view, there will be a requirement for
approximation. One method of approxima-
tion is sampling. A very common technique
that’s being used in this domain is the notion
of importance sampling in computational
science and in data analysis. The problem
with approximate computation is that if you
have a fair amount of discontinuities, then
you have to find the discontinuities and pro-
vide more precision. I think there should be
some interesting areas here where we can
look at the semantics or perhaps the program
semantics of applications and try to reverse-

engineer those discontinuities. Given this
confluence of technology and application
space, approximate computation will become
critical for large-scale computations.

Markov: Let’s explore the relationship
between approximate and quantum computa-
tions. The most promising application for
quantum computers is quantum simulation,
and there are good questions in science that
could be answered by fast approximate simu-
lation. Consider the D.E. Shaw Anton com-
puter, which is a nonquantum supercomputer
custom designed for molecular dynamics. It
doesn’t account for quantum effects at all
because the designers didn’t see enough mar-
ket for that. They studied the market carefully
and were well-funded, but they didn’t want to
build such functionality. This tells me that
there isn’t much of a market for such quantum
simulations. Quantum approximation heuris-
tics are basically algorithms that don’t promise
to solve something exactly, but they often pro-
duce good results quickly. That’s an interesting
idea. There were some claims recently show-
ing better approximation by a quantum algo-
rithm than the best-known conventional
algorithm. But guess what happened. People
who worked on the classical approximation
algorithms for the same problem said, “Aha! I
can do better.” And they did, in about six
months, so this competition is still ongoing.

Audience Member: What kind of approxi-
mate computing do you think is going to
become successful, if ever?

Chong: Well, if you’re in a serious con-
straint situation, which could be, for exam-
ple, that you have a very high-dimensional
computation that you just will never have
enough budget to deal with either power- or
time-wise, you’re going to have some form of
approximation. If we can get a better balance
on the desired and achieved errors on com-
putations, then that will become ubiquitous.
Also, as some of these technologies become
adopted, we are going to have some inherent
variability in error that we have to deal with.

Markov: I’m not an architect by training.
My training is in CAD. I have some back-
ground in theory of computation and in
algorithms. To me as an outsider, it looks like
approximate computing is a poor choice of
name for what you guys are doing. The asso-
ciations that come up when you say
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“approximate computing” include approxi-
mation heuristics—for example, CAD tools
perform circuit partitioning by approxima-
tion. They don’t necessarily find optimal sol-
utions. Searching for optimal solutions
would be too slow. Such well-established
approximate computation is unrelated to
what is done in architecture today. Another
example: quantum computing. It is probabil-
istic and also approximate in giving correct
results only with some probability. Is this
considered approximate computing? No. So,
what is approximate computing? It is chang-
ing the bit-width of the datapath from 16
bits to 14 bits, and that’s been studied before
in the CAD community. There are algo-
rithms for sizing datapaths while ensuring
required precision—some of the research
challenges that Fred mentions. They have
been addressed, but not in an exhaustive way
that users would find easy to exploit. If you
call it datapath sizing, then it looks more
convincing.

New Memory and Other Emerging Technologies
Mudge: What new memory technologies are
the most promising and how will they change
the way we architect memory systems and
computers?

Chong: There certainly has been a lot of
work in looking at 3D geometries and differ-
ent kinds of high-density, high-bandwidth
memory systems. One thing that I found
very interesting is there’s certainly going to be
some impact in terms of persistent memories.
What I’ve found in many persistent memory
technologies is there’s some unusual dynamic
tradeoffs that you can make. Density, endur-
ance, and persistence of storage can be traded
with the time to do writes and reads of those
devices, so depending on your application,
there can be entirely different designs for
memory systems in a way that we don’t
expect. For example, Hewlett Packard is
making a big bet on their new memory archi-
tecture, which looks like a 3D block and is
designed for read-mostly big data. This stor-
age-class memory will run at near-DRAM
speeds but at a lower cost. There is not going
to be much write or endurance problems
with their memory technology, and they’re
making a big bet on lots of memory storage
for density purposes.

Markov: 3D circuits have not seen much
adoption so far, because scaling in three
dimensions is hard and the technology is
expensive. The main benefits of 3D ICs today
are in improving manufacturing yield, increas-
ing I/O bandwidth, and combining 2D ICs.
This may work for memory-on-memory
stacking, but just putting together a chip on a
chip means that the communication between
the layers becomes relatively slow. A better sol-
ution is monolithic 3D integration, which
enables the fabrication of 3D ICs with multi-
ple transistor layers and ultra-dense vertical
connectivity. Building monolithic circuits
with three-dimensionally integrated transistors
results in shorter wires, which helps tackle
wire delay problems. Furthermore, stacked
device layers increase the number of transistors
per unit area without requiring costly feature
size reduction. This, in turn, helps tackle cost
issues and scaling.

Stanford University has recently built a
chip that demonstrated monolithic 3D inte-
gration without stacking multiple 2D chips.
Their chip has active layers of silicon, resistive
RAM, and carbon nanotube FETs (CNT-
FETs). CNT-FETs leverage extraordinary car-
rier mobility in semiconducting carbon nano-
tubes to use interconnect more efficiently by
improving drive strength, while reducing sup-
ply voltage. Many technology limits, from
fabrication of carbon nanotubes to their inte-
gration into silicon, have been overcome to
facilitate monolithic 3D integration.

As for memory, future systems will prob-
ably need to use multiple memory technolo-
gies, such as the emerging nonvolatile Re-
RAM and STT-RAM, and the traditional
DRAMs. Each has different kinds of draw-
backs. Some do not withstand many read-write
cycles, and some are not very dense. They need
to be combined in a memory hierarchy with
very high-density interconnect, which mono-
lithic 3D integration can facilitate.

Audience member: I wanted to know if you
think that carbon nanotubes are a good solu-
tion for making switches. How can we
manipulate these carbon nanotubes? They
are very difficult to manipulate and expensive
to power. Is there any solution, or is there any
real processor that has been made using these
carbon nanotubes? Or just make one single
feature out of it?
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Markov: Yes, the Stanford group made a
full processor. This processor was even dem-
onstrated driving a hand that would shake
people’s hands. It was a small MIPS processor
that was completed within the last two years.
A big practical challenge was sorting out met-
allic nanotubes apart from semiconducting
nanotubes; this was done by burning metallic
nanotubes with high voltage.

Chong: Are those chemically fabricated?
Markov: They are grown chemically on

the surface of quartz and then transferred
mechanically onto silicon at low temperature,
which supports monolithic 3D.

A udience member: Igor, can you com-
ment on the state of affairs in emerging

memory technologies? I mean, is PCM, STT
RAM, the HP stuff, is this part of the science
done and it’s just a matter of getting the
yields up and commercializing it, or are there
still real challenges of adoption?

Markov: Yes. There are challenges technol-
ogy-wise, circuit-wise, full-chip-optimization-
wise, and in terms of architecture. There are
challenges and opportunities that you can
address. These individual memories have some
serious problems. For example, some memo-
ries don’t support a large number of read-
writes, so you don’t want to put them into
caches. You can put them into main memory
with some fallback solutions. Other memories
can withstand multiple cycles, but they’re not
as dense, so they make good caches. You need
to redesign the entire cache and memory hier-
archy to use emerging technologies.

Chong: Those are sort of the architectural
aspects. But is this production-ready, or do
you see this in the next coming years?

Markov: It does look like it will be pro-
duction-ready soon. So far, the attempts were
to replace a single type of memory in use
now with a single emergent type, and that is
not the right way to go because new hardware
has new drawbacks.

Mudge: Look at DRAMs. You could fabri-
cate gigabits for a few dollars. That’s pretty
impressive. It seems to me these new technol-
ogies need a niche to get started. Flash had
MP3 players as their niche that allowed them
to reach volume production. Today they have
become the most common storage medium
except for disk.

Markov: Compared to Flash and even
DRAM, these new memories can be denser.
DRAM has known scaling problems beyond
around 8 nm; the capacitors don’t scale any
lower. Emerging technologies have better
scaling, plus they’re nonvolatile, so you get
something that is lower power than DRAM
and denser than Flash.

Chong: I think the nonvolatility is really
going to become important, but as Igor men-
tioned, if you’re trying to beat DRAM on a
level playing field, that’s not going to happen.
You have to have some sort of architectural
application or niche, as Trevor mentioned.
There’re some really interesting architectural
tradeoffs you can make in these devices. For
example, lifetime is a problem in resistive
RAM, but if you write slowly to these devices
you get a quadratic advantage in lifetime. An
architectural design where we write back to
this last-level cache as a delayed write-back
can give you that advantage. There are other
things you can do, such as iterative writes,
that give you multilevel storage into single
bits so you can essentially trade exponential
time for exponential storage. There are a lot
of things that you can do that you can’t do
with traditional storage devices, and the ques-
tion is whether those can be used profitably
at the current architectural level. MICRO
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