

Impact of Java Application Server Evolution on Computer System Performance

Abstract — Advancement in hardware and Java Application

Server techniques has prompted the designs and

implementations of enterprise Java applications with greater

capability. The increase in their versatility and the likely needs

for backward compatibility consequently introduce higher code

complexity and can potentially increase the code size. In this

paper, we compare the high-level code changes in

SPECjAppServer2004 and in SPECjEnterprise2010, and its

effects on overall system behavior. We characterize the

workload differences in three different layers – the high-level

software characteristics, the system behavior, and low-level

characteristics. Our data show that SPECjEnterprise2010 has

larger memory footprint and there is a shift in the execution

time from OS to Java code and JVM (garbage collection and

JIT compilation) during steady state of the program execution.

We observe 74% increase in the JIT compiled code and 59%

increase in the number of classes used at steady state. This

behavior change also impacts the performance of memory

hierarchy and other microarchitecture level components such

as the branch predictor. We observe 61% and 10% increase in

the ITLB misses per instruction (MPI) for large pages and

small pages, respectively, and 12% increase in the branch

mispredictions per instruction. Finally, last level cache shows

12% increase in MPI.

I. INTRODUCTION

The advancement in Java Enterprise Edition (Java EE)

application servers and state-of-the-art processors has

prompted the designs and implementations of enterprise Java

applications with greater capability. Modern enterprise Java

applications are designed to support more versatile

application models, complex workflows, inter-application

communication and inter-product-family integration. They

also emphasize on the ease of use through predefined

libraries and modules, as well as programming language

annotation. These help software developers add complex

new features. In some case, the use of extendable APIs can

add the appealing capability of customization, which enables

the customer to tailor the products to suit their business

needs. New software releases can also introduce the need for

backward compatibility. This in turn increases the size of the

code. Modular approach/design philosophy of software

development improves the ease of use. However, it may

generate larger number of access classes and requires more

runtime optimization. With the introduction of 32-nm

processors, we further increase the level of the integration of

multi-core processors as well as add more features to support

software functionality (e.g. virtualization, encryption, etc).

In response to the advancement in both the hardware and

software, SPECjEnterprise2010 (SjE10) [1] is introduced to

benchmark the performance of a modern Java EE

application server and the underlying hardware. SjE10

replaces SPECjAppServer2004 (SjAS04) [2] and targets for

Java EE 5.0 standard. Due to the fast improvement in the

Java EE standards, Standard Performance Evaluation

Corporation (SPEC) retires the SjAS04 and use SjE10 as the

new standard to evaluate the performance of Java EE

application servers. Understanding the nature of such

commercial workloads is critical to develop the next

generation of servers and identify promising directions for

systems and software research.

This paper analyzes the differences between SjAS04 and

SjE10 running on a high-end server. The high-level software

characteristics, the system behavior, and low-level

characteristics are discussed for SjE10 in comparison with

SjAS04. An effective system tuning methodology [3] is used

to tune the performance for both workloads.

The evaluation of hardware performance monitor data

shows that at the system level, SjE10 demands more system

resources, such as heap memory, than SjAS04 when the

application server achieves the same CPU utilization for

both workloads. The two workloads show very similar

execution profiles with the SjE10 spending a larger

proportion of the execution on Java code and JVM and

smaller proportion of the execution time on OS code. At the

code level, in comparison with the SjAS04, smaller

proportion of the SjE10 code is the Java EE container and

application and a larger proportion of it is Java Library.

During run-time, JVM Just-In-Time compiled (JIT’ed) code

is much larger compared to SjAS04. Also, larger number of

classes are loaded and used during steady-state. At the

microarchitectural level, SjE10 has a much higher path

length. It also experiences higher percentage of last-level

cache (LLC) misses and instruction translation lookaside

buffer (ITLB) misses. However, SjAS04 has higher data

TLB (DTLB) miss rate. Finally, SjE10 has higher branch

misprediction rate.

Peng-fei Chuang†, Celal Ozturk§, Khun Ban†, Huijun Yan†, Kingsum Chow†, Resit Sendag§

†
 Intel Corporation; {peng-fei.chuang, khun.ban, huijun.yan, kingsum.chow}@intel.com

§
Dept. of Electrical, Computer and Biomedical Eng., Univ. of Rhode Island; {cozturk, sendag}@ele.uri.edu

The remainder of this paper is organized as follows.

Section 2 gives a brief overview of SjAS04 and SjE10 and

explains the differences. In Section 3, we discuss the

experimental setup. Section 4 describes the comparison for

high-level software characteristics. Section 5 shows the

system behavior. In Section 6, we present the low-level

characteristics. Section 7 surveys the related work. Finally,

Section 8 concludes.

II. SPECJAPPSERVER2004 AND SPECJENTERPRISE2010

SjAS04 and SjE10 are multi-tier benchmarks applications

developed by SPEC for measuring the performance of

Java EE technology-based application servers. They are

designed to exercise the Java EE Application Server, the

Java Virtual Machine (JVM), as well as the server systems

under test (SUT). SjE10 is the newest member of the series

of SPEC’s Java Application Server benchmarks and is a

replacement of SjAS04 benchmark.

Both applications implement a web-based user interface

that allows the customers of the applications, in our case

automobile dealers, to keep track of their accounts, keep

track of dealership inventory, sell automobiles, manage a

shopping cart and fulfill purchase orders of automobiles.

SjAS04 exercises all major Java EE 1.3 technologies

implemented by compliant application such as the web

container, the EJB2.0 container, Java Message Service

(JMS) and message driven beans (MDB), transaction

management, and database connectivity. It also heavily

exercises all parts of the underlying infrastructure that make

up the application environment, including hardware, JVM

software, database software, JDBC drivers, and the system

network. Basically, SjAS04 is a Java EE benchmark meant

to measure the scalability and performance of Java EE

servers and containers.

SjE10 is an enhanced version of the SjAS04 that includes

a modified workload and conforms to Java EE 5.0 standard.

SjE10 is designed to test the performance of a representative

Java EE application and each of the components that make

up the application environment, e.g., hardware, application

server, JVM, database.

The main difference between the two benchmarks is that

SjAS04 is a Java EE 1.3 application and uses a web layer

and EJBs for the clients’ interactions with the server. In the

SjE10 benchmark, the load drivers access the application

through a web layer (for the dealer domain) and through

EJBs and Web Services (for the manufacturing domain) to

stress more of the capabilities of the Java EE application

servers. In addition, SjE10 adds more extensive use of the

JMS and MDB infrastructure.

Even though these Java Application Server benchmarks

are designed with the same philosophy to measure the

performance of Java EE technology-based application

servers, their performances are not comparable to each other

due to different optimization opportunities and constraints

imposed for each of them.

III. EXPERIMENTAL SETUP AND METHODOLOGY

This section describes how we collected the data and

characterized the software evolution between SjAS04 and

SjE10 benchmarks. Our main focus in this paper is to

characterize the software evolution between these two

commercial workloads and to identify the impact of this

evolution on the system that they are running. The

benchmark scores are not provided in this paper because the

performances of these workloads are not comparable and

should not be compared [1].

To identify the impact of the software evolution on the

system, we used the same hardware configuration and the

same software stack for both workloads. We also used the

same database servers, drivers and emulators which are

powerful enough for both workloads.

Table 1 shows the configuration setup for the application

server. Our SUT is an Intel® Xeon® X7560 running the Red

Hat Enterprise Linux 5.5 OS, a leading JVM and a leading

Java EE application server. The database server is deployed

on a second Intel® Xeon® X7560 system, and is tuned such

that it is not the performance bottleneck. Furthermore, an

effective performance tuning methodology [3] was

employed to achieve similar CPU utilizations on the

application server in the experiments. The OS and the JVM

have been configured to use large pages (2MB compared to

the default size of 4KB). Large pages improve performance

of long-running Java applications with a variety of heap

sizes and especially applications with large heaps. We used

aggregately 15GB of heap size per socket and we applied the

same memory optimization parameters for both workloads.

Our application server CPU saturation values are very

similar between the workloads. To achieve fairness, we also

normalized some of the data we present in this paper by the

corresponding CPU saturation value. In SjAS04 and SjE10,

many factors such as database performance, thread queues

on the driver, and the response times, can affect the

application server CPU utilizations. Because the two

benchmarks in this paper are Java EE application servers,

our analyses focus on the application server performance

and we exclude analyses on the database and driver sides.

Table 1 Hardware and Software configurations for the

application server (SUT)

Hardware 4P (4 cores each) Intel® Xeon® X7560 @2.26GHz.

64GB RAM.

Hyper-threading: On

Software Red Hat Enterprise Linux 5.5

a leading JVM

a leading Java EE application server

Data from various components of the system and its

software stack have been collected using a suite of standard

performance tools. For example, Intel® VTune™

Performance Analyzer [4] provides a high-level view of

system performance with information about CPU utilization

and memory. We use a hardware performance counters

monitoring tool that makes it possible to collect accurate,

sampled hardware data from counters that simultaneously

track various processor events. We also collected runtime

information emitted by the JVM, which provides

memory/heap utilization statistics. Finally, the JVM had

instrumentation (without noticeable overhead) for collecting

code coverage statistics.

IV. HIGH-LEVEL SOFTWARE ANALYSIS

In this section, we compare the SjAS04 and SjE10

workloads in terms of their JIT’ed code size, the number of

classes used and code coverage. We use transactions to

normalize the data because a transaction is a unit of work for

both workloads and it provides us a better picture in

characterizing the software evolution between the

benchmarks. However, it is important to note that one

transaction of SjAS04 is not equivalent to a transaction of

SjE10 since they are different workloads.

A. Number of classes loaded and size of the JIT’ed codes

A JVM JIT compiler is a code generator that converts

Java bytecodes (executed by the interpreter) into native

machine code. A JVM can use runtime profile to guide the

JIT compilation and re-optimize portion of the code to

generate more efficient codes. JIT compilation is usually

invoked only for the parts of an application which are

performance bottlenecks.

JIT’ed code sizes of SjAS04 and SjE10 are 87MB and

152MB, respectively. SjE10 has 74% larger JIT’ed code size

compared to SjAS04, which is an indication that the

workload has become more complex. Figure 1 compares the

number of classes used by SjAS04 and SjE10. As shown in

the Figure, Sj04 uses 10,431 classes and SjE10 uses 14,301

classes throughout their execution. This 34% increase in the

number of classes used also explains the major code size

increase in SjE10.

Figure 1 Comparison of the numbers of classes the benchmarks

use throughout the execution and at steady-state

Since a number of classes are used in the initialization of

these workloads, in Figure 1 we also compare the number of

the classes loaded for SjAS04 and SjE10 during steady state.

The number of classes in steady state is measured during a

10-minute sampling period. Since each transaction takes a

few seconds to complete for both benchmarks, the samples

cover all major code regions. The increase in the number of

classes loaded is more pronounced during steady state (59%

during steady state versus 34% overall). We can also see that

both workloads use a very small portion of their codes

during steady state: 5.3% for SjAS04 and 6.1% for SjE10.

B. Common and Unique Classes

To determine whether or not the code size change is

primarily due to the loaded classes that are unique to the

execution of workloads, we analyzed the common and

unique classes loaded by SjAS04 and SjE10 during the full

execution of the two workloads and compare them in

Table 2. Common classes are the ones that are common to

the execution of both workloads. Unique classes to SjE10

are only loaded during execution of SjE10, but are not

loaded during execution of SjAS04 and vice versa.

Results show that common class sizes also increase

significantly (from 65MB to 91MB) as well as the increase

in the number and sizes of unique classes. We believe the

reason for the increase in the size of the common classes that

are loaded during execution of both SjAS04 and SjE10 is

that the new workload exercises the new Java EE 5.0

standard and therefore new methods may be added to the

common classes to facilitate this support
1
. The Java EE

application server that we use supports both Java EE 1.3 and

5.0 standards.

Table 2 Common and Unique Classes Loaded

 SjAS04 SjE10

 count size Count size

Common 7453 65MB 7453 91MB

Unique 2978 22MB 6848 61MB

C. Code Coverage

Finally, based on which code module each class loaded at

steady state belongs to, we analyzed and categorized the

code in SjAS04 and SjE10 in Figure 2
2
. The data shows, at

the code level, in comparison with the SjAS04, smaller

proportion of the SjE10 code is the Java EE application

server (46% versus 29%) and application (7% versus 2%),

but a larger proportion of it is Java libraries (29% versus

34%).

1 We did not have access to the Java EE application server source code.

Therefore, we did not analyze this further.
2 The class profiling was done by using JVM Tool Interface. The tool does

not introduce noticeable performance interference.

Since only 7% and 2% of the classes loaded were from the

SjAS04 and SjE10 benchmarks, respectively, the

performance of the application codes themselves are

relatively less important to the overall system performance.

What is significant is how they utilize application server

features.

V. SYSTEM BEHAVIOR

This section focuses on the application system behavior

comparison, including CPU utilization, heap allocation rate,

and execution profiles between SjAS04 and SjE10. As in

Section IV, all the measured statistics shown in this section

are per transaction based.

A. Execution time breakdown

The software stack running on the application server

includes a variety of components – the OS, the Java

Application Server, the JVM, and other small components.

All the software components affect the workload execution

and the overall system behavior. To show the contributions

of major software components to the retired instruction

counts, we used Intel® VTune™ Performance Analyzer to

collect the execution profiles. The data is collected off the

garbage collection (GC) pause time to avoid the GC’s

impact on the execution profile. Due to the use of pause the

world GC, the execution profiles off and on the GC time

may behave differently, but the analysis of the execution

profile on the GC time can be performed in a similar way.

Figure 3 presents the execution time breakdowns for

SjAS04 and SjE10. We can see that both benchmarks have

similar execution time breakdown among the major software

components. The breakdown helps understand what software

components really take the execution resource and can be

the possible optimization targets. Java retires 74% of the

overall instructions for SjAS04 and 77.1% of the total

instructions for SjE10. The OS is the second largest

component and it weighs 20.3% and 15.8% of the retired

instructions for SjAS04 and SjE10, respectively. The

number of retired instructions by the JVM increases from

5.7% for SjAS04 to 7.1% for SjE10. Overall, we observe a

shift in the execution time from OS to Java code and JVM

(GC and JIT compilation) during steady state of the program

execution.

Figure 3 Breakdowns of execution time into Java (application

code, JVM (GC, JIT, etc.) and OS

B. CPU utilization

Figure 4 shows the breakdown of application server CPU

utilization for the two benchmarks. The kernel and user CPU

time breakdowns are very similar between the two

benchmarks.

Figure 4 CPU utilization breakdown among user time and

kernel time on both workloads

The kernel/user execution breakdown is 21.6%/78.4% for

SjAS04 and 20.4%/79.6% for SjE10. The two workloads

have different response time requirements and transaction

20.31% 15.83%

5.73%
7.08%

73.97% 77.09%

0%

20%

40%

60%

80%

100%

SjAS04 SjE10

Execution Time Breakdown

Java

JVM

OS

21.6% 20.4%

78.4% 79.6%

0%

20%

40%

60%

80%

100%

SjAS04 SjE10

CPU Utilizatio Breakdown

User

System

Figure 2 Code coverage: Categorization of the classes loaded into their functions.

queues, which can affect the kernel/user execution time

breakdown.

C. Allocation Rate

The memory usage is mainly due to the heap usage by

Java. SjE10 is about 1.7 times more demanding with 5.5

GB/sec compared to the 3.3 GB/sec for SjAS04. This is an

indication that SjE10 has a larger memory footprint.

VI. LOW-LEVEL CHARACTERISTICS

In addition to software optimizations, microarchitecture is

an important factor of the application server performance.

Understanding the microarchitecture performance

characteristics can help understand the strengths and the

weaknesses of the microarchitecture and design better future

processors. In this section, we examine and compare the

processor-independent microarchitecture performance

characteristics of SjAS04 and SjE10.

A. Path Length

The path length is the number of instructions retired per

transaction by the application server. Our data show that

SjE10 has a 47% larger path length than SjAS04.

B. Instruction type distribution

During a 10-minute sampling period in the steady state,

SjAS04 and SjE10 have similar distribution in instruction

types, as shown in Figure 5. The largest change observed is

the increase in the proportion of number of branches in

SjE10. Branch instructions correspond to 16.3% for SjAS04

and 19.6% of the instructions for SjE10.

Figure 5 Instruction type breakdown for both benchmarks

The increase in the proportion of branches is likely due to

the workload design changes. The distributions of PC-

relative branches, returns, and indirect branches are fairly

similar between the two benchmarks (data not shown).

Finally, we also observe a reduction in the proportion of

memory operations, from 43.9% for SjAS04 to 42.4% for

SjE10.

C. Memory Hierarchy

The changes in TLB behaviors from SjAS04 to SjE10 are

shown in Figure 6. The ITLB miss rate is about 61% higher

for large pages and 10% higher for small pages. SjE10 has

smaller DTLB miss rate – 10% smaller for small pages and

1% for large pages. Utilizing large pages for JIT’ed code and

other components of execution stack leads to additional

performance gain. However, address translation performance

of SjE10 suggests that there is room for improving ITLB hit

rates by implementing object locality optimizations.

Increasing the sizes of ITLBs so that they could better

maintain large working sets could further improve overall

performance.

Figure 7 shows the ratios of miss rates of different caches

between SjAS04 and SjE10. In both benchmarks, there is

much higher instruction cache miss rate than the data cache

miss rate (data not shown). SjE10 has 15% lower IL1 MPI

and 14% higher DL1 MPI than SjAS04. Also, L2 MPI is 8%

lower and LLC MPI is 12% higher for SjE10. The higher

LLC MPI indicates higher pressure on the memory

hierarchy, overall.

Figure 6 Ratio (SjE10/SjAS04) of instruction and data TLB

MPI (large and small pages)

Figure 7 Ratios (SjE10/SjAS04) of IL1, DL1, L2 and LLC MPIs

VII. RELATED WORK

SjE10 and SPECjAppServer-series (SjAS) benchmarks

are commercial benchmarks for evaluating the performance

of Java EE application server and the underlying hardware

platform. SjE10 [1] is a replacement of the SjAS04

benchmark. The previous SjAS versions include SjAS01

(derived from ECperf) [5], SjAS02 [6], and SjAS04 [2].

16.3%
19.6%

30.4% 29.7%

13.5% 12.7%

39.7% 37.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

SjAS04 SjE10

Instruction Type Distribution

Branch Load Store Rest

Overall, these workloads are important server benchmarks

that assist in the design of servers.

SPECjAppServer2004 benchmark has been widely

studied [7] [8] [9]. In [7], Su et al. studied and compared the

performance of SjAS04 and its predecessor, SjAS02. Their

findings show that the new benchmark, SjAS04 has higher

demand in system resources, such as network utilization and

heap usage. This trend also continues in the transition from

SjAS04 to SjE10. Shuf and Steiner [9] presented a detailed

investigation in the performance of SjAS04 on Power4

architecture. Their findings show that on the studied

platform, the system performance correlate more strongly to

branch mispredictions, translation misses, and I-cache

misses than the performance of other micro-architectural

components. In [8], Shiv et al. analyzed the performance of

SjAS04 on Intel Core 2 Duo platform. They concluded that

cache/memory overhead of the CMP architectures may be a

limiting factor of performance scaling. Based on their

findings, they proposed a hardware mechanism that could

potentially reduce cache misses. Stoodley [10] studied the

differences between SjAS04 and SPECjbb2000 and

SPECjvm98 applications. Their study of SjAS04 finds that

the workload has a flat method profile. We also observed

similar behavior for both SjAS04 and SjE10.

Earlier versions of SjAS benchmarks were also studied

extensively [11] [12] [13] [14] [15]. Chow et al. [14] studied

the variance of ECperf-like workloads and the relationship

between Java application workload implementations and

CPU designs. Karlsson et al. [13] performed a detailed

architectural level analysis of SjAS01. Karlsson et al. [11]

[12] also compared performance of SjAS01 with

SPECjbb2000 and investigated the effects of scaling on a

memory subsystem. Chow et al. [3] [15] developed a system

performance tuning methodology for SjAS01 and SjAS02.

Java based server workloads other than SjAS benchmarks

were also investigated by both academia and industry. Cain

et al. [16] implemented Java-based TPC-W and studied its

architectural behavior in both real systems and simulators.

Another Java based two-tier benchmark, VolanoMark, was

studied by Luo et al. [17]. The memory behavior and the

architecture influence of SPECjvm98 were investigated in

[18] and [19]. Finally, Li et al. [20] use a complete system

simulation to characterize SPECjvm98 benchmarks.

VIII. CONCLUSION

This paper presents a detailed comparison of a new

workload – SjE10 and its predecessor – SjAS04. Both

workloads are complex multi-tier Java EE application server

benchmarks. The two workloads are set up in the same

hardware and software configurations. The comparison is

performed when both workloads achieve similar application

server CPU utilizations. The analysis is based on three

layers: the high-level software characteristics, the system

behavior, and the low-level microarchitecture performance

characteristics.

Our data shows that at the code level, in comparison with

the SjAS04, a larger proportion of the SjE10 code is the Java

library, and Java EE application server and application code

are relatively smaller. Also, JIT’ed code size is much larger

compared to SjAS04 and a larger number of classes are

loaded and used during steady-state. At the system level,

SjE10 demands more system resources, such as heap

memory. The two workloads show similar execution profiles

with the SjE10 spending larger proportion of the execution

on Java code and JVM, but less execution time in OS code.

At the microarchitecural level SjE10 has a higher path

length. It also experiences higher percentage of LLC and

ITLB misses, and branch mispredictions.

REFERENCES

[1] [Online]. http://www.spec.org/jEnterprise2010/index.html

[2] [Online]. http://www.spec.org/jAppServer2004/index.html

[3] Kingsum Chow, Ricardo Morin, and Kumar Shiv, "Enterprise Java

Performance: Best Practices," Intel Technical Journal, 2003.

[4] J. Reinders, VTune Performance Analyzer Essential.: Intel Press, 2005.

[5] [Online]. http://www.spec.org/jAppServer2001/index.html

[6] [Online]. http://www.spec.org/jAppServer2002/index.html

[7] L. Su, K. Chow, K. Shiv, and A. Jha, "A Comparison of

SPECjAppServer2002 and SPECjAppServer2004," in Proc. of the

CAECW-8, 2005.

[8] K. Shiv et al., "Addressing Cache/Memory Overheads in Enterprise

Java CMP Servers," in Proc. of the 10th IISWC, 2007, pp. 66-75.

[9] Y. Shuf and I. M. Steiner, "Characterizing a Complex J2EE Workload:

A Comprehensive Analysis and Opportunities for Optimizations," in

Preceedings of the 2007 ISPASS, 2007, pp. 44-53.

[10] M. Stoodley, "Challenges to improving the performance of

middleware applications," in Presented at 3rd Workshop on Managed

Runtime Environments (MRE-3), 2005.

[11] K. Karlsson, K. Moore, E. Hagersten, and D. Wood, "Memory

characterization of the ECperf benchmark," in 2nd Annual Workshop

on Memory Performance Issues (WMPI), 2002.

[12] M. Karlsson, E. Hagersten, K. E. Moore, and D. A. Wood, "Exploring

processor design options for java-based Middleware," in Proceedings

of 34th ICPP, 2005.

[13] M. Karlsson, et al., "Memory system behavior of java-based

middleware," in Proceedings of the 9th HPCA, 2003.

[14] K. Chow, et al., "Characterization of Java Application Server

Workloads," in Preceedings of IEEE WWC-4, 2002, pp. 175-181.

[15] K. Chow and G. Deisher, "SPECjAppServer2002 Performance

Tuning," WebLogic Developer’s Journal, September 2003.

[16] H. Cain et al., "An Architectural Evaluation of Java TPC-W," in

Proceedings of the HPCA-7, 2001.

[17] Y. Luo et al., "Workload Characterization of Multithreaded Java

Servers," in Proceedings of the 2001 ISPASS, 2001.

[18] J. Kim and Y. Hsu, "Memory System Behavior of Java Programs:

Methodology and Analysis," in Proc. of SIGMETRICS'00, 2000.

[19] R. Radhakrishnan et al., "Architectural Issues in Java Runtime

Systems," in Proceedings of the 6th HPCA, 2000.

[20] T. Li et al., "Using complete system simulation to characterize

SPECjvm98 benchmarks," in Proceedings of ICS'02, 2000.

