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Abstract— In this paper, we describe a rectangular window
subspace tracking algorithm, which tracks ther largest singular
values and corresponding left singular vectors of a sequence of
n × c matrices in O(nr2) time. This algorithm is designed to
track rapidly changing subspaces. It uses a rectangular window
to include a finite number of approximately stationary data
columns. This algorithm is based on the Improved Fast Adaptive
Subspace Tracking (IFAST) algorithm of Toolan and Tufts, but
reforms the rth order eigendecomposition with an alternative
method that takes advantage of matrix structure. This matrix
is a special rank-six modification of a diagonal matrix, so
its eigendecomposition can be determined with only a single
O(r3) matrix product to rotate its eigenvectors, and all other
computation is O(r2). Methods for implementing this algorithm
in a numerically stable way are also discussed.

I. I NTRODUCTION

Let us assume that we have a data source which produces a
new lengthn column vector at regular intervals. This situation
applies when we have ann element sensor array and take
snapshots at regularly spaced time intervals, it applies when we
analyze a digital image by panning across either the columns
or rows, and it applies to a single sensor which takes regularly
spaced samples in time, then creates a vector from the lastn
samples.

The goal of subspace tracking, is to apply a sliding window
to our data to create a sequence of overlapping matrices, then
track ther principal singular values and left singular vectors
of that windowed matrix, or an orthogonal set of columns
which span thatr dimensional principal subspace. The large
overlap between successive windowed matrices allows one
to reduce computation by determining the new subspace as
an update of the subspace determined from the previous
matrix. Because the singular value decomposition (SVD) is
a full matrix operation, these update methods are generally
approximations. One reason we are often only interested in
the left singular vectors, is that they are also the eigenvectors
of the sample correlation matrix.

Most of the earlier methods of subspace tracking, are
based on applying an exponential window to the data [1]–
[4], but recently there have been some methods which apply a
rectangular window [5]–[8]. The rectangular window methods
allow inclusion of a finite amount of data, and can give better
performance when the data is highly non-stationary, or there
are abrupt changes in the data.

II. SLIDING RECTANGULARLY WINDOWED DATA

Letting xi be the ith column vector that we received, a
lengthc rectangularly windowed matrix is formed by creating
a matrix from the lastc column vectors. At timet, we can
write our previous matrix,M , and current matrix,M̃ , as

M =
[

xt−c

∣∣ xt−c+1

∣∣ xt−c+2

∣∣ · · · ∣∣ xt−1

]
, (1)

M̃ =
[
xt−c+1

∣∣ xt−c+2

∣∣ · · · ∣∣ xt−1

∣∣ xt

]
. (2)

Note thatM andM̃ share all but one column. We can write
the current matrix in terms of the previous matrix as

M̃ =
(
M − xt−ceH

1

)
P + xteH

c , (3)

whereei is the ith lengthc canonical vector (theith column
of a c× c identity matrix) andP = [e2, e3, · · · , ec | e1].

Since the left singular vectors of a matrix are the eigen-
vectors of that matrix times its conjugate transpose, then from
(3), we can write

M̃M̃H = MMH − xt−cxH
t−c + xtxH

t , (4)

which makes it clear that̃MM̃H is a rank-two perturbation
of MMH . The problem of updating the eigendecomposition
of a rank-one perturbation of a symmetric matrix has been
well studied both theoretically and numerically, (see [9] and
references therein). A rank-two perturbation of this form has
been much less studied, even though it is equivalent to two
sequential rank-one perturbations.

III. D EFINING THE PROBLEM

We start with two sequentialn× c rectangularly windowed
complex matricesM and M̃ , along with approximations to
the r largest singular values and corresponding left singular
vectors ofM , which we will call Σ′ ∈ Rr×r andU ′ ∈ Cn×r

respectively. Our goal is to determine a good approximation
of the r (or possibly r + 1) largest singular values and
corresponding left singular vectors of̃M by updatingU ′ and
Σ′.

From (1) and (2), we can see thatM and M̃ share all
but one column, and from (4) we can see that the order-
ing of the columns has no effect on left singular vectors,
therefore the column space spanned byU ′ should be close
to the column space spanned by ther dominant left singu-
lar vectors of then × (c − 1) matrix of shared columns,
[xt−c+1 | xt−c+2 | · · · | xt−2 | xt−1 ]. The subspace that is
not included inU ′ which may have a strong influence on the



dominant left singular vectors of̃M is the part of bothxt−c

and xt that is orthogonal toU ′. If we use a Gram-Schmidt
like method [10] to augmentU ′ by this subspace, and call
this augmentationQ ∈ Cn×2, then the subspace spanned by
[U ′ |Q ] should be close to the subspace spanned by ther
largest singular vectors of̃M . In [8], a detailed analytical
analysis is presented, which shows why the subspace[U ′ |Q ]
is a good approximation to the subspace spanned by ther
dominant left singular values of̃M , and that it is not trivial
to find anr + 2 dimensional subspace that will give a better
approximation.

The idea behind theimproved fast adaptive subspace track-
ing (IFAST) algorithm [8], [11], is to approximate the matrix
M̃ by the rankr + 2 matrix M̃ ′ = [U ′ |Q ][U ′ |Q ]HM̃ ,
then determine the singular values and left singular vectors of
M̃ ′ in an efficient way. ApproximatingM̃ by M̃ ′ is theonly
approximation involved in the algorithm. Determining the non-
zero singular values and corresponding left singular vectors
of M̃ ′, is equivalent to applying the Rayleigh-Ritz procedure
[12] to M̃M̃H using the subspace[U ′ |Q ]. This means that
the SVD of M̃ ′ is the optimal approximation to the SVD of
M̃ , when limited to the subspace spanned by the columns of
[U ′ |Q ] [12].

Table I is intended to clearly show how IFAST works,
and will produce the exact singular values and left singular
vectors ofM̃ ′. Table I will also produce the same result as
the algorithm presented in this paper, as well as that in [8],
[11]. The only difference between Table I and the IFAST
algorithm in [8], [11], is that theO(ncr) computation in
step 2 is performed as an equivalentO(nc) computation. The
contribution of this paper is to replace the eigendecomposition
in step 3 with a single matrix product of two(r+2)× (r+2)
matrices, and all other computation will beO(r2). This is
approximately four times faster than a conventional EVD [10].

Because the efficient computation of the EVD is done
using secular equations, [13], we will call the version of the
algorithm presented in this paper theImproved Secular Fast
Adaptive Subspace Tracking(ISFAST) algorithm. The only
computation in this algorithm that is not the equivalent of a
matrix times a vector, is a the product of two(r+2)× (r+2)
matrices, and the product of an × (r + 2) matrix with a
(r + 2)× (r + 2) matrix.

IV. T HE DETAILS OF Σ′, U ′, AND Q

Although Σ′ and U ′ are approximations, there are a few
properties that they must have.Σ′ must be diagonal and
nonnegative, the columns ofU ′ must form an orthonormal
set (ie. U ′HU ′ = I), and U ′HMMHU ′ must equalΣ′2.
These conditions will always be satisfied ifU ′ and Σ′ were
generated by a previous iteration of this algorithm [8], or from
the SVD of M . All these constraints really say, is thatU ′

should be rotated so thatU ′HMMHU ′ is diagonal. For any
matrix Ux ∈ Cn×r, whose columns form an orthonormal set,
we can generate aU ′ andΣ′ that satisfy these constraints by
taking the EVD ofUH

x MMHUx = UyΣyUH
y , then setting

Σ′ =
√

Σy andU ′ = UxUy.

TABLE I

THEORETICAL IFAST ALGORITHM

Step Calculation

1) q̇1 =

`
I − U ′U ′H´

xt−c

‖(I − U ′U ′H)xt−c‖

q̇2 =

`
I − U ′U ′H − q̇1q̇H

1

´
xt‚‚`

I − U ′U ′H − q̇1q̇H
1

´
xt

‚‚
2) F̃ = [ U ′ | Q̇ ]HM̃M̃H [ U ′ | Q̇ ]

3) UfΣf UH
f = F̃

4) Ũ ′ = [ U ′ | Q̇ ]Uf

Σ̃′2 = Σf

In the last section, we mentioned that we will create the
matrix Q using a Gram-Schmidt like method [10] to augment
U ′ with xt−c (the column we are discarding fromM ) and
xt (the column we are adding tõM ). We can augmentU ′

with xt−c followed by xt, or xt followed by xt−c, as they
will both produce aQ which span the same column space.
In fact, we can rotateQ by any 2 × 2 unitary matrix, and it
will not change the column space spanned byQ. We will take
advantage of this property to make later computation easier.
We start by creating the matriẋQ = [ q̇1 | q̇2 ] using Gram-
Schmidt augmentation ofU ′,

q̇1 =

(
I − U ′U ′H)xt−c

‖(I − U ′U ′H)xt−c‖
,

q̇2 =

(
I − U ′U ′H − q̇1q̇H

1

)
xt∥∥(I − U ′U ′H − q̇1q̇H

1

)
xt

∥∥ .

The two vectorṡq1 andq̇2 are an orthonormal set that span the
desired column space, but in general the2×2 Hermitian matrix
T̂ = Q̇HMMHQ̇ will not be diagonal, therefore we will
rotateQ̇ to form Q, such thatΣ̂ = QHMMHQ is diagonal.

In order to determine the necessary rotation, we can take
the EVD of T̂ , which we will write as

T̂ =
[

q̇H
1 MMH q̇1 q̇H

1 MMH q̇2

q̇H
2 MMH q̇1 q̇H

2 MMH q̇2

]
= Û Σ̂ÛH .

Because the formation of̂T is required later in the algorithm,
there is no additional computational load introduced by form-
ing it now. The eigenvalues of a matrix are the roots of its
characteristic equation, and sincêT is a 2× 2 matrix, we can
use the quadratic equation to find the eigenvalues. Defining
b = (t̂1,1 + t̂2,2)/2 andc = t̂1,1t̂2,2 − |t̂1,2|2, wheret̂i,j is the
(i, j)th element ofT̂ , allows us to write the eigenvalues of̂T
as

Σ̂ =

[
b +

√
b2 − c 0
0 b−

√
b2 − c

]
.

Now that we have the eigenvalues ofT̂ , we can determine
its eigenvectors. We can use the definition of an eigenvector



[10], and write

T̂

[
1
β

]
= σ̂1

[
1
β

]
,

where [1, β]T is an unnormalized eigenvector of̂T corre-
sponding to eigenvaluêσ1. Solving for β, normalizing the
eigenvector, then repeating for the second eigenvector, we get

Û =
[

α1 α2

φα2 −φα1

]
,

whereα1 = 1/

√
1 +

∣∣(σ̂1 − t̂1,1)/t̂1,2

∣∣2, α2 =
√

1− α2
1, and

φ = t̂2,1/|t̂2,1|. This allows us to define

Q = Q̇Û ,

which will have the propertyQHMMHQ = Σ̂.

V. EFFICIENTLY CALCULATING THE SVD OF M̃ ′

Determining the singular values and left singular vectors of
M̃ ′ is equivalent to determining the eigenvalues and eigenvec-
tors of M̃ ′M̃ ′H [10], therefore we will start by analyzing the
eigendecomposition of

M̃ ′M̃ ′H = [ U ′ |Q ][ U ′ |Q ]HM̃M̃H [ U ′ |Q ][ U ′ |Q ]H .

If we define

F̃ = [ U ′ |Q ]HM̃M̃H [ U ′ |Q ] = UfΣfUH
f , (5)

then we can write

M̃ ′M̃ ′H = ([ U ′ |Q ]Uf )Σf

(
UH

f [ U ′ |Q ]H
)
,

and it becomes obvious that the non-zero eigenvalues of
M̃ ′M̃ ′H will be the eigenvalues of̃F , and the corresponding
eigenvectors ofM̃ ′M̃ ′H will be [ U ′ |Q ]Uf .

From (4), we knowM̃M̃H = MMH − xt−cxH
t−c + xtxH

t ,
which we can substitute into (5), to get

F̃ = [ U ′ |Q ]HMMH [ U ′ |Q ]− aaH + bbH , (6)

where the vectorsa andb are defined as

a = [ U ′ |Q ]Hxt−c, and b = [ U ′ |Q ]Hxt.

Multiplying out the matrix blocks in the first term of (6) gives
us

F̃ =
[

U ′HMMHU ′ U ′HMMHQ

QHMMHU ′ QHMMHQ

]
− aaH + bbH . (7)

In section IV we made it clear thatU ′HMMHU ′ = Σ′2 and
QHMMHQ = Σ̂, both of which we already have. If we define

Z = U ′HMMHQ,

(rememberMHQ = (MHQ̇)Û , and we already computed
MHQ̇ when constructinĝT ), we can write (7) as

F̃ =

[
Σ′2 0

0 Σ̂

]
+
[

0 Z

ZH 0

]
− aaH + bbH . (8)

The matrixF̃ , as it is written in (8), is a rank-six modification
of a diagonal matrix. The matricesaaH and bbH are each

rank-one, and the matrix
[

0 Z
ZH 0

]
is rank-four, which can be

seen from (16) in the appendix.
Because the eigendecomposition of certain low rank modi-

fications of diagonal matrices can be computed inO(n2) time,
we will take advantage of this to compute the EVD ofF̃ more
efficiently. We will compute the EVD of̃F in two steps. The
first step is to compute the EVD of

Ġ =

[
Σ′2 0

0 Σ̂

]
+
[

0 Z

ZH 0

]
= U̇ Σ̇U̇H , (9)

which is a rank-four modification of a diagonal matrix. Since
F̃ = Ġ− aaH + bbH , if we rotateF̃ by the eigenvectors of
Ġ, we can define the matriẍH = U̇ F̃ U̇H . Therefore, defining
ȧ = U̇Ha and ḃ = U̇Hb, the second step is to compute the
EVD of

Ḧ = Σ̇− ȧȧH + ḃḃH = Ü Σ̈ÜH ,

which is a rank-two modification of a diagonal matrix.
Finally, we can determine the EVD of̃F as Σf = Σ̈ and

Uf = U̇ Ü , allowing us to write the singular values and left
singular vectors ofM̃ ′ as Σ̃′2 = Σ̈ and Ũ ′ = [U ′|Q]U̇ Ü .

VI. COMPUTING THE EVD OF Ġ

The eigenvalues oḟG from (9) are the roots of its charac-
teristic polynomial,Ċ(λ) = det[Ġ − λI], which can also be
written as

Ċ(λ) = det

[
Σ′2 − λI Z

ZH Σ̂− λI

]
. (10)

Using [8, pp. 60-62], the determinant of a bordered diagonal
matrix in the form of (10) can be written as

Ċ(λ) =

(
r∏

i=1

(σ′2i − λ)

)(
ẇ1(λ)ẇ2(λ)− |ẇx(λ)|2

)
,

where

ẇi(λ) = σ̂i − λ−
r∑

j=1

|zj,i|2

σ′2j − λ
, ẇx(λ) =

r∑
j=1

z∗j,1zj,2

σ′2j − λ
,

(11)
σ′i is theith diagonal element ofΣ′, zj,i is the(j, i)th element
of Z, and σ̂i is the ith diagonal element of̂Σ. Because the
product term in front ofĊ(λ) has no effect on its roots, we
can cancel it to get

ẇ(λ) = ẇ1(λ)ẇ2(λ)− |ẇx(λ)|2 ,

which is a rank-four version of the rank-two formula given in
[14], and behaves similarly to the rank-two secular function
from [8]. We can now get ther + 2 eigenvalues ofĠ by
determining the roots oḟw(λ), which we will call σ̇1 through
σ̇r+2.

If u̇ is the unnormalizedith eigenvector ofĠ, then from the
definition of an eigenvector [10], we geṫGu̇ = u̇σ̇i. Solving
for u̇, (the details of which are given in the appendix), we get

u̇ =
[

Σ′2 − σ̇iI 0
0 I

]−1
 z1

−1
0

+
ẇ1(σ̇i)
ẇx(σ̇i)

 z2

0
−1

 (12)



wherez1 andz2 are the first and second columns ofZ, respec-
tively. This allows us to write the normalizedith eigenvector
of Ġ as u̇i = u̇/‖u̇‖.

To stably calculate the eigenvalues ofĠ, they should be
calculated as two sequential updates using [14], combined with
the techniques described at the end of the next section.

VII. C OMPUTING THE EVD OF Ḧ

After determining the EVD ofĠ, we can determine the
EVD of Ḧ. The eigenvalues of̈H = Σ̇− ȧȧH + ḃḃH are the
roots of the rank-two secular equation

ẅ(λ) = ẅa(λ)ẅb(λ) + |ẅab(λ)|2 , (13)

which is a rank-two version of the secular function given in
[13], and whose derivation is in [8]. The parts of (13) are
defined as

ẅa(λ) = 1−
r∑

j=1

|ȧj |2

σ̇j − λ
, ẅb(λ) = 1 +

r∑
j=1

|ḃj |2

σ̇j − λ
,

ẅab(λ) =
r∑

j=1

ȧ∗j ḃj

σ̇j − λ
,

whereȧj and ḃj are thejth elements oḟa andḃ, respectively.
The unnormalizedith eigenvector ofḦ is a linear combi-

nation of ȧ and ḃ, and from [8] can be written as

ü =
(
Σ̇− σ̈iI

)−1
(
ȧ +

ẅa(σ̈i)
ẅab(σ̈i)

ḃ
)

. (14)

This allows us to write the normalizedith eigenvector ofḦ
as üi = ü/‖ü‖.

To stably calculate the eigenvalues ofḦ, they should be
calculated as two sequential updates using [15], with the
stopping criterion from [16], and the first set of eigenvectors
should be calculated using the method in [16], [17]. To avoid
an O(r3) rotation, the eigenvectors of̈H are calculated using
the method in this paper. For closely spaced eigenvalues, there
will be some loss of orthogonality, which should be able to
be addressed using methods like [18], [19] and [20].

VIII. C ONCLUSION

In this paper, we present a method for efficiently computing
the small EVD of the IFAST algorithm. We call this modified
version of IFAST theImproved Secular Fast Adaptive Sub-
space Tracking(ISFAST) algorithm. The steps of the ISFAST
algorithm are presented in table II, and produce the same result
as Table I. The dominant step computationally is step 4-a, as it
has oneO(r3) matrix product, and oneO(nr2) matrix product.
All other steps in the algorithm only contain terms which are
matrices times vectors, or their computational equivalent.

The computational improvement introduced by performing
the calculations as presented in this paper are shown in
Fig. 1 for a50 × 50 complex matrix. Thefull decomposition
represents determining the full set of singular values and
left singular vectors ofM̃ using a conventional SVD [10].
The ISFASTalgorithm and theIFASTalgorithm both produce

TABLE II

THE ISFAST ALGORITHM

Step Calculation

1-a) q̇1 =

`
I − U ′U ′H´

xt−c

‖(I − U ′U ′H)xt−c‖

b) q̇2 =

`
I − U ′U ′H − q̇1q̇H

1

´
xt‚‚`

I − U ′U ′H − q̇1q̇H
1

´
xt

‚‚
c) T̂ = Q̇HMMHQ̇

d) ÛΣ̂ÛH = T̂

e) Q = Q̇Û

2-a) Z = U ′HMMHQ

b) Ġ =

»
Σ′2 0

0 Σ̂

–
+

»
0 Z

ZH 0

–
c) U̇Σ̇U̇H = Ġ

3-a) ȧ = U̇H [ U ′ |Q ]Hxt−c

b) ḃ = U̇H [ U ′ |Q ]Hxt

c) Ḧ = Σ̇− ȧȧH + ḃḃH

d) ÜΣ̈ÜH = Ḧ

4-a) Ũ ′ = [ U ′ |Q ]U̇Ü

b) Σ̃′2 = Σ̈
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Fig. 1. Computational requirements of various algorithms for a50 × 50
complex matrix vs. subspace dimension.

the singular values and left singular vectors of̃M ′. The
FAST algorithm [5] is given for comparison, and is almost
computationaly equivalent to the steps in Table I. Thesecular
updatemethod uses the method from§VII directly on M̃ , and
will give the same results as the full decomposition. Plots of
approximate FLOPS vs. subspace dimension for other square
matrix dimensions look very similar, even for very largen.

We have not mentioned how we determine the subspace
dimension,r, but the method in [21], which is based on the
energy in the noise subspace works well with this algorithm
for determiningr at each iteration.



APPENDIX

THE EIGENVECTORS OFĠ

In this appendix, we derive the formula for the unnormalized
ith eigenvector ofĠ. If the vectoru is the ith eigenvector of
Ġ multiplied by some scale factor, then from the definition
of an eigenvector [10], we geṫGu = uσ̇i. Using (9), we can
write ([

Σ′2 0

0 Σ̂

]
+ Zzz

)
u = uσ̇i,

whereZzz =
[

0 Z
ZH 0

]
. After rearranging some terms, we get

Du = −Zzzu, whereD =
([

Σ′2 0
0 Σ̂

]
− σ̇iI

)
. If we deflated

the problem by removing unchanged eigenvalues as in [8],
[15], thenD is invertible, and we can write

u = −D−1Zzzu. (15)

The matrixZzz is a rank-four Hermitian matrix, and can be
written as the sum of four symmetric rank-one matrices,

Zzz =

 z1

1/2
0

 z1

1/2
0

H

−

 z1

−1/2
0

 z1

−1/2
0

H

+

 z2

0
1/2

 z2

0
1/2

H

−

 z2

0
−1/2

 z2

0
−1/2

H

. (16)

If we partition the lengthr+2 vectoru as[ ū | ur+1 | ur+2 ]T ,
and substitute this partitionedu along with (16) into (15), we
get

u = −D−1

ur+1z1

zH
1 ū
0

+

ur+2z2

0
zH
2 ū

 . (17)

If we partition ther + 2× r + 2 diagonal matrixD as

D =

 D̄ 0 0
0 dr+1 0
0 0 dr+2

 ,

then from (17), we get the two equalitiesur+1 = −zH
1 ū/dr+1

andur+2 = −zH
2 ū/dr+2. Substituting forur+1 andur+2 in

(17), we get

u = D−1

zH
1 ū

z1/dr+1

−1
0

+ zH
2 ū

z2/dr+2

0
−1

 . (18)

wherezH
1 ū andzH

2 ū are scalars. If we multiply both sides of
the firstr elements of (18) byzH

1 from the left, we get

zH
1 ū = zH

1 D̄−1

(
zH
1 ū

dr+1
z1 +

zH
2 ū

dr+2
z2

)
. (19)

Solving for zH
2 ū in terms ofzH

1 ū gives us

zH
2 ū = zH

1 ū
(

dr+2

dr+1

)(
dr+1 − zH

1 D̄−1z1

zH
1 D̄−1z2

)
(20)

From (11), we can see thaṫw1(σ̇i) = dr+1 − zH
1 D̄−1z1 and

ẇx(σ̇i) = zH
1 D̄−1z2. Using these identities, and plugging (20)

into (18) gives us

u =
(

zH
1 ū

dr+1

)
D−1

 z1

−dr+1

0

+
ẇ1(σ̇i)
ẇx(σ̇i)

 z2

0
−dr+2


Because u is unnormalized, we can discard the scalar
zH
1 ū/dr+1, and because the(r + 1)th and(r + 2)th diagonal

elements ofD−1 are 1/dr+1 and 1/dr+2 respectively, they
will cancel thedr+1 anddr+2 in the two vectors, leaving us
with (12).
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