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THIS ARTICLE PRESENTS POSITION STATEMENTS AND A QUESTION-AND-ANSWER SESSION

BY PANELISTS AT THE FOURTH WORKSHOP ON COMPUTER ARCHITECTURE RESEARCH

DIRECTIONS. THE SUBJECT OF THE DEBATE WAS THE USE OF FIELD-PROGRAMMABLE GATE

ARRAYS VERSUS GPUS IN DATACENTERS.

......We are generating a lot of data
that is being fed to datacenters, and we need
to find a way to turn that data into services
and value. The datacenter space is growing
quickly, but parts of that space are reaching
their physical limits. A big datacenter con-
sumes about 20 MW, is 17 times the size of a
football field (regardless of what kind of foot-
ball you play), and costs a few billion dollars.
Furthermore, data from various think tanks
(such as Energy Star) shows that electricity
usage is shooting up. For example, in Lon-
don, datacenter servers already consume 6
percent of electricity, and that’s growing at 20
percent per year. Therefore, not only is the
capital investment for a datacenter huge, but
operational costs are also huge.

This has not always been a problem in
platforms, because Moore’s law came with
Dennard scaling. Robert Dennard, who grad-
uated from Carnegie Mellon University, basi-
cally explained that, given the power equation,
P ¼ f * C * V 2, you have a “silver bullet” in
supply voltages (V ), so that as you scale vol-
tages down, you exponentially decrease your
power. As such, this lets you limit the power
per area as you scale down the area. But, if
you look at some of the International Technol-
ogy Roadmap for Semiconductors projections
from 2014, voltages have leveled off.

What you end up doing is going from a
modern server CPU, which is like a race car,
to something like the EZ Chip/Cavium effi-
cient core design, whose complexity is speci-
alized for server workloads. The good news
with this type of approach is that it reduces
the power. But what do you do next? Core
complexity is going down. Extrapolating into
the future, you may eventually get to the five-
stage pipeline. In fact, Nikos Hardavellas
showed that, even for server workloads with
abundant request-level parallelism, the server
won’t be able to power up the entire chip (see
Figure 1).1

Another approach is to use accelerators,
which was the focus of this panel. On the one
hand, we have massive data, and on the other
hand, we have diminishing efficiency. We’d
like to bridge these two trends in datacenters,
and field-programmable gate arrays (FPGAs)
and GPUs are two possibilities. FPGAs com-
prise reconfigurable blocks, logic, intercon-
nect, block RAM, and I/O. Their density has
improved over time, and their libraries offer
high-level functionality. They are suitable for
spatial computation, and they support arbi-
trary parallelism. Examples of accelerators in
servers using FPGAs, such as the Microsoft
Catapult and Intel HARP, have already
emerged.
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GPUs have been around for a long time.
They were originally developed for graphics,
and they have morphed into a dense grid of
multithreaded SIMD cores with improved
programmability. Datacenter workloads exist
that can leverage the dense data parallel process-
ing. For example, Google is using GPUs inten-
sively for machine learning in its datacenters.

Table 1 lists the pros and cons of FPGAs
and GPUs. The advantages of FPGAs are arbi-
trary logic and arbitrary parallelism that
evolved over time to deal with rapidly changing
datacenter algorithms. Even if you think about
Catapult with big kernels, they keep getting
updated. FPGAs do not do so well on the pro-
grammability side. Programming with today’s
abstractions and trying to map your algorithms
to the fabric is not easy. The tools are fairly
cumbersome, and you lose efficiency. In partic-
ular, lack of native support for high-level mem-
ory abstractions is a big disadvantage.

GPUs, on the other hand, offer high com-
putational density and efficiency and higher-
level programmability. However, they are
efficient only for data-parallel algorithms, are
not good for sparse computation, and are
designed for algorithms that require very
dense floating point.

In this panel, we had two experts on the
topic: Bill Dally, a chief scientist and senior
vice president of research at Nvidia, and
Desh Singh, the director of virtualization labs
for Altera. Their position statements, and an
edited version of the question and answer ses-
sion, follow. Video of the panel is available at
www.ele.uri.edu/CARD. —Babak Falsafi

Bill Dally: Use the Right Tool for the Job
This is really a case of using the right tool for
the job. If you need to drill round holes,
which tool would you use? You would use
the drill. If you want to cut straight lines, you
use the saw. The problem facing datacenters
is analogous. If you need lots of arithmetic
performance, integer, floating point, memory
bandwidth, and/or tight integration with the
CPU to read and write single words in the
CPU’s memory—or if you need the CPU to
read and write single words into your memo-
ries—you would use a GPU, because it does
all these things better than anything else.

Nvidia’s P100 GPU is an example of how
you get all these things. It has a terabyte per

second of memory bandwidth. The single-
precision floating-point throughput is on
the order of 10 teraflops. The efficiency
fully loaded is on the order of 35 gigaflops
per watt, which includes the memory band-
width, instruction interpretation, registers,
and power supplies.

But suppose you need to build something
to process gene sequences. Now, you are not
operating on numbers, so you do not need
the arithmetic. Your memory bandwidth
needs are modest, and you do not need tight
integration with the CPU. Given those prop-
erties, use an ASIC [application-specific inte-
grated circuit]. That’s what people build
when they’re building things to do encoding
and decoding and do not need the high band-
width and arithmetic. If you do not have the
volume to justify an ASIC—and turning an
ASIC around these days is easily a $50 mil-
lion proposition—then use an FPGA. But
then you are down by something like a factor
of 20 to 100 times on the nonhardwired logic
that is implemented in FPGA fabric.2 So,
although the FPUs on an FPGA are great,
you have to feed those FPUs by building mul-
tiplexors, sequencers, and other structures in
the reconfigurable fabric. The overhead is
enormous and, therefore, you never get the
efficiency of a GPU on an FGPA.

So, for arithmetic and memory-intensive
problems, use a GPU. They are also much
more programmable. You can program them
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Figure 1. Dark silicon limitations that prevent powering up a whole

processor are encountered even when using cores designed for efficiency.

(Source: Nikos Hardavellas; used with permission.)

.............................................................

JANUARY/FEBRUARY 2017 61



in CUDA, OpenACC, and OpenMP, and
soon in extended Cþþ. For nonarithmetic
logic with modest memory bandwidth
demands, use an ASIC. If you have low vol-
ume, use an FPGA, but realize you’re going
to get this huge overhead and have a really
hard time programming it. You basically
have to write Verilog or the equivalent. If you
do use a GPU, you’re riding this constant
power scaling up—you will have ever-
increasing performance going forward. For
example, one company we deal with started
out doing neural network training on
FPGAs. As soon as it tried using cuDNN on
GPU hardware, it scrapped all of its FPGAs
and moved over, because it was such an over-
whelming advantage using GPUs. So, for
workloads like training neural networks,
doing large data analytics, and so on, GPUs
are really the instrument of choice.

Desh Singh: Specialization for Efficiency
I would like to give you my perspective on
GPUs versus FPGAs in the datacenter. The
first thing about the FPGA that I would like
to explain to people is that you do not really
have software running on hardware. The
FPGA enables software to define the hardware.
Let me explain that. Suppose you have the fol-
lowing high-level code: Mem[100] þ¼ 42 *
Mem[101]. Compilers can take this code
and break it down to lower-level assembly
instructions.

To run this on a simple processor, the pro-
cessor would need something that fetches
instructions from memory (a load unit), a
simple arithmetic unit, and a register file. If
you were to implement an instruction on this
processor, it would basically fetch an opcode

that tells the processor how to configure the
datapath for that opcode.

Now, if we executed the assembly language
instructions on the simple processor, basically
what you are doing is multiplexing that same
piece of hardware across time. As we go ahead
in time, we are loading from the memory
locations, and we are loading the constant val-
ues all on the same hardware. We are doing
the multiplication, addition, and storage back,
again, all on the same hardware. This is essen-
tially what a processor does: it takes the same
piece of hardware and multiplexes it to imple-
ment different kinds of instructions.

Instead of doing this, suppose we distribute
the processor across space. Now we have six
processors, each dedicated to its own instruc-
tion. If we were able to “unroll” the processors
in this way, we would have something that’s
fundamentally different than a processor.
Because each processor is dedicated to a single
fixed function, we can remove the fetch unit,
because every processor knows what it is going
to be able to do. Similarly, we can remove the
unused ALU [arithmetic logic unit] opera-
tions and the unused loads and stores.

But, because we started with six individual
processors (even before we removed any-
thing), we need them to communicate with
each other somehow. We can wire up the
registers and have them communicate with
each other in some fashion. What you are
starting to get now is something that looks
more and more like a hardware circuit. But
this hardware circuit is somewhat inefficient.
We do not really need to match the latency
of the original program running on the pro-
cessors; we just have to match the functional-
ity. As such, we can retime and reschedule

Table 1. Pros and cons of field-programmable gate arrays and GPUs.

FPGAs GPUs

Pros � Arbitrary logic

� Arbitrary forms of parallelism

� Can evolve over time

� Computational density and efficiency

� Higher-level programmability

Cons � Computational density and efficiency

� Programmability

� No memory abstraction

� Data parallel only

� Not so suitable for sparse data structures

� Much density for floating point
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this datapath to be more efficient. This is
essentially what you do when you try to
transform the program to run on an FPGA.
You are essentially creating a custom piece of
hardware to implement your algorithm. You
use the FPGA’s programmable resources to
implement that circuit. You have millions
and millions of programmable logic elements
that you can join to form higher-level func-
tionality using our configurable routing
structure.

And you can do all this automatically. You
do not have to code this Verilog or VHDL.
We now support software technologies that
can take your programs and compile them to
your hardware. For example, suppose that
you are coding something in OpenCL for a
heterogeneous environment. We have a com-
piler that automatically does exactly what was
just described. And people are now starting
to build higher-level abstractions on top of
this technology. They have built a Java com-
piler and things as complex as Spark and
Hadoop implementations that directly map
to FPGA hardware.

When you start using software to define
hardware like this, it is not just about defining
the accelerator itself; you will find that there
are other fundamental things you can now do
with the FPGA. For example, you can cus-
tomize how you move data around. With
other accelerator technologies, you have to
move data from the external world, put it into
memory, and then process it; that is why you
need really good high-memory bandwidth.
But one compelling value proposition of
FPGAs is that you can just process the data
directly inline. Many algorithms process the
data directly from network streams, video
streams, and external devices of all sorts. With
an FPGA, this data can bypass memory and
directly enter the FPGA, which gives you very
efficient types of computation.

FPGAs are also evolving to match the
needs of today’s workloads. They are not
just traditional LUTs [lookup tables] and
flip-flops. Many years ago, FPGAs included
hardened dual-ported SRAMs. In addition,
they now contain hardened PCI Express
interfaces, external memory interfaces, and
processors. Altera has introduced a new float-
ing-point DSP [digital signal processing]
block, resulting in tremendous resource and

cost savings over implementing floating point
in FPGA logic.

In short, the FPGA enables the imple-
mentation of custom data and control paths
from standard software languages. I think
that makes it a formidable component for
the datacenter.

Moderator and Audience Questions
This section presents an edited transcript of
the question-and-answer session.

Programmability
Babak Falsafi: Let’s talk about programmabil-
ity. Clearly, FPGAs are behind in this respect.
GPUs already have higher-level interfaces
and rich libraries. Is that really a showstopper
for FPGAs? Is there nothing that FPGAs can
use to bridge the gap? Is there any fundamen-
tal advantage to GPUs when it comes to pro-
gramming interfaces?

Bill Dally: In the last panel, somebody
said, “It’s not the ISA, it’s the ecosystem.” I
think that programming systems means both
the programming tools and the ecosystem. In
a GPU, you have your choice of program-
ming languages. People have data-parallel pro-
grams. They most often get by with OpenMP
or OpenACC. They take their original code,
Fortran, often without changes, put in the
directives, and get an effective GPU program.

For many applications—for example,
neural networks—developers don’t even
need to go to that level of programming.
There are very fast GPU ports of both Caffe
and Theano, so you can basically download
software from the web and be up and run-
ning instantly. There are other standard
GPU libraries for other vertical areas, such
as in oil and gas or the financial markets.
There are also effective standard numerical
libraries for GPUs, so the entire ecosystem is
there. It’s not so much a matter of it being
easy to write OpenACC code, or CUDA
code for that matter. It’s that there’s a huge
ecosystem built up that makes it extremely
easy to take whatever your problem is and
get a large fraction of peak out of a GPU.

Falsafi: Desh, why are FPGAs behind
when it comes to programming interfaces,
and can they actually catch up? Is this a

.............................................................

JANUARY/FEBRUARY 2017 63



showstopper? Is there something fundamental
there?

Desh Singh: Well, I will admit the FPGA
programming environment is, today, less
mature than the GPU’s programming envi-
ronment. I think it really is just a matter of
time. FPGAs have made a strategic shift in
the kinds of markets that we’re trying to
address. The datacenter has become a large
and important market for us. As that became
true, we had to create both suitable hardware
and software tools. Datacenters are a large
space that others believe will continue to
grow, as evidenced by Intel’s record-breaking
acquisition of Altera.

If you look at both of the big FPGA ven-
dors, Xilinx and Altera, they have compilers
that will compile OpenCL, C/Cþþ, as well
as Matlab and SimuLink to Verilog that is
then passed through the standard toolchain.
You can only imagine what would happen in
the future with a larger software effort
focused on enabling these devices. Another
thing I’ll note is that when customers are
going off and implementing their own special
code, they often can’t find exactly what they
want in existing libraries. If you can take
those libraries and automatically translate
them to Verilog, are GPUs really that much
easier to program? Can I actually optimize
my code for an FPGA or optimize it for a
GPU? The difficulty is in the types of optimi-
zations you’ll encounter when you’re going
for maximal performance. So, I think FPGAs
are now on good footing.

Falsafi: So, you both agree that eventually
they are going to converge. I’d like to try to
push this question toward killer apps in the
datacenter world and the fact that obviously
for programming to happen, we have to push
the abstraction levels higher. DSLs [domain-
specific languages] are also emerging as an
interesting opportunity to try to map pro-
grams and algorithms to FPGAs or GPUs.
Do you see a difference there in using DSLs
and tool chains that will eventually map all
the way down to FPGAs and GPUs?

Dally: Take training neural networks,
which I think is one of the big killer applica-
tions in the datacenter today. You have the
choice of a mature set of libraries running the
GPU or an emerging set of libraries with the
FPGA. The only reason you would go for the

emerging set of libraries is that there’s some-
thing else you would gain, but because you
have better computational density on the
GPUs, better flops per watt, better memory
bandwidth, better integration with the CPU,
there’s no motivation to cause yourself a lot
of pain in programming, because there’s
nothing to be gained. So, I can see if there’s
something to be gained, that they may even-
tually catch up on the ecosystem front, but
unless there’s some compelling advantage, it
doesn’t motivate people to endure pain.

Singh: I would disagree with that. I think
a lot of people are looking at FPGAs because
they find that they can reach levels of effi-
ciency in both performance and power that
they can’t achieve with GPU technology
today, so we have a lot of customers that
actually moved away from GPUs just because
of power reasons and moved to lower-cost
and efficient implementations on the FPGA.
That’s really what drives people to FPGAs,
and there are many success stories.

Dally: What are they doing? Because
clearly if they’re doing floating point, they
would get better performance per watt on the
GPU.

Singh: Even with floating point, now that
we have hardened blocks that can do floating
point, I think the performance per watt is
actually much more favorable to the FPGA
than it is for the GPU.

Dally: I think the performance per watt
on the floating-point units themselves is
about the same, but when we quote our
numbers, we’re quoting a fully loaded num-
ber, and when you try to implement the rest
of the circuit in LUTs, you wind up way
down.

Singh: I’m also including full system
power and not just the FPUs. The numbers
you quoted earlier were done by academic
researchers. One of the things that you find
about FPGA companies is the secret sauce is
actually in the software. I got my PhD at the
University of Toronto, where those research-
ers came from, and the software they have
available in mapping circuits to FPGAs is so
inferior to the things that we have in the
industry now. That’s part of the reason that
they were not able to really find efficiency in
taking circuits and mapping them to the
FPGAs and then comparing them to ASICs.
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So, I would say internally we have our own
numbers. We’re able to do these comparisons
much more favorably.

Dally: But if the customers trying to put
the stuff into the datacenter can’t do that,
then it doesn’t do them any good.

Singh: That’s right, but the customer is
trying to put the stuff in the datacenter, not
off using academic tools. They’re using
industry tools that Altera and Xilinx are
providing.

Parallel and Nonparallel Computation
Falsafi: On that note, I’d like to turn the
question to Bill. Bill, GPUs are amazing for
data-parallel computation. What happens if
your computation is not data parallel? It’s still
parallel, and you can map it spatially to a fab-
ric, but it’s just not data parallel.

Dally: It’s interesting. One of our big
success stories with GPU programming is
actually ray tracing, things that studios like
Pixar use to render their feature films. They
actually don’t use the graphics hardware on
the GPUs, because that texture-maps poly-
gons. They basically run ray tracing as
CUDA programs on the GPUs. When we
first started looking at ray tracing, it was the
poster child for non-data-parallel program-
ming. GPU’s SMs are 32 SIMT [single
instruction, multiple thread] lanes wide. The
average occupancy was 1.5 for the ray-tracing
program, and now it’s 31. Although there
were a lot of rays operating in parallel, it wasn’t
data parallel, because different rays were proc-
essed differently. The solution was to sort the
rays so that, at any point in time, that SM
would be doing 32 rays that all needed to
have the same operations applied. Most pro-
grams that aren’t completely data parallel have
similar properties, where there’s a lot of paral-
lelism and you’re simply performing a bunch
of different cases, one case per data element.
You can mechanically transform them so that
they get good performance on SIMT.

Falsafi: So, if I summarize that, if you
have a lot of data, all computation is data
parallel.

Dally: That’s a good way to put it. So you
have data parallelism, just not regular.

Falsafi: Desh, do you want to respond?
Singh: Let me take it to a more practical

algorithm. Compression, for example, where

you’re trying to take in a screen in real time
and do compression, things like gzip, where
it’s based on the history of what you’ve seen
before. If you look at how that algorithm is
written, it looks very sequential and, there-
fore, it’s hard to make it something that’s
purely data parallel. It is actually much more
pipeline parallel, and when you take that
algorithm and take its serial implementation
and just run it through an OpenCL compiler
for an FPGA, you get an efficient pipeline-
parallel implementation that has incredible
performance.

Dally: And I think you’re making my
point exactly. These are the cases where you’re
not really doing arithmetic and you don’t
need a lot of memory bandwidth because
you’re just processing a stream that’s coming
in—unlike, for example, ray tracing, where
you have a huge scene and a big bounding
volume hierarchy to traverse. In those cases, I
would say, yeah, if you can afford it, do an
ASIC, and if you can’t, do an FPGA. But if
you’ve got lots of floating point, you need
lots of memory bandwidth. It’s also things
like a memory system where, because
graphics demands high bandwidth memory,
we build a memory system that, in the Pascal
generation with stacked memory, consumes
five picojoules per bit. If you have an FPGA
with an SDDR memory system attached to
it, you’re off by a factor of five. You’re at 20,
25 picojoules per bit just accessing the mem-
ory, and you won’t get a terabyte per second.
You just don’t have enough pins to stack
enough SDDR around it to do that. So, if
you’re doing a gzip-like thing, use an ASIC
or an FPGA. If you’re doing a numerical
computation, like training a neural network,
use a GPU. I’m not saying one is better than
the other. I’m saying that they’re different
tools for different jobs.

Floating Point
Falsafi: Bill, with respect to neural nets, I know
that you’ve been talking about floating point.
The Chinese Academy of Sciences has been
working on ASICs for neural nets, and one of
the things it shows is that it’s much better to
do fixed point than floating point for neural
nets. GPU fabrics are definitely designed for
high-density floating point. If you’re actually
doing high-density fixed point, you may lose.
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Dally: It’s really a question of precision
and not float versus fixed, and depending on
whether you’re doing training or inference,
there’s lots of papers I can point you to that
show you can get by with 16—and in some
cases even 8—bits of precision. That’s one
reason the TX1 that we’re shipping right now
has support for FP16, because a lot of the
neural nets in our Drive PX package for self-
driving cars are actually done using 16-bit
fixed point. You can imagine that future GPUs
may have very good support for lower preci-
sion, both float and fixed, for the same reason.
So, I don’t think that the type of arithmetic
you’re doing matters very much. You can build
dense arithmetic units and make them so you
can segment them up for different-precision
arithmetic. What really matters is that you
have a fabric that is optimized for executing
arithmetic codes at really high memory band-
width and close CPU integration.

Memory Bandwidth
Falsafi: Desh, do you want to comment on
higher-level abstractions in FPGAs and
DSPs, and how we could bridge that gap
with efficiency?

Singh: Sure. I just want to get back to the
comment about neural nets. If you look at
the way GPUs implement these styles of
algorithms, it comes down to an SGEMM
[single-precision floating general matrix mul-
tiply] essentially, where you’re just bottle-
necked by external memory bandwidth. If
you were to think about a slightly different
way of architecting these algorithms using
things like sliding windows and such, you
actually get tremendously efficient imple-
mentations on the FPGA without having to
go to external memory as well.

Dally: The leading-edge neural net for
vision, like VGG net, has something on the
order of 130 million parameters. Multiply
that by 4 [bytes per parameter], that’s over
500 megabytes of data. Now, you have to
fetch that every cycle. That’s memory band-
width. You can’t keep that all on your FPGA,
even if you want to.

Singh: Certainly you can’t keep that all on
the same FPGA, but you can also look at
multi-FPGA systems where you stream
between chips and things of that nature, and
then compare that to a multi-GPU system. I

think in those cases you can actually see really
good results from doing that sort of thing.
So, I think it really comes down to thinking
about your algorithm, thinking about what is
the optimal architecture to implement these
sorts of things, and I think all of us are right
in a sense. There are tradeoffs, right? It really
depends on what you’re after and how you
can actually architect it to take advantage of
these things.

Falsafi: I want to ask a related question,
because Bill keeps bringing it up: the advant-
age GPUs have with respect to memory
bandwidth. Obviously, GPU memory sys-
tems are highly specialized for the GPU style
of data-parallel execution, but is that really a
showstopper of FPGAs? Can’t we adopt some
of these technologies for FPGAs? These can
certainly benefit from wide I/O and 3D.

Dally: This is where you get to the issue
of building things out of LUTs, and Desh
may be sort of refuting the paper from his
colleagues in Toronto without giving me
another paper that cites better results,
which doesn’t seem kosher to me. It still
boils down to the fact that I can build, say,
a six-input AND gate in something like 8-
by-10 tracks on an ASIC. When you look
at the amount of area it takes on an FPGA
to build the same thing, it’s on the order of
about 80 times the area, and power tends
to go with area, so you’re going to be at 80
times the power. So, if you’re building a
memory controller out of LUTs rather than
having it built out of gates the way we
build the controllers on the GPU, you’re
going to wind up burning—and I was tak-
ing the 20 to 100 to be sort of a nice num-
ber—you can come up with a lot of worse
numbers. So there’s overhead for the FPGA
implementations, and these memory sys-
tems are really high bandwidth. If you have
a little inefficiency in there, it’s going to
destroy your power efficiency, and they
wind up needing to be tuned in a way that
requires lots of logic to queue up many
things, so it’s not just a few LUTs. It’s going
to be a big hunk of logic, and it’s going to
be quite inefficient to build out of FPGA
fabric.

Falsafi: Desh, that’s certainly a strong
argument for GPUs when it comes to mem-
ory bandwidth. Do you want to rebut that?
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Singh: First, I don’t remember the last
time a customer came to me and asked to
implement an AND gate. It’s usually a lot
more complex things, and you can pack
these things together and you get more effi-
cient results than looking at a little
microbenchmark, so that’s number one.
Number two is FPGA architecture is evolv-
ing, like you said. We recently announced
3D integration with system package tech-
nology, so I think FPGAs will have the same
high memory bandwidth capabilities that
GPUs currently have. At that point, FPGAs
will be competitive on GPU-compatible
applications, especially in the world of
high-performance CPUs. I think once that
happens, you will see a long-term bifurca-
tion in terms of what an FPGA is good at
versus what a GPU is good at. I mean, an
FPGA is not a GPU, and a GPU is not an
FPGA, and I think we have to come to the
realization that in the world of heterogene-
ous computing, there’s probably room for
all of these different kinds of devices in a
datacenter. We just have to figure out how
do we programmatically create tools that
take advantage of them.

Complex Algorithms
Audience member: In terms of complexity of
algorithms, are there algorithms that are
more suitable to spatial computing versus
algorithms that are more suitable to GPUs?
In the ISA panel, the ecosystem was an
important factor. Is it possible that people are
developing high-complexity algorithms like
O(n2) algorithms because they can run on the
GPU, whereas that could be an O(n) algo-
rithm that could actually efficiently run on
FPGA? So, the choice of algorithm is driven
by the ability of GPUs, right? Rather than
what’s the most efficient algorithm?

Dally: I think people find the most effi-
cient algorithm and then they look at how to
map it to hardware. It’s really hard to over-
come a weakness in asymptotic complexity
with just brute force hardware. If you’ve got a
lot of data to process, going from n to n2 is a
loser no matter what you’re doing.

Singh: I would agree with that, but I
would think that people choose implemen-
tations of algorithms ahead of time before
trying to target technologies, so you’ll often

find that people will write an algorithm in
such a way that it doesn’t consume enor-
mous amounts of memory bandwidth,
whereas if they can restructure it even very
slightly, it could have a lot more efficient
implementation on architecture that’s much
more suited for stream or dataflow styles of
computation. So, I don’t think it’s essentially
the algorithm that people struggle with, but
it’s more of how to implement it for maxi-
mum efficiency.

Falsafi: Can I push that question again
toward datacenters? What do you see as killer
applications or algorithms that would be
more suitable to FPGAs versus GPUs? Is it
the complexity of the algorithm or is it just
better suitability in terms of mapping when it
comes to FPGAs?

Singh: One thing that you can immedi-
ately come up with for the FPGA is anything
that’s being processed directly from the net-
works, relieving the operating system from
having to do that sort of thing; the FPGA
can just take that data and direct it to the net-
work and do a lot of network offload in addi-
tion to acceleration on that data before you
even have to send it back to the processor. So,
anything of that style.

Falsafi: Do you have examples of proto-
types that actually can map the network stack
or are network-oriented services?

Singh: Well, people are doing lots of stuff
like this today. If you look in the world of
high-frequency trading, you want to offload
things like processing of TCP and UDP, put
that directly in hardware, get deterministic
results from it without it having to make a
processor handle that kind of stuff.

Falsafi: Bill, what are examples of algo-
rithms that you foresee emerging that are of
interest in datacenters today?

Dally: For GPUs, things that are higher
arithmetic intensity and higher memory
bandwidth, the big one today is training neu-
ral networks, but also almost any numerical
computation falls into that. I mentioned ray
tracing, which you actually may not even
think of as a high numerical bandwidth, high
memory intensity thing, but it is. Let me also
comment on the streaming issue that Desh
has brought up a couple times. It’s really an
issue of reuse. Right? You always try to struc-
ture your code so you need to make the
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smallest number of main memory accesses,
because those are expensive, so modern
GPUs that have many megabytes of L2 cache
can be structured to stream as well. You sim-
ply order your code in such a way that as you
produce something, the working set remains
in L2, and you fetch it from there and you
don’t go back out to memory bandwidth.
And so it might be apologizing a little bit for
having weak memory systems in modern
FPGAs, but FPGAs aren’t uniquely able to
stream. In any machine you can restructure
any computation so you can get reuse out of
your storage hierarchy.

Falsafi: We have a question from Tom
Wenisch of Michigan. There are a lot of algo-
rithms that you would like to accelerate in
the datacenter space; these algorithms are
evolving, but would it be practical to go to an
ASIC in terms of cost as compared to an
FPGA, which requires only reconfiguration?

Dally: Yeah, I think it’s a huge advantage to
be able to respin your hardware on a regular
basis, but you are respinning with this huge
disadvantage. I mean, we can argue about
whether you’re implementing a six-input
AND gate or whether it’s a tree of logic with
six inputs, but you’re still off by orders of mag-
nitude—at least one, and probably more like
one and a half—in area and energy for that
logic implementation. So if you can be down
by a factor of 30, yeah, go do that, but if
you need to be at a factor of one, you really
need something that is a little bit more
“performant.”

Falsafi: Desh, do you want to comment
on any of the customers in the datacenter
space that benefitted from being able to
reconfigure algorithms?

Singh: I think that’s the fundamental rea-
son that people use FPGAs rather than
ASICs in any environment, really. Algo-
rithms are constantly changing. Standards
that people are interested in are constantly
evolving. You can’t just figure out today
“this is exactly what I want to implement,”
and it’s going to stay the same until the rest
of time, especially in datacenters, where you
don’t know the workload ahead of time.
And even if people do know what they’re
trying to implement, it’s going to change in
a couple weeks or months, and that’s where
you get a big value proposition from the

FPGA. I think we keep coming back to the
question of the efficiency of the implemen-
tation on the FPGA. I would point out that
anything that’s programmable has inherent
inefficiency. People can now measure how
inefficient an FPGA is because it’s program-
mable hardware; something that’s software
programmable in the conventional sense has
inefficiency. It has circuitry that goes off and
fetches instructions. It doesn’t just have the
pure functional units that are off doing the
actual computation. It has all the stuff around
it that’s routing data to the computer, so
everything has inefficiencies. It’s a question of
quantifying that.

Dally: Right, we can quantify that. If you
look at the SM [streaming multiprocessor] of
the Maxwell X1, the Tegra part—in the SM,
half of the energy goes into the floating-point
unit, so our inefficiency compared to wiring
the floating point into one another is two. I
think that for an FPGA, it would be very
hard-pressed to come anywhere close to that
number.

Singh: But again, you’re doing this for one
specific type of algorithm. Let’s say we can’t
just measure the hardware itself. It’s sequenc-
ing the instructions, and how much efficiency
do you get over the lifetime of the algorithm
itself?

Dally: That is running a particular actual
application in X1.

Suitability for Datacenters
Falsafi: We have a question from James Hoe
at Carnegie Mellon University. There’s a lot
going on in the datacenter world that may
not be a good fit for either FPGA acceleration
or a GPU. We’ve been working on this for
the past 15 years. A lot of the services that are
spending most of the resources in a server are
actually just pointer chasing. In the modern
world, there are a number of such services,
such as data serving, memory caching, web
serving, and web search. This is just basically
unstructured data structure traversals, and
those services are not data parallel. So, what
are we even going after? Are these kinds of
services a good fit for GPUs or FPGAs?

Singh: Think of a world where you have
to do things like pointer chasing, like travers-
ing some kind of graph, and you just have
huge data structures stored in some kind of
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memory system. Let’s presume it’s on the
processor’s memory system. The FPGA is
hanging off like an accelerator. You do need
to go to technologies like shared virtual
memory. That’s something that we’ve just
introduced with our OpenCL compilation
framework, and we can do this over various
kinds of transport mechanisms, like QPI
[QuickPath Interconnect]. So as you start to
see FPGAs become more tightly integrated
with processors, and especially having inter-
connect technologies where you can start to
share some of the same memory space, I
think it makes it a lot more attractive to do
these sorts of algorithms. Before that, all of
the stuff that you’d be able to do in FPGA
was essentially offloading memory to some
kind of accelerator, having some processing,
then coming back or having that kind of dis-
aggregated model, where the FPGA is off just
doing its own thing, processing from the
stream and sending results back. So this
opens up a whole new world coupled with a
much tighter integration, but I think it is
really too early to say.

Dally: I think GPUs are already pretty
well suited for datacenters. We’ve made
successful deployments and they’re actually
very good at pointer chasing, and a lot of
people who do graph algorithms think the
current Graph 500 winners for the small
size graphs, the things that will fit into the
32-gigabyte memory of the big GPU are
fastest on GPUs because they have the fast-
est memory bandwidth. And if you have
enough parallelism in the graph, you can be
doing all those pointer chases in parallel.
They’re also good at chasing pointers in the
CPU’s memory; the upcoming Pascal gen-
eration of GPUs has NVLink, which makes
that a sort of 150-gigabytes-per-second
path to CPU memory. So, you can basically
use all the bandwidth to the CPU memory
from the GPU, just as if it were the GPU
memory. The place I think the GPUs could
do better at integrating into the dataserver
really has to do with networking and access
to the network. Right now, you tend to
chop your problem up and have little pieces
of the problem on GPUs. If people thought
of datacenters more as if they were big
HPC [high-performance computing]
machines with a PGAS [partitioned global

address space], you could do some really
interesting things doing puts and gets over
the network from GPUs and be able to run
very large problems, very large graphs, at
whatever the bandwidth your network
would limit you to.

Customization
Falsafi: There was a comment and a question
from Jason Cong of UCLA. I think each one
deserves a bit of debate. The comment was
that, in fact, FPGAs are not just a good fabric
for accelerating your computation, but also
for customizing your memory accesses.
Would you like to comment on that?

Singh: Certainly. I think one of the inter-
esting things that you see with being able to
customize and accelerate and improve your
application is to be able to create a memory
system that’s ideally suited to feeding those
functions. So, with applications in the data-
center for you to do things like ranking docu-
ments and scoring, we often find that the
things that you’re trying to do are very irregu-
lar lookups into large tables in off-chip mem-
ory, and one of the ways that you can get
around that is to build an efficient hash table
so that you don’t have to go off to off-chip
memory if you don’t have to. When you look
at implementing that stuff on an FPGA, you
can make a gigantic, multiported hash table
incredibly trivially in software, so being able
to customize that stuff for the application
gets you incredible efficiency in applications
like that.

Dally: I actually tend to agree with that.
You have a bunch of block RAMs and
instructions that you want, you can build
your storage hierarchy however you want.
We have lots of L1 caches, scratchpads, and
L2 cache, so we can, for the same size work-
ing set, build data structures that emulate
that, but we don’t have the ability to change
or replace algorithms in the mapping. I think
that actually is an advantage of FPGAs, but
again it’s something that when you’re down
to writing Verilog you’re not going to get that
out of OpenCL.

Form Factor
Falsafi: The question from Jason Cong was
about form factor. Is there an advantage
when it comes to form factor?
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Dally: Yeah. If you saw the photo I had in
my slide deck, that’s what’s called an xSM
module, and that was a Pascal, which we’re
not shipping yet. We are shipping xSM mod-
ules with Kepler now, and so you don’t need
to have a PCI card form factor to put a GPU
in your server. In fact, many people ship 1U
servers with GPUs in them using our xSM
modules, which are small daughter cards.
They’re smaller than the size of an index card
with a GPU, all of its memory and its power
supply on one module, so the small form fac-
tor exists.

Singh: I would just echo what Jason said.
You’ll find that a lot of customers are choos-
ing FPGAs just because of the amount of
density in terms of boards that that need to
be added to these systems.

Dally: Form factor really comes down to
density. What I’ve observed dealing with a
bunch of different datacenter customers is
density ultimately becomes a question of
energy efficiency. Most datacenters are lim-
ited to so many kilowatts per rack, some-
where between 20 and 50 kilowatts
depending on which customer you’re dealing
with, so it really depends on who’s able to
deliver the best performance per watt. But
right now, GPUs are very good at doing that
on things that involve stuff that looks like
dense or sparse linear algebra.

Reconfiguration
Audience member: FPGAs in the past have
had an advantage that you could dynamically
reconfigure them, and a lot of effort was
spent in reconfiguring them quickly, so you
can deploy whatever new operations you
have. What role does that play in a datacenter
setting, and is that something that is actually
of great value?

Singh: I think it’s incredibly valuable,
actually, because in certain aspects of datacen-
ter computes, workloads are just completely
elastic. You can’t predict ahead of time exactly
what a customer’s going to be running, espe-
cially when you have multitenant systems. If
you want to be able to allocate acceleration
resources to these people—where you don’t
know exactly what’s going to be on the
FPGA, so you want to be able to dynamically
swap things in and out, depending on the
current needs of what the system is actually

doing—things like dynamic or partial recon-
figuration are big technologies that enable
that sort of thing.

Falsafi: If I understand in the current set-
ting, for example, with some of the acceler-
ated neural nets or machine learning
kernels, they’re mostly accelerating the
training, which is computationally intensive
and spends much time on the offloaded
reconfigurable fabric. So, the configuration
time, if you’re doing it once every 24 hours,
is not a big deal. Do you see that reconfigu-
ration speed playing a great role in the
future?

Singh: I think in the future it will. Cur-
rently, the way the FPGAs are deployed, the
configuration doesn’t change all that often,
but there was an earlier question about what
kinds of things would you change in the
FPGA or GPU architecture that would ena-
ble even more penetration into datacenter.
That would be my answer. If we could have
much faster reconfiguration speeds, a much
finer grain as well, I think that would allow
us to swap things in and out much quicker
and enable us to do very fine-grained offload
in FPGAs.

Dally: I just want to point out that in a
GPU, this is called “jump,” and it happens in
a couple cycles.

Falsafi: Actually, I’d like to go back to that
in GPUs, which basically means that you
have to reprogram and launch your kernels
in a programming interface.

Dally: You’re not talking about writing the
code. You’re just talking about loading it.

Falsafi: Just loading it? But let’s reformu-
late that question. Would GPUs actually
have an advantage when you have a new algo-
rithm and you want to just launch it?

Dally: Well, I think the original question
was about dynamic reconfiguration. I mean,
people basically have GPUs deployed to run
whole algorithms today, and it literally is
jump. The code is actually all there. They
simply say, “okay, you’re going to run this
code, now jump to that thing,” so the kernels
are all good. Now, the length of time writing
the original kernels is another issue, and that’s
where writing in Open MP—a directives lan-
guage—is really the most productive mode
of operation. Moving down to a language
like CUDA or OpenCL would be next, and
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if you have the right Verilog, like you would
for a highly tuned FPGA algorithm, that
would take the longest.

Integration
Falsafi: Can you comment on integration?
We’ve seen GPUs in the discrete form and
those integrated on chip now. Catapult is a
discrete form of FPGA, and now we’re seeing
FPGAs integrated into the CPU. Integration
of GPUs and FPGAs: is there an advantage
to either one? How would you foresee that
coming? Bill?

Dally: We see an advantage in integrating
with CPUs. In fact, an approach we’ve taken
is what I call “logical integration,” where,
through the development of NVLink and
ultimately coherence technologies, you have
tight coupling between the CPU and the
GPU memory; both very high bandwidth,
very low latency, and transparent sharing of
memory. We think it’s much less important
whether things are physically integrated, on
the same die, so we do that in our low-end
process. Things like the TK1 and the TX1
for mobile are integrated, because economi-
cally it makes the right sense, especially where
you’re coming from one monolithic die with
four or eight ARM cores and a GPU. At our
high end, we actually see the economics
pushing the other way, to motivate the logical
integration but keep the chips physically sep-
arate, which lets you make both the CPU
and the GPU chips more powerful and rev
them independently of one another. As to an
FPGA, it’s interesting to think about. I
haven’t seen any applications that really
demand that.

Singh: I really can’t comment on what’s
going to happen with Intel and Altera as our
relationship gets closer, but today what you
see with FPGAs is that we’re incorporating
things like ARM processors and having very
tight integration on the same die between the
processor and the FPGA, and that enables all
kinds of classes of algorithms, because you
have a very low-latency communication that
allows us to do very fast offload on these
kinds of devices. We’re also looking at the
same kinds of technologies for the logical
integration, where things like QPI enable the
sharing of virtual memory between the
FPGA device and the processor, so I think in

the future you’ll probably see closer physical
integrations.

Looking to the Future
Falsafi: We have a question from John
Demme at Columbia University. We’ve talked
about convolutional neural networks as an
application today, and other machine learning
kernels. Let’s extrapolate to 10 years from
now. What would be the advantages and dis-
advantages of GPUs and FPGAs? How would
they fare? Let’s go to Bill.

Dally: I think GPUs are going to continue
evolving the way they have. I don’t think it’s a
question of spatial versus temporal. GPUs
get their performance from parallelism—
that’s spatial. And it’s not spatial versus tem-
poral at all; it’s two different types of spatial
architectures. The GPUs are going to evolve
where they’re basically going to have more
streaming multiprocessors. They’re going to
be faster. You’re going to have a memory sys-
tem that’s deeper, with more on-chip storage
and higher bandwidth off chip, so I don’t see
any radical changes coming. I think it’s going
to be more and better of the same thing,
because it works very well.

Falsafi: Okay, Desh, FPGAs on steroids
10 years from now?

Singh: I can’t speak exactly to what will be
created, but the way I see the world is that
we’re moving to more and more heterogene-
ous systems on chip. FPGA technology is
really evolving now and incorporating things
like hardened processors. You can imagine
that trend even going further and further.
And we might find that, 10 years down the
line, we have an architecture that looks like
hybrid GPUs/FPGAs from many different
companies. We have multiple processors as
well as some of the advantages that you get
from hardware reconfiguration, so we’ll see
what evolves.

F alsafi: Let’s have a closing statement, and
since Bill went first, I’ll ask Desh to issue

a quick closing statement.
Singh: I think this has been a really good

debate, and there’s been lots of points of con-
tention, but I think it just is a sign that there
are applications for both GPUs and FPGAs.
When it comes to picking the right balance
for your particular datacenter and your
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application, I think it’s a big opportunity for
all of the researchers out there to go off and
build to this and figure out exactly how we
can enable this.

Dally: I’ll go back to my opening state-
ment, which is “choose the right tool for the
job.” GPUs have the best performance per
watt for things involving arithmetic, the
highest memory bandwidth, the most effi-
ciency in terms of picojoule per bit memory
bandwidth of anything out there, and the
tightest integration with the host CPU—so, if
the problem you’re doing involves those, use a
GPU. If you’re doing something like zip—I
guess that was the example given—where
none of those things fall into the category,
again, use an FPGA. I think it’s not a question
of whether one is better than the other.
They’re completely different things. MICR O
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