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Abstract—In this paper we describe a matrix based method  Finally, we present some results of applying this method to
for estimating both a signal subspace dimension as well as some simulated sonar array data which was generated by Nor-
signal parameters when one has an array of sensors, multiple 5 Owsley. Here we estimate the number of sinusoids, their

exponential signals, and significant signal changes after a small . . . .
number of snapshots. This method combines the technique of amplitudes, and their spatial frequencies for each snapshot.

creating Hankel or Toeplitz matrices from single-channel data
with methods for sensor-array processing using multiple array Il. CONSTRUCTING ABLOCK HANKEL MATRIX

snapshots. It is well known [4] [5] [6] that a lengthN single-channel

signal vectors;, which is a linear combination of complex

exponentials can be made into ap x cy Hankel or Toeplitz
In this paper we describe a matrix based method famatrix which will have rank, if min(rg, cgr) > k. The vector

estimating a signal subspace dimension while controlling tle can be written as

probability of false alarm as well as a method for estimating &

parameters of that subspace. A common scenario where this s = ch,tzlv 1)

=1

I. INTRODUCTION

method applies is when the data comes from an array of
sensors, where each array snapshot consists of multiple expo- . o
nential signals, but significant changes occur in the exponenﬁveﬁ'ere each discrete exponential signal has the form
signals after a small number of snapshots. z=012 78 - ZN YT, 2)
In estimation these exponentials are signals which have .
parameter values, such as arrival angles, which we wi$hwhich Z; is a complex number and the, are the complex
to estimate. In detection these exponentials are componetftdle factors. The creation of a Hankel matrix is shown
of interference which we temporarily treat as “signals” t@ictorially in figure 1. Note thatV = rpy +cy — 1. _
be enhanced, prior to subtraction. In both cases reducedYVhen we have: different signal vectorssy, s, - - -s., with
rank approximation to a data matrix is used to improve tH different complex scale factors ;, but the same: expo-
signal-to-noise ratio of the exponential components, prior fEntials,z;, we can create &lock Hankelmatrix by forming
subsequent signal processing. anry x cg Hankel matrix from eachiV x 1 signal vectors;,
We discuss a data matrix structure, which we calltiteck  then concatenating them together to formranx c;rc matrix
Hankel structure, that combines the benefits of creating Y4hich will have rankk, if min(ry, cre) > k.
Hankel matrix for single-channel data with the advantagesGVen ani x ¢ data matrix), consisting ofc snapshots
of multiple channels without changing the signal subspa®é Signal plus noise,
dimension. o _ . M=1[s1 80 - sJ]+[m na - ng, 3)
Next, we present a method for estimating the dimension
of the signal subspace while controlling the probability dve can create angy x cgc block Hankelmatrix B. This is
false alarms. If we estimate that the dimension of the sigrgftown pictorially in figure 2. We often refer to a column of
subspace is larger than the correct dimension, we say thahe original data matrix as a snapshot.
false alarm has occurred. This method is an extension of thelThe noise component of/ will increase its dimension
method of Tufts and Shah [1] which applies to Hankel matriwhen we create the Hankel blocks, and should continue to
ces. We then introduce an approximation to this matrix rank

tracking method that reduces the computation significantly, —

while maintaining performance. 11] %~
A major motivation for us is widening the applicability 12 T 17273

of the FAST algorithm [2] [3] for subspace tracking. Rank N 13 ﬁ My 27374

tracking, implemented using the tests of Frobenius-norm “en- 14| 3/4/5

ergy” of subspace matrices is described in section Il below. 15| i 4,5/6

This is an important part of FAST. However, until now, the 6

rank-tracking in FAST could not be applied bdock Hankel
structure matrices. Fig. 1. Creating a Hankel matrix from a signal vector



1 z 1 ‘:IH‘;TZ’ whereH;, . is the complimentary hypothesis théj,.,, is not

2|2]2 5 Vs e 4 T true, and the value of}; is produced only by noise. Note
M=2 1313 B=13,4./3/4/3/4)", that o should be the same for all

g ;‘ g \ 4,/5,04,/5/4,/% l Finally, we find the largest such thatS;_, is greater than

5616 >/6 (/6 Ty, and our rank is thak. This is a simple iterative step that

is trivial to implement in practice.
Fig. 2. Creating a Block Hankel matrix from multiple snapshots These steps for estimating the rank apply for any matrix,
structured or not, because the original mathik is a block

. Hankel matrix with ry = N and cy = 1, while a Hankel
fill the full vector space ofM. As an example of how the matrix is ablock Hankelmatrix with ¢ — 1 andcy > 1.

block Hankelstructure benefits us, if we have four snapshots

can create fouB2 x 8 Hankel blocks, which will give us a N
32 x 32 block Hankelmatrix in which the signal component The threshold values are chosen to control the probability of

is contained in an eight dimensional subspace, but the nof@lse alarm at each stage. Therefore the pertinent probability
will span the full 32 dimensional vector space. density is that of the noise alone in the orthogonal subspace.

It should also be noted that whefy = e/t in (2) we A method for calculating the threshold3 for an unstruc-
can create a forward-backward matrix [7] where the backwal¢féd matrix, such a8/, is presented in [8], and a method for
matrix is created by conjugating and reversing the elementsG@culating the thresholds in the Hankel case, which is easily
M along the columns. The results in this paper are only shotended to thélock Hankelcase, is presented in [1].
for the forward matrix, but can be easily extended to contain The difficulty with the method in [1] is that it requires

both the forward and backward matrices. the partial fraction expansion of a polynomial with root
multiplicity of 2¢. For the case of a Hankel matrix this is not

I1Il. ESTIMATING THE SIGNAL SUBSPACERANK a big problem because= 1, but for theBlock Hankelcase
To estimate the rank of the signal subspace, we take ftitgs not only requires a lot of computation, but also generally
SVD of B = UXVH, and define the energy in the subspacequires variable precision arithmetic.

which is orthogonal to the hypothesized signal subspace Here we present a method to approximate the threshold

TH values which can easily be implemented in a practical system.
Ser1= Y, of = || - UUMB|% (4) They are only a function of, 2, and the matrix dimensions,
I=k+1 rg, cg, ande. The values are compared with the results using

whereS;.; is the sum of the squares of the singular values 81€ extension of the method in [1] as well as experimental

B less thek largest. In (4)0? is the square of théh largest results.

singular value ofB, and U, is a matrix of thek leftmost We now assume that the noise is distributed complex

columns ofU. normal,n; ~ ¢A((0, Io?), with zero mean and varianeg’.
Using the SVD of the matrix3, we ask questions based orfor the casef, (no signal present) the expected valys;,

current hypotheses about the rank of the signal subspace. @hd varianceg3, of the squared Frobenius norm Bfare

zerd" hypothesis Hy, is that the rank of the signal subspace,

the signal portion of the matri®, is at least zero. If the signal e = E[||B|[F] = o*rmemc ®)
portion of the matrixB has exactly rank zero, then there is; g

no signal and the matri®8 consists entirely of noise values. Tm—1

The k' hypothesis H, is that the rank of the signal portion op = Var (||B|}) = o*c(dr}, +2 ) %) (7)
of the matrix B is at leastk. i=1

Th_e 9u_est|on that we ask at the" stage (if we get that wherer,, = min(rg, cy) is the smaller dimension of a single
far) is "Given Iy, that we have found out that the signalyjnye| plock,c,, = max(ry, cx) is the longer dimension of
rank is at least, can we now say thatly, is true?” To single block, andl = |rg — cg| + 1 is the number of full
do this we test whether or not the susip.1, the energy in jizoonals in a single block.
the orthogonal subspace, is greater than a prescribed thresho’i‘g}e distribution of||B||% is Chi-Square mixture, which is

value T. If s41 < Ty, we say that the signal rank is approximately a scaled Chi-Square withdegrees of freedom

and stop our tests. 16, > T, we say thath, IS tue 5, goqje factot /s, therefore, because we know the mean
and continue our tests. The behavior of this sequence of te

N vari f any Chi-S iabl
is controlled by choosing each threshold value so that tﬁe variance ot any Lhi-square vanable, we can say

associated probability of false alarm is a valuewhich we B||? 1
choose. P Y n==L [|S]|3|F] = QE [”BH%] 8)
We choose a false alarm probability, and compute the q
threshold valuesT},, for eachk an EE 1
_ _ 1olry L 2
(St > Tl — o 0<k<rn 2nVar( N ) = gvr(iBlE). @



Combining equations 6, 7, 8, and 9, rearranging some terrdsges not affect this choice. Therefore, for convenience we

and solving forn and sp we get replace replacé/;, by the firstk canonical vectors,
2y 6cc?, (10) Uy = e, e, ,ex] (15)
==L = — -
9B Sem = (rm = 1/7m) where thekth canonical vectoe,, is a length-;; column vector
and 5 consisting of all zeros except a single one in kltle position,
- O’B 2 T'mCmC 11)
8372/1/370- n ( ek:[O,-~,0,1,O,~-',O]T (16)
It should be noted that will generally not be an integer, but k-1 rH—k
that is not a problem because the Chi-Square distribution ogg can use the method from section IV for calculatifigto
be evaluated for all reat. calculateT}, by replacingry by ry — k.

For a given value o, we can find7y/sp by evaluating  We see that when we take the prodiét— UU)B we
the quantile (the inverse cumulative distribution function) ofero out the firsk rows of B but leave the rest of the matrix

the Chi-Square distribution at— c. unchanged. This means that if hypotheis applies, we can
T, . use our mean and variance calculations from the previous
5B =F, (1-0a) (12)  section along with our Chi-Square approximation. The mean

Sj h file | v & functi fand hich d q estimate usingﬁ,C will be identical to the estimate usingy,
Ince thé quantiie 1S only a tunction atandn, WhiCh AEPENTS v\ the variance will not be correct becauld — UU ) B||2,

only on the matrix dimensions;,, c,,, ande, we can calculate iy actyally be a Chi-Square mixture plus a Gaussian product
To/sp before we know the variance of the noise. If we mixture.

then define X o The reason for this approximation is to permit the thresholds
Ty = 02; (13)  to be calculated independently of the data.
which is essentiallyfy with the noise variance iag canceled VI. THE DATA
out, then when we do get our estimate of the noise variancen this section we present some results using the techniques
we can easily determing, as introduced in this paper on simulated data. We make the
o following assumptions about the data used in this section.
Ty = pet (14) Each length 48 array snapshot;, is a sum ofk scaled

i ] ~_complex sinusoids with fixed frequencie&, and random
In figure 3 we show how well the Chi-Square approxmaﬂoeommex scale factors,, = Ape/*, plus complex white
compares to the actual distribution which is a Chi'SquaFﬁjisent '

mixture. k
e 7
=1

where from (2),7;, = e 27/xfs with f, = 0.4, and the
random components have distributions

=7 G,=7 c=102=1

0.5

iy n, ~ cn(0,10%) (18)

;—o :j 002 ] B0 95/ 00 105 110 115 120 Ak ~ 9\[(0’ 0"%) (19)

g o.2[— X: @proximation 70/ 80 Jo 100 110 120 ,I;Z)k ~ u(o’ 2,].[.) (20)
— gz |

TE e m e w o Because we know exactly how the simulated data was gen-
0

erated we also know that these assumptions are simplifications
Fig. 3. False Alarm Probability vs. Threshold of the actual data, and do not truly reflect the far more complex
model used for generating the data. In actuality,zfeare not
truly sinusoidal (which is why we didn’t use forward-backward
V. EVALUATING THE OTHER THRESHOLDS block Hankelmatrices), thef,s are slowly changing between
Now that we have a method to calculdfg, we need to Shapshots at different rates, and thg, have a much more
be able to calculate the other threshalds for k = 1--.ry. complicated distribution.
Here we assume that if there are signals present in the datalhe steps that we use to come up with the results in this
the SNR is assumed to be above threshold [9]. That is, thection are as follow.
probability of subspace swap is negligibly small and the signale Determine ¢, the number of sequential snapshots to
singular vectors are independent of the noise. use. This will depend on the stationarity of the signal
We assume that to a good approximation, the mean and subspace.
variance of the energy in the orthogonal subspace do not Determinery and cy, the dimensions of the Hankel
depend on the choice of signal subspace, as long as the noise blocks. This will depend on the rank of the signal
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Figure 4 shows the rank estimates for 1800 snapshots using —_—

a block Hankelmatrix with dimensions: = &, ry = 33, and

cy = 16. These are the number of azimuth estimates that are

plotted in fig. 5 and fig. 8. a0 R
Figure 5 shows the cosine of azimuth estimates using eight

sequential snapshots andick Hankelstructure withc = 8,

rg = 33, andcy = 16. Fig. 7 shows the cosine of azimuth

M (r=48 x c=8)  block (rH:33 X CH:16) B (33x128)

estimates using the same eight sequential snapshots and no g =]
matrix structure withc = 8, ryz = 48, andcy = 1. Fig. 6 E oof — ]
shows the cosine of azimuth estimates using 24 sequential E
shapshots and no matrix structure with- 24, rg = 48, and & 1000/ i
cy = 1. & —

The two tracks of most interest are the one that is leftmost | |
between 500 and 1600 and the one that is rightmost between o

800 and 1400 in fig. 5. These two tracks are about five orders —
of magnitude below the stronger tracks and very near the noise o IS A
level. They do not even show up fig. 7 and are not very clear R
in fig. 6 which uses three times the amount of data.

Figure 8 is the same as 5 but with target strength indicated
by a color. The colorbar in the figure shows the strength of
the target in decibels. 1000, 5 s T 5

signal rank

—_—
1600 —

o
=
15}

11

Fig. 4. Rank estimation for block Hankel matrix structure with eight
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