
 

 

Impact of Java Application Server Evolution on Computer System Performance 

 

Abstract — Advancement in hardware and Java Application 

Server techniques has prompted the designs and 

implementations of enterprise Java applications with greater 

capability. The increase in their versatility and the likely needs 

for backward compatibility consequently introduce higher code 

complexity and can potentially increase the code size. In this 

paper, we compare the high-level code changes in 

SPECjAppServer2004 and in SPECjEnterprise2010, and its 

effects on overall system behavior. We characterize the 

workload differences in three different layers – the high-level 

software characteristics, the system behavior, and low-level 

characteristics. Our data show that SPECjEnterprise2010 has 

larger memory footprint and there is a shift in the execution 

time from OS to Java code and JVM (garbage collection and 

JIT compilation) during steady state of the program execution. 

We observe 74% increase in the JIT compiled code and 59% 

increase in the number of classes used at steady state. This 

behavior change also impacts the performance of memory 

hierarchy and other microarchitecture level components such 

as the branch predictor. We observe 61% and 10% increase in 

the ITLB misses per instruction (MPI) for large pages and 

small pages, respectively, and 12% increase in the branch 

mispredictions per instruction. Finally, last level cache shows 

12% increase in MPI. 

 

I. INTRODUCTION 

The advancement in Java Enterprise Edition (Java EE) 

application servers and state-of-the-art processors has 

prompted the designs and implementations of enterprise Java 

applications with greater capability. Modern enterprise Java 

applications are designed to support more versatile 

application models, complex workflows, inter-application 

communication and inter-product-family integration. They 

also emphasize on the ease of use through predefined 

libraries and modules, as well as programming language 

annotation. These help software developers add complex 

new features. In some case, the use of extendable APIs can 

add the appealing capability of customization, which enables 

the customer to tailor the products to suit their business 

needs. New software releases can also introduce the need for 

backward compatibility. This in turn increases the size of the 

code. Modular approach/design philosophy of software 

development improves the ease of use. However, it may 

generate larger number of access classes and requires more 

runtime optimization. With the introduction of 32-nm 

processors, we further increase the level of the integration of 

multi-core processors as well as add more features to support 

software functionality (e.g. virtualization, encryption, etc).  

In response to the advancement in both the hardware and 

software, SPECjEnterprise2010 (SjE10) [1] is introduced to 

benchmark the performance of a modern Java EE 

application server and the underlying hardware. SjE10 

replaces SPECjAppServer2004 (SjAS04) [2] and targets for 

Java EE 5.0 standard. Due to the fast improvement in the 

Java EE standards, Standard Performance Evaluation 

Corporation (SPEC) retires the SjAS04 and use SjE10 as the 

new standard to evaluate the performance of Java EE 

application servers. Understanding the nature of such 

commercial workloads is critical to develop the next 

generation of servers and identify promising directions for 

systems and software research. 

This paper analyzes the differences between SjAS04 and 

SjE10 running on a high-end server. The high-level software 

characteristics, the system behavior, and low-level 

characteristics are discussed for SjE10 in comparison with 

SjAS04. An effective system tuning methodology [3] is used 

to tune the performance for both workloads. 

The evaluation of hardware performance monitor data 

shows that at the system level, SjE10 demands more system 

resources, such as heap memory, than SjAS04 when the 

application server achieves the same CPU utilization for 

both workloads. The two workloads show very similar 

execution profiles with the SjE10 spending a larger 

proportion of the execution on Java code and JVM and 

smaller proportion of the execution time on OS code. At the 

code level, in comparison with the SjAS04, smaller 

proportion of the SjE10 code is the Java EE container and 

application and a larger proportion of it is Java Library. 

During run-time, JVM Just-In-Time compiled (JIT’ed) code 

is much larger compared to SjAS04. Also, larger number of 

classes are loaded and used during steady-state. At the 

microarchitectural level, SjE10 has a much higher path 

length. It also experiences higher percentage of last-level 

cache (LLC) misses and instruction translation lookaside 

buffer (ITLB) misses. However, SjAS04 has higher data 

TLB (DTLB) miss rate. Finally, SjE10 has higher branch 

misprediction rate. 
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The remainder of this paper is organized as follows. 

Section 2 gives a brief overview of SjAS04 and SjE10 and 

explains the differences. In Section 3, we discuss the 

experimental setup. Section 4 describes the comparison for 

high-level software characteristics. Section 5 shows the 

system behavior. In Section 6, we present the low-level 

characteristics. Section 7 surveys the related work. Finally, 

Section 8 concludes. 

II. SPECJAPPSERVER2004 AND SPECJENTERPRISE2010 

SjAS04 and SjE10 are multi-tier benchmarks applications 

developed by SPEC for measuring the performance of 

Java EE technology-based application servers. They are 

designed to exercise the Java EE Application Server, the 

Java Virtual Machine (JVM), as well as the server systems 

under test (SUT). SjE10 is the newest member of the series 

of SPEC’s Java Application Server benchmarks and is a 

replacement of SjAS04 benchmark. 

Both applications implement a web-based user interface 

that allows the customers of the applications, in our case 

automobile dealers, to keep track of their accounts, keep 

track of dealership inventory, sell automobiles, manage a 

shopping cart and fulfill purchase orders of automobiles. 

SjAS04 exercises all major Java EE 1.3 technologies 

implemented by compliant application such as the web 

container, the EJB2.0 container, Java Message Service 

(JMS) and message driven beans (MDB), transaction 

management, and database connectivity. It also heavily 

exercises all parts of the underlying infrastructure that make 

up the application environment, including hardware, JVM 

software, database software, JDBC drivers, and the system 

network. Basically, SjAS04 is a Java EE benchmark meant 

to measure the scalability and performance of Java EE 

servers and containers.  

SjE10 is an enhanced version of the SjAS04 that includes 

a modified workload and conforms to Java EE 5.0 standard. 

SjE10 is designed to test the performance of a representative 

Java EE application and each of the components that make 

up the application environment, e.g., hardware, application 

server, JVM, database. 

The main difference between the two benchmarks is that 

SjAS04 is a Java EE 1.3 application and uses a web layer 

and EJBs for the clients’ interactions with the server. In the 

SjE10 benchmark, the load drivers access the application 

through a web layer (for the dealer domain) and through 

EJBs and Web Services (for the manufacturing domain) to 

stress more of the capabilities of the Java EE application 

servers. In addition, SjE10 adds more extensive use of the 

JMS and MDB infrastructure. 

Even though these Java Application Server benchmarks 

are designed with the same philosophy to measure the 

performance of Java EE technology-based application 

servers, their performances are not comparable to each other 

due to different optimization opportunities and constraints 

imposed for each of them. 

III. EXPERIMENTAL SETUP AND METHODOLOGY 

This section describes how we collected the data and 

characterized the software evolution between SjAS04 and 

SjE10 benchmarks. Our main focus in this paper is to 

characterize the software evolution between these two 

commercial workloads and to identify the impact of this 

evolution on the system that they are running. The 

benchmark scores are not provided in this paper because the 

performances of these workloads are not comparable and 

should not be compared [1]. 

To identify the impact of the software evolution on the 

system, we used the same hardware configuration and the 

same software stack for both workloads. We also used the 

same database servers, drivers and emulators which are 

powerful enough for both workloads.  

Table 1 shows the configuration setup for the application 

server. Our SUT is an Intel® Xeon® X7560 running the Red 

Hat Enterprise Linux 5.5 OS, a leading JVM and a leading 

Java EE application server. The database server is deployed 

on a second Intel® Xeon® X7560 system, and is tuned such 

that it is not the performance bottleneck. Furthermore, an 

effective performance tuning methodology [3] was 

employed to achieve similar CPU utilizations on the 

application server in the experiments. The OS and the JVM 

have been configured to use large pages (2MB compared to 

the default size of 4KB). Large pages improve performance 

of long-running Java applications with a variety of heap 

sizes and especially applications with large heaps. We used 

aggregately 15GB of heap size per socket and we applied the 

same memory optimization parameters for both workloads. 

Our application server CPU saturation values are very 

similar between the workloads. To achieve fairness, we also 

normalized some of the data we present in this paper by the 

corresponding CPU saturation value. In SjAS04 and SjE10, 

many factors such as database performance, thread queues 

on the driver, and the response times, can affect the 

application server CPU utilizations. Because the two 

benchmarks in this paper are Java EE application servers, 

our analyses focus on the application server performance 

and we exclude analyses on the database and driver sides.  

Table 1 Hardware and Software configurations for the 

application server (SUT) 

Hardware 4P (4 cores each) Intel® Xeon® X7560 @2.26GHz.  

64GB RAM.  

Hyper-threading: On 

Software Red Hat Enterprise Linux 5.5 

a leading JVM 

a leading Java EE application server 

 

Data from various components of the system and its 

software stack have been collected using a suite of standard 



 

 

performance tools. For example, Intel® VTune™ 

Performance Analyzer [4] provides a high-level view of 

system performance with information about CPU utilization 

and memory. We use a hardware performance counters 

monitoring tool that makes it possible to collect accurate, 

sampled hardware data from counters that simultaneously 

track various processor events. We also collected runtime 

information emitted by the JVM, which provides 

memory/heap utilization statistics. Finally, the JVM had 

instrumentation (without noticeable overhead) for collecting 

code coverage statistics. 

IV.  HIGH-LEVEL SOFTWARE ANALYSIS 

In this section, we compare the SjAS04 and SjE10 

workloads in terms of their JIT’ed code size, the number of 

classes used and code coverage. We use transactions to 

normalize the data because a transaction is a unit of work for 

both workloads and it provides us a better picture in 

characterizing the software evolution between the 

benchmarks. However, it is important to note that one 

transaction of SjAS04 is not equivalent to a transaction of 

SjE10 since they are different workloads.  

A. Number of classes loaded and size of the JIT’ed codes 

A JVM JIT compiler is a code generator that converts 

Java bytecodes (executed by the interpreter) into native 

machine code. A JVM can use runtime profile to guide the 

JIT compilation and re-optimize portion of the code to 

generate more efficient codes. JIT compilation is usually 

invoked only for the parts of an application which are 

performance bottlenecks.  

JIT’ed code sizes of SjAS04 and SjE10 are 87MB and 

152MB, respectively. SjE10 has 74% larger JIT’ed code size 

compared to SjAS04, which is an indication that the 

workload has become more complex. Figure 1 compares the 

number of classes used by SjAS04 and SjE10. As shown in 

the Figure, Sj04 uses 10,431 classes and SjE10 uses 14,301 

classes throughout their execution. This 34% increase in the 

number of classes used also explains the major code size 

increase in SjE10.  
 

 
Figure 1 Comparison of the numbers of classes the benchmarks 

use throughout the execution and at steady-state 

Since a number of classes are used in the initialization of 

these workloads, in Figure 1 we also compare the number of 

the classes loaded for SjAS04 and SjE10 during steady state. 

The number of classes in steady state is measured during a 

10-minute sampling period. Since each transaction takes a 

few seconds to complete for both benchmarks, the samples 

cover all major code regions. The increase in the number of 

classes loaded is more pronounced during steady state (59% 

during steady state versus 34% overall). We can also see that 

both workloads use a very small portion of their codes 

during steady state: 5.3% for SjAS04 and 6.1% for SjE10. 

B. Common and Unique Classes 

To determine whether or not the code size change is 

primarily due to the loaded classes that are unique to the 

execution of workloads, we analyzed the common and 

unique classes loaded by SjAS04 and SjE10 during the full 

execution of the two workloads and compare them in 

Table 2. Common classes are the ones that are common to 

the execution of both workloads. Unique classes to SjE10 

are only loaded during execution of SjE10, but are not 

loaded during execution of SjAS04 and vice versa.  

Results show that common class sizes also increase 

significantly (from 65MB to 91MB) as well as the increase 

in the number and sizes of unique classes. We believe the 

reason for the increase in the size of the common classes that 

are loaded during execution of both SjAS04 and SjE10 is 

that the new workload exercises the new Java EE 5.0 

standard and therefore new methods may be added to the 

common classes to facilitate this support
1
. The Java EE 

application server that we use supports both Java EE 1.3 and 

5.0 standards. 

Table 2 Common and Unique Classes Loaded 

 SjAS04 SjE10 

 count size Count size 

Common 7453 65MB 7453 91MB 

Unique 2978 22MB 6848 61MB 

C. Code Coverage 

Finally, based on which code module each class loaded at 

steady state belongs to, we analyzed and categorized the 

code in SjAS04 and SjE10 in Figure 2
2
. The data shows, at 

the code level, in comparison with the SjAS04, smaller 

proportion of the SjE10 code is the Java EE application 

server (46% versus 29%) and application (7% versus 2%), 

but a larger proportion of it is Java libraries (29% versus 

34%).  

 
1 We did not have access to the Java EE application server source code. 

Therefore, we did not analyze this further.  
2 The class profiling was done by using JVM Tool Interface. The tool does 

not introduce noticeable performance interference. 



 

 

Since only 7% and 2% of the classes loaded were from the 

SjAS04 and SjE10 benchmarks, respectively, the 

performance of the application codes themselves are 

relatively less important to the overall system performance. 

What is significant is how they utilize application server 

features. 

  

V. SYSTEM BEHAVIOR 

This section focuses on the application system behavior 

comparison, including CPU utilization, heap allocation rate, 

and execution profiles between SjAS04 and SjE10. As in 

Section IV, all the measured statistics shown in this section 

are per transaction based.  

A. Execution time breakdown 

The software stack running on the application server 

includes a variety of components – the OS, the Java 

Application Server, the JVM, and other small components. 

All the software components affect the workload execution 

and the overall system behavior. To show the contributions 

of major software components to the retired instruction 

counts, we used Intel® VTune™ Performance Analyzer to 

collect the execution profiles. The data is collected off the 

garbage collection (GC) pause time to avoid the GC’s 

impact on the execution profile. Due to the use of pause the 

world GC, the execution profiles off and on the GC time 

may behave differently, but the analysis of the execution 

profile on the GC time can be performed in a similar way. 

Figure 3 presents the execution time breakdowns for 

SjAS04 and SjE10. We can see that both benchmarks have 

similar execution time breakdown among the major software 

components. The breakdown helps understand what software 

components really take the execution resource and can be 

the possible optimization targets. Java retires 74% of the 

overall instructions for SjAS04 and 77.1% of the total 

instructions for SjE10. The OS is the second largest 

component and it weighs 20.3% and 15.8% of the retired 

instructions for SjAS04 and SjE10, respectively. The 

number of retired instructions by the JVM increases from 

5.7% for SjAS04 to 7.1% for SjE10. Overall, we observe a 

shift in the execution time from OS to Java code and JVM 

(GC and JIT compilation) during steady state of the program 

execution. 

 
Figure 3 Breakdowns of execution time into Java (application 

code, JVM (GC, JIT, etc.) and OS 

B. CPU utilization 

Figure 4 shows the breakdown of application server CPU 

utilization for the two benchmarks. The kernel and user CPU 

time breakdowns are very similar between the two 

benchmarks.  

 
Figure 4 CPU utilization breakdown among user time and 

kernel time on both workloads 

The kernel/user execution breakdown is 21.6%/78.4% for 

SjAS04 and 20.4%/79.6% for SjE10. The two workloads 

have different response time requirements and transaction 

 

20.31% 15.83%

5.73%
7.08%

73.97% 77.09%

0%

20%

40%

60%

80%

100%

SjAS04 SjE10

Execution Time Breakdown

Java

JVM

OS

 

21.6% 20.4%

78.4% 79.6%

0%

20%

40%

60%

80%

100%

SjAS04 SjE10

CPU Utilizatio Breakdown

User

System

 
Figure 2 Code coverage: Categorization of the classes loaded into their functions. 



 

 

queues, which can affect the kernel/user execution time 

breakdown. 

C. Allocation Rate 

The memory usage is mainly due to the heap usage by 

Java. SjE10 is about 1.7 times more demanding with 5.5 

GB/sec compared to the 3.3 GB/sec for SjAS04. This is an 

indication that SjE10 has a larger memory footprint. 

VI. LOW-LEVEL CHARACTERISTICS 

In addition to software optimizations, microarchitecture is 

an important factor of the application server performance. 

Understanding the microarchitecture performance 

characteristics can help understand the strengths and the 

weaknesses of the microarchitecture and design better future 

processors. In this section, we examine and compare the 

processor-independent microarchitecture performance 

characteristics of SjAS04 and SjE10. 

A. Path Length  

The path length is the number of instructions retired per 

transaction by the application server. Our data show that 

SjE10 has a 47% larger path length than SjAS04. 

B. Instruction type distribution 

During a 10-minute sampling period in the steady state, 

SjAS04 and SjE10 have similar distribution in instruction 

types, as shown in Figure 5. The largest change observed is 

the increase in the proportion of number of branches in 

SjE10. Branch instructions correspond to 16.3% for SjAS04 

and 19.6% of the instructions for SjE10.  

 

 
Figure 5 Instruction type breakdown for both benchmarks 

The increase in the proportion of branches is likely due to 

the workload design changes. The distributions of PC-

relative branches, returns, and indirect branches are fairly 

similar between the two benchmarks (data not shown). 

Finally, we also observe a reduction in the proportion of 

memory operations, from 43.9% for SjAS04 to 42.4% for 

SjE10.  

C. Memory Hierarchy 

The changes in TLB behaviors from SjAS04 to SjE10 are 

shown in Figure 6. The ITLB miss rate is about 61% higher 

for large pages and 10% higher for small pages. SjE10 has 

smaller DTLB miss rate – 10% smaller for small pages and 

1% for large pages. Utilizing large pages for JIT’ed code and 

other components of execution stack leads to additional 

performance gain. However, address translation performance 

of SjE10 suggests that there is room for improving ITLB hit 

rates by implementing object locality optimizations. 

Increasing the sizes of ITLBs so that they could better 

maintain large working sets could further improve overall 

performance.  

Figure 7 shows the ratios of miss rates of different caches 

between SjAS04 and SjE10. In both benchmarks, there is 

much higher instruction cache miss rate than the data cache 

miss rate (data not shown). SjE10 has 15% lower IL1 MPI 

and 14% higher DL1 MPI than SjAS04. Also, L2 MPI is 8% 

lower and LLC MPI is 12% higher for SjE10. The higher 

LLC MPI indicates higher pressure on the memory 

hierarchy, overall. 

 

 
Figure 6 Ratio (SjE10/SjAS04) of instruction and data TLB 

MPI (large and small pages) 

 
Figure 7 Ratios (SjE10/SjAS04) of IL1, DL1, L2 and LLC MPIs 

VII. RELATED WORK 

SjE10 and SPECjAppServer-series (SjAS) benchmarks 

are commercial benchmarks for evaluating the performance 

of Java EE application server and the underlying hardware 

platform. SjE10 [1] is a replacement of the SjAS04 

benchmark. The previous SjAS versions include SjAS01 

(derived from ECperf) [5], SjAS02 [6], and SjAS04 [2]. 
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Overall, these workloads are important server benchmarks 

that assist in the design of servers. 

SPECjAppServer2004 benchmark has been widely 

studied [7] [8] [9]. In [7], Su et al. studied and compared the 

performance of SjAS04 and its predecessor, SjAS02. Their 

findings show that the new benchmark, SjAS04 has higher 

demand in system resources, such as network utilization and 

heap usage. This trend also continues in the transition from 

SjAS04 to SjE10. Shuf and Steiner [9] presented a detailed 

investigation in the performance of SjAS04 on Power4 

architecture. Their findings show that on the studied 

platform, the system performance correlate more strongly to 

branch mispredictions, translation misses, and I-cache 

misses than the performance of other micro-architectural 

components. In [8], Shiv et al. analyzed the performance of 

SjAS04 on Intel Core 2 Duo platform. They concluded that 

cache/memory overhead of the CMP architectures may be a 

limiting factor of performance scaling. Based on their 

findings, they proposed a hardware mechanism that could 

potentially reduce cache misses. Stoodley [10] studied the 

differences between SjAS04 and SPECjbb2000 and 

SPECjvm98 applications. Their study of SjAS04 finds that 

the workload has a flat method profile. We also observed 

similar behavior for both SjAS04 and SjE10. 

Earlier versions of SjAS benchmarks were also studied 

extensively [11] [12] [13] [14] [15]. Chow et al. [14] studied 

the variance of ECperf-like workloads and the relationship 

between Java application workload implementations and 

CPU designs. Karlsson et al. [13] performed a detailed 

architectural level analysis of SjAS01. Karlsson et al. [11] 

[12] also compared performance of SjAS01 with 

SPECjbb2000 and investigated the effects of scaling on a 

memory subsystem. Chow et al. [3] [15] developed a system 

performance tuning methodology for SjAS01 and SjAS02. 

Java based server workloads other than SjAS benchmarks 

were also investigated by both academia and industry. Cain 

et al. [16] implemented Java-based TPC-W and studied its 

architectural behavior in both real systems and simulators. 

Another Java based two-tier benchmark, VolanoMark, was 

studied by Luo et al. [17]. The memory behavior and the 

architecture influence of SPECjvm98 were investigated in 

[18] and [19]. Finally, Li et al. [20] use a complete system 

simulation to characterize SPECjvm98 benchmarks.  

VIII. CONCLUSION 

This paper presents a detailed comparison of a new 

workload – SjE10 and its predecessor – SjAS04. Both 

workloads are complex multi-tier Java EE application server 

benchmarks. The two workloads are set up in the same 

hardware and software configurations. The comparison is 

performed when both workloads achieve similar application 

server CPU utilizations. The analysis is based on three 

layers: the high-level software characteristics, the system 

behavior, and the low-level microarchitecture performance 

characteristics. 

Our data shows that at the code level, in comparison with 

the SjAS04, a larger proportion of the SjE10 code is the Java 

library, and Java EE application server and application code 

are relatively smaller. Also, JIT’ed code size is much larger 

compared to SjAS04 and a larger number of classes are 

loaded and used during steady-state. At the system level, 

SjE10 demands more system resources, such as heap 

memory. The two workloads show similar execution profiles 

with the SjE10 spending larger proportion of the execution 

on Java code and JVM, but less execution time in OS code. 

At the microarchitecural level SjE10 has a higher path 

length. It also experiences higher percentage of LLC and 

ITLB misses, and branch mispredictions.  
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