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Abstract—The speculated execution of threads in a multithreaded architecture, plus the branch prediction used in each thread

execution unit, allows many instructions to be executed speculatively, that is, before it is known whether they actually will be needed by

the program. In this study, we examine how the load instructions executed on what turn out to be incorrectly executed program paths

impact the memory system performance. We find that incorrect speculation (wrong execution) on the instruction and thread-level

provides an indirect prefetching effect for the later correct execution paths and threads. By continuing to execute the mispredicted load

instructions even after the instruction or thread-level control speculation is known to be incorrect, the cache misses observed on the

correctly executed paths can be reduced by 16 to 73 percent, with an average reduction of 45 percent. However, we also find that

these extra loads can increase the amount of memory traffic and can pollute the cache. We introduce the small, fully associativeWrong

Execution Cache (WEC) to eliminate the potential pollution that can be caused by the execution of the mispredicted load instructions.

Our simulation results show that the WEC can improve the performance of a concurrent multithreaded architecture up to 18.5 percent

on the benchmark programs tested, with an average improvement of 9.7 percent, due to the reductions in the number of cache misses.

Index Terms—Speculation, multithreaded architecture, mispredicted loads, wrong execution, prefetching, wrong execution cache.
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1 INTRODUCTION

SEVERAL studies have proposed methods to exploit more
instruction and thread-level parallelism and to hide the

latency of the main memory accesses, including speculative
execution [6], [17], [24], [25], [26] and data prefetching [11],
[13], [14], [18], [27], [28], [29]. In this study, we have used
the SuperThreaded Architecture (STA) [2], which is a
concurrent multithreaded architecture [1], as our base
architecture model. The STA can exploit loop-level and
instruction-level parallelism from a broad range of applica-
tions. It consists of a number of thread processing elements
(superscalar cores) interconnected with some tightly inte-
grated communication network [2]. Each superscalar
processor core can use branch prediction to speculatively
execute instructions beyond basic block-ending conditional
branches. If a branch prediction ultimately turns out to be
incorrect, the processor state must be restored to the state
prior to the predicted branch and execution must be
restarted down the correct path. Simultaneously, a con-
current multithreaded architecture can aggressively fork
speculative successor threads to further increase the
amount of parallelism that can be exploited in an applica-
tion program. If a speculated control dependence turns out
to be incorrect, the nonspeculative head thread must kill all
of its speculative successor threads.

With both instruction and thread-level control specula-

tions, a multithreaded architecture may issue many

memory references which turn out to be unnecessary since

they are issued from what subsequently is determined to be

a mispredicted branch path or a mispredicted thread.

However, these incorrectly issued memory references may

produce an indirect prefetching effect by bringing data or

instruction lines into the cache that are needed later by

correctly executed threads and branch paths. On the other

hand, these additional memory operations will increase the

memory traffic and may pollute the cache with unneeded

blocks [3], [17].
Existing superscalar processors with deep pipelines and

wide issue units do allow memory references to be issued

speculatively down wrongly predicted branch paths. In this

study, however, we go one step further and examine the

effects of continuing to execute the loads issued from both

mispredicted branch paths and mispredicted threads even

after the speculative operation is known to be incorrect.

These instructions are marked as being from the mispre-

dicted branch path or a mispredicted thread when they are

issued so they can be squashed to prevent them from

altering the target register after they access the memory

system.
The execution of these extra loads can make a significant

performance improvement when there exists a large

disparity between the processor cycle time and the memory

speed. However, executing these loads can reduce the

performance in systems with small data caches and low

associativities due to cache pollution. This cache pollution

occurs when the loads from mispredicted branch paths and

mispredicted threads move blocks into the data cache that

are never needed by the correct execution paths. It is also

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005 1

. R. Sendag is with the Department of Electrical and Computer Engineering,
University of Rhode Island, 4 East Alumni Ave., Kingston, RI 02881.
E-mail: sendag@ele.uri.edu.

. Y. Chen and D.J. Lilja are with the Department of Electrical and Computer
Engineering, University of Minnesota, 200 Union St. S.E., Minneapolis,
MN 55455. E-mail: wildfire@ece.umn.edu, lilja@umn.edu.

Manuscript received 1 July 2003; revised 2 Apr. 2004; accepted 4 Aug. 2004;
published online 23 Feb. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0102-0703.

1045-9219/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



possible for the cache blocks fetched by these loads to evict
blocks that are still required by the correct paths.

We propose the Wrong Execution Cache (WEC) to
eliminate the potential cache pollution caused by executing
the wrong-path and wrong-thread loads. This small, fully
associative cache stores the values fetched by the wrong
execution loads plus the blocks evicted from the data cache.
This work shows that the execution of wrong-path or
wrong-thread loads with a WEC can produce a significant
performance improvement.

In the remainder of the paper, Section 2 presents an
overview of the STA [2], which is a concurrent multi-
threaded architecture used as the base architecture for this
study. Section 3 describes wrong execution loads and
Section 4 gives the implementation of the WEC in the base
processor. Our experimental methodology is presented in
Section 5 with the corresponding results given in Section 6.
Section 7 discusses some related work and Section 8
concludes.

2 THE SUPERTHREADED ARCHITECTURE

The superthreaded architecture (STA) integrates compila-
tion techniques and runtime hardware support to exploit
both thread-level and instruction-level parallelism in
programs [21], [22]. It uses a thread pipelining execution
model to enhance the overlap between threads.

2.1 Base Architecture Model

The STA consists of multiple thread processing units (TUs),
with each TU connected to its successor by a unidirectional
communication ring, as shown in Fig. 1. Each TU has its
own private level-one (L1) instruction cache, L1 data cache,
program counter, register file, and execution units. The TUs
share the unified second-level (L2) instruction and data
cache. A private memory buffer is used in each TU to cache
speculative stores for runtime data dependence checking.

Whenmultiple threads are executingonanSTAprocessor,
the oldest thread in the sequential order is called the head
thread andall other threadsderived from it are called successor
threads. The program execution starts from its entry thread
while all other TUs are idle. When a parallel code region is
encountered, this thread activates its downstream thread by

forking. It also transfers all the data the downstream thread
needs for one iteration of the loop. This forking continues
until there are no idle TUs. When all TUs are busy, the
youngest thread delays forking another thread until the head
thread retires and its corresponding TU becomes idle. A
threadcanbe forkedeither speculativelyornonspeculatively.
A speculatively forked thread will be aborted by its
predecessor thread if the speculative control dependence
subsequently turns out to be false.

2.2 Thread Pipelining Execution Model

The execution model for the STA architecture is thread
pipelining, which allows threads with data and control
dependences to be executed in parallel. Instead of spec-
ulating on data dependences, the thread execution model
facilitates runtime data dependence checking for load
instructions. This approach avoids the squashing of threads
caused by data dependence violations. It also reduces the
hardware complexity of the logic needed to detect memory
dependence violations compared to some other CMA
execution models [4], [5]. As shown in Fig. 2, the execution
of a thread is partitioned into the continuation stage, the
target-store address-generation (TSAG) stage, the computation
stage, and the write-back stage.

The main function of the continuation stage is to
compute recurrence variables such as loop index variables
needed to fork a new thread on the next thread unit. This
stage ends with a fork instruction, which initiates a new
speculative or nonspeculative thread on the next TU. The
abort instruction is used to kill the successor threads when it
is determined that a speculative execution was incorrect.
Note that the continuation stages of two adjacent threads
can never overlap.

The TSAG stage computes the addresses of store instruc-
tions on which later concurrent threads may have data
dependences. These special store instructions are called
target stores and are identified using conventional data
dependence analysis. The computed addresses are stored in
the memory buffer of each TU and are forwarded to the
memory buffers of all succeeding concurrent threads units.

The computation stage performs the actual computation
of the loop iteration. Loads on addresses that may have
cross-iteration dependences, as previously identified by the
target stores, are checked against the addresses in a TU’s
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Fig. 1. A superthreaded architecture processor with four thread units.
Fig. 2 The thread pipelining execution model.



memory buffer. If a dependence is detected, but the data
has not yet arrived from the upstream thread, the out-of-
order superscalar core will execute instructions that are
independent of the load operation that is waiting for the
upstream data value. This stalled load will be executed after
the dependent value is passed from the upstream thread.

In the write-back stage, all the store data (including
target stores) in the memory buffer will be committed and
written to the memory hierarchy. The write-back stages are
performed in the original program order to preserve
nonspeculative memory state and to enforce output and
antidependences between threads.

2.3 An Example Superthreaded Program

The example code segment shown in Fig. 3a is one of the
most time-consuming loops in the SPEC2000 benchmark
181.mcf. This is a for-loop with exit conditions in the loop
head. There is potential read-after-write data dependence
across loop iterations caused by variable basket_size.

The transformed STA code is shown in Fig. 3b. In the
continuation stage, loop index arc is increased and forwarded
to the next thread-processing unit with a ST_STORE_TS_W
instruction. The original value is stored in temp_arc for later
use. The continuation stage ends with an ST_LFORK
instruction to fork a new thread speculatively without
checking loop exit condition. The address of the variable
basket_size is forwarded to the next thread in the TSAG stage
by an ST_ALLOCATE_TS_W instruction. In the computation
stage, the loopexitcondition ischecked. If it is true, itwillabort
thesuccessor threadsby instruction, anST_ABORT_FUTURE
instruction, which causes the control flow to jump out of the
loop.Otherwise, the threadunitwill continue computation in
the loop body. The update of the variable basket_size is
performedwith an ST_STORE_TS_W instruction, which will
forward the result to the next thread. If the exit condition is

false, the thread unit will execute an ST_END_REGION
instruction. This instruction will force a write-back of the
contents of the memory buffer back to the shared main
memory.

3 WRONG EXECUTION

There are two types of wrong execution that can occur in a
concurrent multithreaded architecture such as the STA
processor. The first type occurs when instructions continue
to be issued down the path of what turns out to be an
incorrectly predicted conditional branch instruction within
a single thread. We refer to this type of execution as wrong-
path execution. The second type of wrong execution occurs
when instructions are executed from a thread that was
speculatively forked, but is subsequently aborted. We refer
to this type of incorrect execution as wrong-thread execution.
Our interest in this study is to examine the effects on the
memory hierarchy of load instructions that are issued from
both of these types of wrong executions.

3.1 Wrong-Path Execution

Before a branch is resolved, some load instructions on
wrongly predicted branches may not be ready to be issued
because they are waiting either for the effective address to
be calculated or for an available memory port. In wrong
path execution, however, they are allowed to access the
memory system as soon as they are ready even though they
are known to be from the wrong path. These instructions
are marked as being from the wrong execution path when
they are issued so they can be squashed in the pipeline at
the write-back stage. A wrong-path load that is dependent
upon another instruction that gets flushed after the branch
is resolved also is flushed in the same cycle. In this manner,
the processor is allowed to continue accessing memory with
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Fig. 3. (a) An example code segment from 181.mcf and (b) its transformed superthreaded code.



loads that are known to be from the wrong branch path. No
store instructions are allowed to alter the memory system,
however, since they are known to be invalid.

An example showing the difference between traditional
speculative execution and our definition of wrong-path
execution is given in Fig. 4. In this example, there are five
loads (A, B, C, D, and E) fetched down the predicted
execution path. In a typical pipelined processor, loads A
and B become ready and are issued to the memory system
speculatively before the branch is resolved. After the branch
result is known to be wrong, however, the other three loads,
C, D, and E, are squashed before being able to access the
memory system.

In a system with wrong-path execution, however, ready
loads are allowed to continue execution (loads C and D in
Fig. 4) in addition to the speculatively executed loads (A
and B). These wrong-path loads are marked as being from the
wrong path and are squashed later in the pipeline to
prevent them from altering the destination register. How-
ever, they are allowed to access the memory to move the

value read into the levels of the memory hierarchy closer to
the processor. Since load E is not ready to execute by the
time the branch is resolved, it is squashed as soon as the
branch result is known.

3.2 Wrong-Thread Execution

When executing a loop in the normal execution mode of the
superthreaded execution model described in Section 2, the
head thread executes an abort instruction to kill all of its
successor threads when it determines that the iteration it is
executing satisfies the loop exit condition. To support
wrong-thread execution in this study, however, the succes-
sor threads are marked as wrong threads instead of killing
them when the head thread executes an abort. These
specially marked threads are not allowed to fork new
threads, yet they are allowed to continue execution. As a
result, after this parallel region completes its normal
execution, the wrong threads continue execution in parallel
with the following sequential code. Later, when the wrong
threads attempt to execute their own abort instructions, they
kill themselves before entering the write-back stage.

If the sequential region between two parallel regions is
not long enough for the wrong threads to determine that
they are to be aborted before the beginning of the next
parallel region, the begin instruction that initiates the next
parallel region will abort all of the still-executing wrong
threads from the previous parallel region. This modification
of the begin instruction allows the head thread to fork
without stalling. Since each thread’s store data are put in a
speculative memory buffer local to each TU and wrong
threads do not execute their write-back stages, no stores
from the wrong threads can alter the shared memory.

Fig. 5 shows this wrong-thread execution model with
four TUs. Although wrong-path and wrong-thread execu-
tion have similarities, the main difference between them is
that, once a branch is resolved, the ready loads that are not
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Fig. 4. The difference between speculative and wrong-path execution.

Fig. 5. The wrong-thread execution model with four TUs.



yet ready to execute on a wrong path are squashed, while

wrong-thread loads are allowed to continue their execution.

3.3 Using Wrong Execution to Prefetch Data
in the STA

In this section, we present two fabricated code examples to

show how wrong execution can help improve the perfor-

mance of a superscalar and a multithreaded architecture

processor. While these examples do not show all of the

benefits of incorrect speculation, they do demonstrate the

sources of much of the potential of wrong execution.

3.3.1 Prefetch by Wrong-Path Execution within a TU

In the example in Fig. 6, a misprediction on condition B

causes the program to break the while loop and begin

fetching from the end of the loop. Loads a, b, c, and d then

are fetched speculatively. Loads a and b are issued

speculatively before the branch result is known. On the
other hand, loads c and d are ready to be issued to the
memory system by the time branch is resolved. Since the
prediction is determined to be wrong, the processor must
squash these two loads before they are issued. However,
they are marked as being issued in a wrong execution
mode. If loads c and d miss in the cache, their results are
moved into the data cache. Meanwhile, the execution
continues with the instruction that follows the branch
condition. After the while-loop exits normally, loads c and d
will be requested down the correct execution path. The
values of these loads have already been brought into the
cache by the previous wrong execution. This is only one
example to show how wrong-path execution can help in
hiding the memory latency.

3.3.2 Prefetch by Wrong-Thread Execution in the STA

It might be counter intuitive that executing the wrong
threads can produce any benefit since the parallelization is
based on loop iterations and wrong threads execute the
wrong iterations. However, in the case of nested loops, the
wrong iterations of the inner loop may actually need to be
executed in later iterations of the outer loop. A similar
situation may occur with nonnested loops since the wrong
iterations from one loop could move data into the caches for
use by the correct iterations of subsequently executed loops.

Fig. 7a shows a code segment in which the inner loop is
parallelized, while Fig. 7b shows the threads that are
spawned. We can see that, when i ¼ 4, y½4� is loaded down
the wrong thread. In the next iteration, when i ¼ 5, y½4� is
accessed down the correctly forked thread. The wrong-
thread execution prior to the correct thread’s execution, in
this case, will help in hiding the latency when reading y½4�.

4 WRONG EXECUTION CACHE

The indirect prefetching effect provided by the execution of
loads down the wrong paths and the wrong threads may be
able to reduce the number of subsequent correct-path
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Fig. 6. Wrong-Path Execution. The prediction on condition B (1) breaks
the while-loop. Loads c and d are issued (4) to the cache memory,
however, even after the prediction result is known to be wrong (3).
These loads might bring data blocks closer to the processor to assist the
subsequent execution of these same loads down the correct path when
the while-loop exits normally. Note that c and d are not written within the
loop.

Fig. 7. Wrong-Thread Execution: (a) An example code segment in which the inner loop is parallelized. (b) Threads spawned and loads issued down
correctly and incorrectly forked threads. When i ¼ 4, j ¼ 0; 1; 2; 3, and y½0�, y½1�, y½2�, and y½3� are loaded down the correctly forked threads executing
in TU2, TU3, TU4, and TU1, respectively. On the other hand, y½4� and y½5� are issued to the cache system down the wrongly forked threads executing
in TU2 and TU3, respectively. When i ¼ 5, j ¼ 0; 1; 2; 3; 4, and y½0�, y½1�, y½2�, y½3�, and y½4� are loaded down the correctly forked threads. Since the
result of y½4� has already been brought into TU2’s L1 data cache by the wrongly forked thread’s execution in the previous iteration of the loop (for
i ¼ 4), the request for y½4� by TU2’s processor (when i ¼ 5) can be serviced faster than when the incorrectly forked threads are not allowed to
continue executing.



misses. However, these additional wrongly executed loads
also may reduce the performance since the cache pollution
caused by these loads might offset the benefits of their

indirect prefetching effect. This cache pollution can occur
when the wrong execution loads move blocks into the data
cache that are never needed by the correct execution path. It
is also possible for the cache blocks fetched by the wrong
execution loads to evict blocks that are still required by the

correct path. This effect is likely to be more pronounced for
low-associativity caches. In order to eliminate this cache
pollution, we introduce the Wrong Execution Cache (WEC).

4.1 Basic Operation of the WEC

The WEC is used to store cache blocks fetched by wrong
execution loads separately from those fetched by loads
known to be issued from the correct path, which are stored

in the regular L1 data cache. The WEC is accessed in
parallel with the L1 data cache. Only those loads that are
known to be issued from the wrong execution path, that is,
after the control speculation result is known, are handled by
the WEC. The data blocks fetched by loads issued before the

control speculation is cleared are put into the L1 data cache.
After the speculation is resolved, however, a wrong
execution load that causes a miss in both the L1 data cache
and the WEC will cause an access to be made to the next
level memory. The required block is moved into the WEC to

eliminate any cache pollution that might be caused by the
wrong execution load. If a load causes a miss in the L1 data
cache, but a hit in the WEC, the block is simultaneously
transferred to both the processor and the L1 data cache.

A load from the correct path that hits on a block

previously fetched by a wrong execution load also initiates
a next-line prefetch. The block fetched by this next-line
prefetch is placed into the WEC. When a correct-execution
load causes a miss, the data block is moved into the L1 data
cache instead of the WEC, as would be done in a standard
cache configuration. The WEC also acts as a victim cache

[11] by caching the blocks evicted from the L1 cache by
cache misses from the correct execution path. In summary,
the WEC is a combination of a prefetch buffer for wrong
execution loads and a victim cache for evictions from the L1
data cache. The placement of the WEC in the memory

hierarchy is shown in Fig. 8 and its operation is summar-
ized in Fig. 9.

4.2 Discussion: Future Considerations for WEC

The speculative loads before the branch resolution are

placed into L1 data cache as discussed in the previous

sections. Only loads that are known to be issued from

wrong paths or wrong threads are placed into WEC. Our

algorithm can easily be extended to the case where WEC is

capable of storing the results of speculative loads before

they are known to be from the wrong paths or wrong

threads. This can be done by adding a mechanism such as

the Load Miss Queue (LMQ) in the Alpha21264 and the

IBM Power 4. The Alpha 21264 and the IBM Power4, both

incorporate a load miss queue (LMQ) to keep track of L1

cache misses. Instructions are flushed from the pipeline

when a branch misprediction occurs. However, entries in

the LMQ are simply marked instead of being flushed. When

the data returns for an entry that is marked in the LMQ, it is

put into the L1 cache, but it is not written to the register file.

In the WEC design presented in this paper, we go one step

further than existing processors by intentionally continuing

to execute as many ready loads as possible down the

mispredicted branch path and mispredicted thread even

after the speculative operation is known to be wrong. A

mechanism such as the LMQ can be used to determine

whether a value should be put into the WEC after the miss

is serviced rather than making this decision at issue time.

This delay in determining what should be placed in the

WEC should further increase its potential performance. In

this study, however, our intent was to show the potential of

our definition of wrong execution. The specific improve-

ments to help its performance were left to be considered in

future.

4.3 Incorporating the WEC into the STA

Each TU in the STA used in this study has its own private L1

data cache. In addition, a private WEC is placed in parallel

with each of the L1 caches. To enforce coherence among the

caches during the execution of a parallel section of code, all

possible data dependences in a thread’s execution path are

conservatively identified.Thesepotentially shareddata items

are stored in each TU’s private speculative memory buffer

until thewrite-back stage is executed. Updates to shared data

items made by a thread during the execution of a parallel
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Fig. 8. The placement of the Wrong Execution Cache in the memory

hierarchy.

Fig. 9. Flowchart of a WEC access.



section of code are passed to downstream threads via a
unidirectional communication ring.

During sequential execution, a simple update protocol is
used to enforce coherence. When a cache block is updated
by the single thread executing the sequential code, all the
other idle threads that cache a copy of the same block in
their L1 caches or WECs are updated simultaneously using
a shared bus. This coherence enforcement during sequential
execution creates additional traffic on the shared bus. This
traffic is directed only to what would otherwise be idle
caches, however, and does not introduce any additional
delays.

5 EXPERIMENTAL METHODOLOGY

This study uses the SIMCA (SImulator for Multithreaded
Computer Architecture) simulator [7] to model the perfor-
mance effects of incorporating the WEC into the STA. This
simulator is based on the cycle-accurate SimpleScalar
simulator, sim-outorder, version 3.0 [9]. SIMCA is execution
driven and performs both functional and timing simulation.

5.1 TU parameters

Each TU uses a 4-way associative branch target buffer with
1,024-entries and a fully associative speculative memory
buffer with 128 entries. The distributed L1 instruction
caches are each 32KB and 2-way associative. The default
unified L2 cache is 512KB, 4-way associative, with a block
size of 128 bytes, although we do experiment with other
L2 cache sizes where noted. The round-trip memory latency
is 200 cycles. The L1 cache parameters are varied as
described in Section 6.

The time required to initiate a new thread (the fork
delay) in the STA includes the time required to copy all of
the needed global registers to a newly spawned thread’s
local register file and the time required to forward the
program counter and the necessary target-store addresses
from the memory buffer. We use a fork delay of four cycles
[2] in this study plus two cycles per value to transfer data
between threads after a thread has been forked.

5.2 Benchmark Programs

Four SPEC2000 integer benchmarks (vpr, gzip, mcf, parser)
and two SPEC2000 floating-point benchmarks (equake, mesa)
are evaluated in this study. All of these programs are
written in C. The compiler techniques shown in Table 1
were used to manually parallelize these programs for
execution on the STA following the steps that would be
applied by an actual compiler [20]. The loops chosen for
parallelization were identified with runtime profiling as the
most time-consuming loops in each program. Table 2 shows
the fraction of each program that we were able to
parallelize.

The GCC compiler, along with modified versions of the
GAS assembler and the GAD loader, were used to compile
the parallelized programs. The resulting parallelized binary
code was then executed on the simulator. Fig. 10 shows the
complete compilation process. Each benchmark was opti-
mized using optimization level O3 and run to completion.
To keep simulation times reasonable, the MinneSPEC [16]
reduced input sets were used for several of the benchmark
programs, as shown in Table 2.

5.3 Processor Configurations

The following STA configurations are simulated to deter-
mine the performance impact of executing wrong-path and
wrong-thread loads and the performance enhancements
attributable to the WEC.

orig: This is the baseline supertheaded architecture
described in the previous sections.

vc: This configuration adds a small fully-associative
victim cache in parallel with the L1 data cache to the orig
configuration.

wp: This configuration adds more aggressive speculation
to a TU’s execution as described in Section 3.1.

wth: This configuration is described in detail in Section 3.2.
To summarize, speculatively forked threads in this config-
uration are allowed to continue execution even after they are
known to have been mispredicted. Wrong threads are
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TABLE 1
Program Transformations Used in Manually Transforming

the Benchmark Programs Tested to the
Thread-Pipelining Execution Model

TABLE 2
The Dynamic Instruction Counts of the Benchmark Programs Used in this Study

and the Fraction of These Instructions that Were Executed in Parallel



squashedbefore they reach thewrite-back stageof the thread-
execution pipeline to prevent wrongly executed loads from
altering the target register. Since each thread’s store data is
put into the speculative memory buffer during a thread’s
execution andwrong threads cannot execute theirwrite-back
stages, nowrong-thread store alters thememory system. The
speculative load execution within a correct TU (superscalar
core) remains the same in this configuration as in the orig
configuration.

wth-wp: This is a combination of the wp and wth
configurations.

wth-wp-vc: This configuration is the wth-wp configuration
with the addition of a victim cache. It is used to compare
against the performance improvement made possible by
caching thewrong-path andwrong-thread loads in theWEC.

wth-wp-wec: This is the wth-wp configuration with the
addition of a small, fully associative WEC in parallel with
each TU’s L1 data cache. The details of the WEC are given
in Section 4.1.

nlp: This configuration implements next-line tagged
prefetching [12] with a fully associative prefetch buffer, but
without anyother formof speculative execution.Aprefetch is
initiated on a miss and on the first hit to a previously
prefetched block. The results of these prefetches are put into
the prefetch buffer. Tagged prefetching has previously been
shown to be more effective than prefetching only on a miss
[13]. The model is very similar to the stream buffer first
proposed by Farkas et al. [24], but without enhancements
such as allocation filters and hardware support for dynamic
strides. There are enhancements that could be made to both
the prefetch buffer used here and the WEC, but a more
detailed comparison of these enhancements is beyond the
scope of this paper. We have used this configuration to
compare against the ability of the WEC to successfully
prefetch blocks that will be used by subsequently executed
loads issued from a correct execution path.

6 EVALUATION OF SIMULATION RESULTS

We first examine the baseline performance of the STA,
followed by an evaluation of the performance of the WEC
when using different numbers of TUs. The effects of wrong
execution, both with and without a WEC, on the perfor-
mance of the STA are subsequently examined. We also
study the sensitivity of the WEC to several important
memory system parameters and analyze the reduction in
the number of L1 data cache misses and the increase in the
memory traffic due to the WEC.

The overall execution time is used to determine the
percentage change in performance of the different config-
urations tested relative to the execution time of the baseline
configuration. Average speedups are calculated using the

execution time weighted average of all of the benchmarks
[10]. This weighting gives equal importance to each bench-
mark program independent of its total execution time.

6.1 Baseline Performance of the STA

The systemparameters used to test the baseline performance,
and todetermine theamountofparallelismactually exploited
in the benchmark programs [8] are shown in Table 3. The size
of the distributed 4-way associative L1 data cache in each TU
is scaled from2K to32Kas thenumberofTUs isvaried tokeep
the total amount of L1 cache in the system constant at 32K.

The baseline for these initial comparisons is a single-
thread, single-issue processor which does not exploit any
parallelism. The single-thread-unit, 16-issue processor
corresponds to a very wide issue superscalar processor
that is capable of exploiting only instruction-level paralle-
lism. In the 16TU superthreaded processor, each thread can
issue only a single instruction per cycle. Thus, this
configuration exploits only thread-level parallelism. The
other configurations exploit a combination of both instruc-
tion and thread-level parallelism. Note that the total
amount of parallelism available in all of these configura-
tions is constant at 16 instructions per cycle.

Fig. 11 shows the amount of instruction and thread-level
parallelism in the parallelized portions of the benchmarks
to thereby compare the performance of the superthreaded
processor with a conventional superscalar processor. The
single TU configuration at the left of each set of bars is
capable of issuing 16 instructions per cycle within the single
thread. As you move to the right within a group, there are
more TUs, but each can issue a proportionally smaller
number of instructions per TU so that the total available
parallelism is fixed at 16 instructions per cycle.

In these baseline simulations, 164.gzip shows high
thread-level parallelism with a speedup of 14x for the
16TU X 1-issue configuration. A 1TU X 16-issue configura-
tion gives a speedup less than 4x when executing this
program. The 175.vpr benchmark appears to have more
instruction-level parallelism than thread-level parallelism
since the speedup of the parallelized portion of this
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Fig. 10. The compilation process for generating parallelized superthreaded code for the simulations.

TABLE 3
Simulation Parameters Used for Each TU



program decreases as the number of TUs increases. For
most of the benchmark programs, the performance tends to
improve as the number of TUs increases. This behavior
indicates that there is more thread-level parallelism in the
parallelized portions of the benchmark programs than
simple instruction-level parallelism.

In the caseswhere thepure superscalarmodel achieves the
best performance, it is likely that the clock cycle time of the
very wide issue superscalar processor would be longer than
the combinedmodels or the pure superthreadedmodel. This
increase in cycle time would occur since the 16-issue super-
scalar model would require a very large instruction reorder
buffer for dynamic instruction scheduling. On average, we
see that the thread-level parallelization tends to outperform
the pure instruction-level parallelization.

6.2 Performance of the Superthreaded Processor
with the WEC

Based on the results in the previous section and considering
what is expected for future processor development, we use
eight TUs, where each TU is an 8-issue out-of-order
processor, in the remainder of the study. In some of the
experiments, however, we vary the number of TUs to study
the impact of varying the available thread-level parallelism
on the performance of the WEC.

Each of the TUs has a load/store queue size of 64 entries.
The reorder buffer also is 64 entries. The processor has eight

integer ALU units, four integer multiply/divide units, eight
floating-point (FP) adders, and four FP multiply/divide
units. The default L1 data cache in each TU is 8KB, direct-
mapped, with a block size of 64 bytes. The default WEC has
eight entries and is fully associative with the same block
size as the L1 data cache.

Since our focus is on improving the performance of on-
chip direct-mapped data caches in a speculative multi-
threaded architecture, most of the following comparisons
for the WEC are made against a victim cache. We also
examine the prefetching effect of wrong execution with the
WEC by comparing it with next-line tagged prefetching.

Fig. 12 shows the performance of the wth-wp-wec
configuration as the number of TUs is varied. Each TU is
an 8-issue out-of-order processor in Figs. 12 and 13. So, as
the number of TUs increases, the total issue width increases.
The results are for the entire benchmark program, not just
the parallelized loops. The baseline is the orig configuration
with a single TU. We see that the speedup of the wth-wp-wec
configuration can be as much as 39.2 percent (183.equake).
For most of the benchmarks, we see that even a two-thread-
unit wth-wp-wec performs better than the orig configuration
with 16 TUs.

The single-thread wth-wp-wec configuration shows that
adding the WEC to the STA can improve the performance
significantly, up to 10.4 percent for 183.equake, for instance.
When more than one TU is used, we see even greater
improvements when using the WEC due to the larger
number of wrong loads issued by executing the wrong
threads. For example, in Fig. 13, we see that the perfor-
mance of 181.mcf improves from 6.2 percent compared to
the baseline configuration when executing with a single TU
to a 20.2 percent increase over the baseline configuration
when using 16 TUs. On average, the performance of the
wth-wp-wec configuration increases with the number of
threads because the total size of the WEC and the L1 cache
increases in the parallel configurations, although the ratio of
the WEC size to the L1 data cache size remains constant.
Once the total cache and WEC sizes match the benchmark’s
memory footprint, the performance improvement levels off.

The 175.vpr program slows down on the orig configura-
tion compared to the single-thread performance because
there is not enough overlap among threads when using
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Fig. 11. Performance of the superthreaded processor for the parallelized

portions of the benchmarks with the hardware configurations shown in

Table 3. The baseline configuration is a single-threaded, single-issue

processor.

Fig. 12. Performance of the entire benchmark programs as the number of TUs is varied. The baseline processor is a superthreaded processor with a

single TU. Each TU is an 8-issue out-of-order processor.



more than one TU. As a result, the superthreading overhead
overwhelms the benefits of executing the program in
parallel. The 181.mcf program also shows some slowdown
for two and four TUs because of contention for thread units.

Figs. 12 and 13 showed the performance improvement
obtained by executing wrong-path and wrong-load instruc-
tions with aWEC in each TU as the total number of available
TUs was varied. Fig. 14, in contrast, compares the relative
speedup obtained by all of the different processor configura-
tions described in Section 4.3 compared to the baseline
processor, orig. All of these configurations use eight TUs.

We see from this figure that the combination of wrong
execution plus the WEC (wth-wp-wec) gives the greatest
speedup of all the configurations tested. The use of only
wrong-path or wrong-thread execution alone or in combina-
tion (wp, wth, or wth-wp) provides very little performance
improvement. When they are used together (wth-wp), for
instance, the best speedup is only 2.2 percent (for 183.equake),
while there is some slowdown for 177.mesa. It appears that the
cache pollution caused by executing thewrong loads in these
configurations offsets the benefit of their prefetching effect.
When the WEC is added, however, the cache pollution is
eliminated, which produces speedups of up to 18.5 percent

(181.mcf), with an average speedup of 9.7 percent. Compared

to a victim cache of the same size, the configurations with the

WEC show substantially better performance.While theWEC

(wth-wp-wec) and the victim cache (wth-wp-vc) both reduce

conflict misses, the WEC further eliminates the pollution

caused by executing loads from the wrong paths and the

wrong threads. The WEC also performs better than conven-

tional next-line tagged prefetching (nlp) with the same size

prefetch buffer. Note that the extra hardware cost of both

configurations would be approximately the same. On

average, conventional next-line prefetching (nlp) produces a

speedupof 5.5percent,while theWEC(wth-wp-wec)produces

a speedup of 9.7 percent.

6.3 The Overhead Due to the Wrong Execution

The overhead of wrong execution is shown in Figs. 15 and

16. Fig. 15 shows the percentage of extra threads executed

that are wrong threads. On average, there is a 3.2 percent

increase in the number of threads executed due to wrong-

thread execution compared to when not allowing wrong-

thread execution. The execution of these wrong threads is

overlapped with the execution of the following sequential

code. As a result, these wrong threads do not compete for

hardware resources with the single correct execution thread

since the wrong threads are executing on what would

otherwise be idle thread units.
Fig. 16 shows that the performance increase from execut-

ingwrong threads comesat the cost of an increase in the traffic

between theprocessorand theL1cache.This increase in cache

traffic is a side effect of issuing more load instructions from

both the wrong execution path and the mis-speculated

threads. This traffic increase can be as high as 30 percent in

175.vpr,with an average increase of 14percent. This relatively

small average increase in cache traffic would appear to be

more than offset by the increase in performance provided by

using the WEC, though. Fig. 16 also shows that the WEC can

significantly reduce the number of misses in the L1 data

cache. This reduction is as high as 73 percent for 177.mesa,

although the miss count reduction for 181.mcf is not as

significant as the others.
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Fig. 13. Performance of the wth-wp-wec configuration on top of the
parallel execution. The baseline processors are one to 16-TU super-
threaded processors, with the number of TUs corresponding to the
number of threads used in the wth-wp-wec configuration. Each TU has
an 8-issue core.

Fig. 14. Relative speedups obtained by the different processor configurations’ parallel execution with eight TUs. The baseline is the original

superthreaded parallel execution with eight TUs.



6.4 Quantifying Useful Data in the WEC

In Figs. 17 and 18, we show the amount of wrong-path and

wrong-thread data in WEC and how much of it is used.

Fig. 17 shows the WEC data saved from wrong paths and

wrong threads. We can see that the amount of data that are

moved into WEC by wrong-thread execution is negligible

compared to the amount that are moved by wrong-path

execution. The only exceptions are 183.equake and 181.mcf

with 13 percent and 4 percent, respectively. However, the

fraction of dynamic instructions in the benchmarks that

were executed in parallel is also low for most of the

benchmarks (see Table 2 in Section 5.1).
From Fig. 18, we see that approximately 32-60 percent of

the blocks that are moved into the WEC are used before

being evicted by subsequent accesses. However, not all of

these accesses are useful to the correct execution path. The

lighter portion of each bar in this figure shows the fraction

of all of the blocks accessed in the WEC that are actually

used by loads issued from the correct execution path. For

181.mcf, for example, 52 percent of the blocks in the WEC

are accessed before being evicted. Furthermore, of these

blocks, only 25 percent are actually useful to the execution

of the correct branch path. This result suggests that there is

space for improvement since the pollution in WEC can also

be reduced. However, we did not consider a filtering

mechanism to improve the effectiveness of WEC in this

study.

6.5 Sensitivity Analysis

In this section, we study the effects of varying the L1 data
cache associativity, the L1 data cache size, and the shared
L2 cache size on the performance of the WEC. Each
simulation in this section uses eight TUs.

6.5.1 Impact of the L1 Data Cache Associativity

Increasing the L1 cache associativity typically tends to
reduce the number of L1 misses for both correct execution
[14] and wrong execution [3]. The reduction in misses in the
wrong execution paths reduces the number of indirect
prefetches issued during wrong execution, which then
reduces the performance improvement from the WEC, as
shown in Fig. 19. The baseline configuration is this figure is
the orig processor with a direct-mapped and 4-way
associative L1 data corresponding to the direct-mapped
and 4-way WEC results. When the associativity of the L1
cache is increased, the speedup obtained by the victim
cache (vc) disappears. However, the configuration with the
wrong execution cache, wth-wp-wec, still provides signifi-
cant speedup. This configuration also substantially outper-
forms the wth-wp-vc configuration, which issues loads from
the wrong execution paths, but uses a standard victim cache
instead of the WEC.

6.5.2 The Effect of the L1 Data Cache Size

Fig. 20 shows the speedups for the orig and wth-wp-wec
configurations when the L1 data cache size is varied. The
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Fig. 15. Percentage of extra threads executed due to wrong-thread

execution. The baseline is the total number of executed threads when

not allowing wrong-thread execution.

Fig. 16. Increases in the L1 cache traffic and the reduction in L1 misses

when using wrong-thread execution.

Fig. 17. The percentage of the wrong-execution blocks in WEC saved

from Wrong Thread (WTH) or Wrong Path (WP).

Fig. 18. Percentage of the blocks that are moved into the WEC that are

used before being evicted. The proportion of hits used by the Wrong

Execution (WE) and the Correct Execution (CE) are also given.



baseline for the comparison is the orig configuration with
4K L1 data cache. The speedups by wth-wp-wec are layered
on top of the corresponding non-wth-wp-wec ones (orig). We
see that the relative speedup produced by the WEC (wth-
wp-wec) decreases as the L1 data cache size is increased.
Note, however, that the WEC size is kept constant
throughout this group of simulations so that the relative
size of the WEC compared to the L1 data cache is reduced
as the L1 size is increased. With a larger L1 cache, the
wrong execution loads produce fewer misses compared to
the configurations with smaller caches. The smaller number
of misses reduces the number of potential prefetches
produced by the wrong execution loads, which thereby
reduces the performance impact of the WEC.

We can see from Fig. 20 that, for all of the test programs,
a small 8-entry WEC with an 8K L1 data cache exceeds the
performance of the baseline processor (orig) when the cache
size is doubled, but without the WEC. Furthermore, on
average, the WEC with a 4K L1 data cache performs better
than the baseline processor with a 32K L1 data cache. These
results suggest that incorporating a WEC into the processor
is an excellent use of chip area compared to simply
increasing the L1 data cache size.

6.5.3 The Effect of the WEC Size

Fig. 21 shows that, in general, the configuration that is
allowed to issue loads from both the wrong paths and the
wrong threads with a 4-entry victim cache (wth-wp-vc)

outperforms the orig configuration with a 16-entry victim
cache. Furthermore, replacing the victim cachewith a 4-entry
WEC causes the wth-wp-wec configuration to outperform the
configuration with a 16-entry victim cache, wth-wp-vc. This
trend is particularly significant for 164.gzip, 181.mcf, and
183.equake.

Fig. 22 compares the WEC approach to a tagged
prefetching configuration that uses a prefetch buffer that
is the same size as the WEC. It can be seen that the wth-wp-
wec configuration with an 8-entry WEC performs substan-
tially better than traditional next-line prefetching (nlp) with
a 32-entry prefetch buffer. This result indicates that the
WEC is actually a more efficient prefetching mechanism
than a traditional next-line prefetching mechanism.

7 RELATED WORK

Pierce and Mudge [17] suggested that the additional loads
issued from mispredicted branch paths could provide some
performance benefits and proposed a wrong-path instruc-
tion prefetching scheme [18] in which instructions from
both possible branch paths were prefetched. Currently,
wasted resource, wrong-path execution has recently re-
ceived attention from researchers. Akkary et al. [33] used
wrong-path execution to improve branch prediction in
superscalar processors with very deep pipelines. Their
method, recycling waste, used wrong-path branch informa-
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Fig. 19. Performance sensitivity of an eight-TU superthreaded processor

with 8-issue superscalar cores and a WEC as the associativity of the

L1 data cache is varied (direct-mapped, 4-way).

Fig. 20. Performance sensitivity of an eight-TU superthreaded processor

with 8-issue superscalar cores and a WEC as the L1 data cache size is

varied (4K, 8K, 16K, 32K). The baseline is the original superthreaded

processor with 4K L1 data cache.

Fig. 21. Performance sensitivity of an eight-TU superthreaded processor

with 8-issue superscalar cores and a WEC to changes in the size of the

WEC (4, 8, 16 entries) compared to a vc.

Fig. 22. Performance sensitivity of an eight-TU superthreaded processor

with 8-issue superscalar cores and a WEC to changes in the size of the

WEC (4, 8, 16 entries) compared to nlp.



tion along with the correct path branch history and
extended the branch prediction to allow the recycling of
wrong-path branch outcomes at the fetch stage. While
recycling waste was proposed for superscalar processors,
the authors claimed that their method was applicable to
other types of speculative execution, as well. In [33], the
authors also mentioned extending their work in the future
to allow wrong-path execution to continue after the branch
recovery, which we have discussed previously in [3] and
[23] for superscalar processors and concurrent multi-
threaded architectures, respectively.

Instruction fetch supply disruptions caused by branch
mispredictions limit the performance. There has been a
great effort to improve the branch prediction accuracies.
However, studies that looked into simultaneous multipath
execution are more related to our work in this paper. Ahuja
et al. [31] discussed, in the context of single thread
execution, the limits of multipath execution, the fetch-
bandwidth needed for multipath execution, and various
dynamic confidence-prediction schemes that gauged the
likelihood of branch mispredictions. This work indicated
that multipath execution could exploit extra hardware in
multithreading and other forms of parallelism, with other
multithreading mechanisms themselves cannot.

In [30], Tyson et al. proposed the limited dual path
execution. Although executing down both paths (correct/
wrong paths, taken/not-taken paths) of a conditional
branch enables the branch penalty to be minimized, it is
infeasible because instruction fetch rates far exceed the
capability of the pipeline to retire a single branch before
others must be processed. This approach also consumes a
substantial amount of processor resources. The work in [30]
used a two-level branch predictor’s history table as a
dynamic confidence predictor to restrict the dual path
execution and thus make it feasible.

All of the above-mentioned studies were for single-
thread execution and their wrong-path execution definition
is different than our definition in this paper. The previous
studies called a prior speculatively executed path a wrong
path after the branch result is known and the execution
does not continue after the path is known to be wrong. In
our definition, however, the wrong path starts after the
speculative path is known to be wrong and the execution
continues down this path in parallel with the correct path,
but only for loads that are ready at this time.

There has been no previous work that has examined
the impact of executing loads from a mispredicted thread
in a concurrent multithreaded architecture. A few studies
have examined different forms of speculative execution,
such as loop-continuation in the dynamic multithreading
(DMT) processor [32] and prefetching in the Simultaneous
MultiThreading (SMT) architecture [6], [19].

Akkary and Driscoll [32] presented a dynamic multi-
threading processor with lookahead execution beyond
mispredicted branches. In this study, the hardware auto-
matically broke up a program into loops and procedure
threads that executed as different threads in the SMT
pipeline on the superscalar processor. The control logic kept
a list of the thread order in the program, along with the start
PC of each thread. A thread would stop fetching instruc-

tions when its PC reached the start of the next thread in the
order list. If an earlier thread never reached the start PC of
the next thread in the order list, the next thread was
considered to be mispredicted and was squashed.

Collins et al. [6] studied the use of idle thread contexts to
perform prefetching based on a simulation of the Itanium
processor that had been extended to perform simultaneous
multithreading. Their approach speculatively precomputed
future memory accesses using a combination of software,
existing Itanium processor features, and additional hard-
ware support. Similarly, using idle threads on an Alpha
21464-like SMT processor to preexecute speculative ad-
dresses and, thereby, prefetch future values to accelerate the
main thread has also been proposed [19].

These previous studies differ from our work in this paper
in several important ways. First, this current study extends
these previous evaluations of superscalar and SMT architec-
tures to a concurrent multithreading architecture. Second,
our mechanism requires only a small amount of extra
hardware, which is transparent to the processor—no extra
software support is needed. Third, while we also use threads
that would be idle if there was no wrong-thread execution,
ourgoal is not tohelp themain thread’s current execution, but
rather to accelerate the future execution of the currently idle
threads.

Our initial results on the effect of executing load
instructions down the mispredicted branch paths [3] and
mispredicted threads [23] are promising and should
encourage and motivate further study of the topic.

8 CONCLUSIONS

In this study, we have examined the effect of executing load
instructions issued from a mispredicted branch path
(wrong-path) or from a misspeculated thread (wrong-
thread) on the performance of a speculative multithreaded
architecture. We find that we can reduce the cache misses
for subsequent correctly predicted paths and threads by
continuing to execute the mispredicted load instructions
even after the instruction or thread-level control speculation
is known to be incorrect.

Executing these additional loads causes some cache
pollution by fetching never needed blocks and by evicting
useful blocks needed for the later correct execution paths
and threads. This effect is likely to be more pronounced for
low associativity caches. In order to eliminate the potential
pollution caused by the mispredicted load instructions, we
introduced the small, fully associative Wrong Execution
Cache (WEC). Our simulation results show that the WEC
can improve the performance of a concurrent multithreaded
architecture up to 18.5 percent on the benchmark programs
tested, with an average improvement of 9.7 percent. This
performance improvement comes from reducing the num-
ber of cache misses by, typically, 42-73 percent. While this
study has examined the effects of several parameters on the
performance of the WEC, there are still many important
factors left to be considered, such as the effects of memory
latency, the block size, and the relationship of the branch
prediction accuracy to the performance of the WEC.

The WEC proposed in this work is one possible structure
for exploiting the potential benefits of executing mispre-
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dicted load instructions. Although this current study is

based on a multithreaded architecture that exploits loop

level parallelism, the ideas presented in this paper can be

easily used in all types of multithreaded architectures

executing general workloads.
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