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Abstract—In this paper, we describe a rectangular window [I. SLIDING RECTANGULARLY WINDOWED DATA

subspace tracking algorithm, which tracks ther largest singular . _ . .
values and corresponding left singular vectors of a sequence of Letting x; be theith column vector that we received, a

n x ¢ matrices in O(nr?) time. This algorithm is designed to Iengthc_ rectangularly windowed matrix is formed by creating
track rapidly changing subspaces. It uses a rectangular window a maitrix from the last column vectors. At time, we can

to include a finite number of approximately stationary data write our previous matrix)/, and current matrixM, as
columns. This algorithm is based on the Improved Fast Adaptive

Subspace Tracking (IFAST) algorithm of Toolan and Tufts, but M= x| Xt—et1 | Xt—eqo | | %=1 ], (1)
reforms the rth order eigendecomposition with an alternative N = >
method that takes advantage of matrix structure. This matrix = [ Xtmc1 | Xtmcs2 | [ X1 [ %] ()

is a special rank-six modification of a diagonal matrix, so ~ .
its eigendecomposition can be determined with only a single Note that) and M share all but one column. We can write

O(r®) matrix product to rotate its eigenvectors, and all other the current matrix in terms of the previous matrix as
computation is O(r?). Methods for implementing this algorithm ~ H H
in a numerically stable way are also discussed. M = (M —x—cet') P+ xer, ®3)
wheree; is theith lengthc canonical vector (théth column
of a ¢ x ¢ identity matrix) andP = [es, €3, -+ - , €. ]| e1].

Since the left singular vectors of a matrix are the eigen-

_ vectors of that matrix times its conjugate transpose, then from
Let us assume that we have a data source which producgga e can write

new lengthn column vector at regular intervals. This situation o - . .
applies when we have an element sensor array and take MM™ = MM™ — x4 X" + XX, (4)

snapshots a.t r'egu'larly spaced “”?e intervals, i.t applies when Which makes it clear thabZM¥ is a rank-two perturbation
analyze a d|g|tal image by panning across glther the colum MMM, The problem of updating the eigendecomposition
or rows, and it applies to a single sensor which takes regula Y a rank-one perturbation of a symmetric matrix has been

spaced samples in time, then creates a vector from the:la ell studied both theoretically and numerically, (see [9] and

samples. references therein). A rank-two perturbation of this form has

The goal of subspace tracking, is to apply a sliding windOWeen much less studied, even though it is equivalent to two
to our data to create a sequence of overlapping matrices, t'%%'auential rank-one perturbations.

track ther principal singular values and left singular vectors
of that windowed matrix, or an orthogonal set of columns [Il. DEFINING THE PROBLEM
which span that- dimensional principal subspace. The large We start with two sequential x ¢ rectangularly windowed
overlap between successive windowed matrices allows ofmplex matrices)/ and M, along with approximations to
to reduce computation by determining the new subspacetng  largest singular values and corresponding left singular
an update of the subspace determined from the previausctors of M, which we will call ¥/ € R™*" andU’ € C»x"
matrix. Because the singular value decomposition (SVD) igspectively. Our goal is to determine a good approximation
a full matrix operation, these update methods are generaliy the » (or possibly » + 1) largest singular values and
approximations. One reason we are often only interested dorresponding left singular vectors 8f by updatingl/’ and
the left singular vectors, is that they are also the eigenvectors
of the sample correlation matrix. From (1) and (2), we can see thaf and M share all
Most of the earlier methods of subspace tracking, abeit one column, and from (4) we can see that the order-
based on applying an exponential window to the data [1jrg of the columns has no effect on left singular vectors,
[4], but recently there have been some methods which applyherefore the column space spanned by should be close
rectangular window [5]—[8]. The rectangular window method® the column space spanned by thalominant left singu-
allow inclusion of a finite amount of data, and can give bettéar vectors of then x (¢ — 1) matrix of shared columns,
performance when the data is highly non-stationary, or thelr®; .11 | Xt—ct2 | -+ | Xt—2 | X¢—1]. The subspace that is
are abrupt changes in the data. not included inU’ which may have a strong influence on the

I. INTRODUCTION



TABLE |

dominant left singular vectors a¥/ is the part of bothx;_.. THEORETICAL IFAST ALGORITHM

and x; that is orthogonal td/’. If we use a Gram-Schmidt
like method [10] to augment/’ by this subspace, and call

this augmentatiorf) € C"*2, then the subspace spanned by Step | Calculation —

[U’|Q] should be close to the subspace spanned byrthe y | g = LZUUT) i
largest singular vectors aof/. In [8], a detailed analytical I =T U"H) x|l
analysis is presented, which shows why the subsp&i¢éq | o — LZUUT — ) x
is a good approximation to the subspace spanned byrthe [(I U U —auaf’) x|

dominant left singular values aff, and that it is not trivial

! . . S 2) F=[U|QI"MM"[U"| Q]
to find anr + 2 dimensional subspace that will give a better

approximation. 3) U UR = F
The idea behind themproved fast adaptive subspace track- 4 | U=y
ing (IFAST) algorithm [8], [11], is to approximate the matrix s2 oy,

M by the rankr + 2 matrix M’ = [U’"|Q][U’|Q]" M,

then determine the singular values and left singular vectors of

M’ in an efficient way. Approximating/ by M’ is the only

approximation involved in the algorithm. Determining the non- In the last section, we mentioned that we will create the

zero singular values and corresponding left singular vectorgtrix () using a Gram-Schmidt like method [10] to augment

of M’, is equivalent to applying the Rayleigh-Ritz procedur&’ with x; . (the column we are discarding frod/) and

[12] to MM* using the subspacd/’|Q]. This means that x; (the column we are adding td/). We can augment/’

the SVD of M’ is the optimal approximation to the SVD ofwith x;_. followed by x;, or x; followed by x; ., as they

M, when limited to the subspace spanned by the columnswafl both produce aQ which span the same column space.

[U'Q] [12]. In fact, we can rotat&) by any2 x 2 unitary matrix, and it
Table | is intended to clearly show how IFAST workswill not change the column space spannedihywe will take

and will produce the exact singular values and left singuladvantage of this property to make later computation easier.

vectors of M. Table | will also produce the same result a§Ve start by creating the matrig = [q; | g2] using Gram-

the algorithm presented in this paper, as well as that in [§chmidt augmentation df’,

[11]. The only difference between Table | and the IFAST

H
algorithm in [8], [11], is that theO(ncr) computation in (-UT") %

q1 = )
step 2 is performed as an equivalétnc) computation. The (I = UUH) x|
contribution of this paper is to replace the eigendecomposition . ([I-UUT —agfl) x
in step 3 with a single matrix product of tw@ +2) x (r +2) a2 = [(1—UUH —qaql) x|

matrices, and all other computation will k@(r2). This is
approximately four times faster than a conventional EVD [10].he two vectorsy; andq, are an orthonormal set that span the
Because the efficient computation of the EVD is don@AESired. column space, but in general 2he2 Hermitian matrix
using secular equations, [13], we will call the version of thé = Q" MM*"Q will not be diagonal, therefore we will
algorithm presented in this paper theproved Secular Fast rotate@ to form Q, such that: = Q7 MM*Q is diagonal.
Adaptive Subspace TrackingSFAST) algorithm. The only  In order to determine the necessary rotation, we can take
computation in this algorithm that is not the equivalent of e EVD of T', which we will write as
matrix times a vector, is a the product of tWo+2) x (r+2)

matrices, and the product of & x (r + 2) matrix with a T = { c_l}{MMqu | Q}{MMHC.IZ } —USH
(r +2) x (r + 2) matrix. G MMPay | @ MMP 4,
IV. THE DETAILS OF Y/, U’, AND Q Because the formation &f is required later in the algorithm,

Although 3 and U’ are approximations, there are a fev\}herg is no additiqnal computational |06'1d introduced by form—
properties that they must hav&’ must be diagonal and N9 it now. The elg_envalues (_)f Aa_matrlx are thg roots of its
nonnegative, the columns d@f’ must form an orthonormal characteristic equation, and sinfeis a2 x 2 matrix, we can
set (ie. U'HU' = 1), and U"F MMF U’ must equaly’2. use tpe qugdratm equation to find :che agenvalyes_. Defining
These conditions will always be satisfied(if and s’ were = (f1+122)/2@ndc = 111855 —[f1|?, wheret, ; is the
generated by a previous iteration of this algorithm [8], or frorki»J)th element ofl’, allows us to write the eigenvalues of
the SVD of M. All these constraints really say, is that S
should be rotated so that’® M MY U’ is diagonal. For any $ b+ Vb —c| 0
matrix U, € C™"*", whose columns form an orthonormal set, N 0 ' b— Vb2 —c
we can generate @' and X’ that satisfy these constraints by
taking the EVD of UY MM"U, = U,x,U[, then setting  Now that we have the eigenvalues Bf we can determine
Y= \/ET, andU’ = U,U,. its eigenvectors. We can use the definition of an eigenvector




[10], and write rank-one, and the matrik % Z] is rank-four, which can be
7 {1] — 6y [1} seen from (16) in the appendix.
B’ Because the eigendecomposition of certain low rank modi-
where [1, 8] is an unnormalized eigenvector df corre- ﬂcatu_)ns of diagonal matrlce_s can be computedim”) time,
we will take advantage of this to compute the EVDIoiore
sponding to eigenvalué;. Solving for 5, normalizing the

eigenvector, then repeating for the second eigenvector, We]q k:nently We will compute the EVD of " in two steps. The
rst step is to compute the EVD of

U:[O‘l 2 } . [=2]0 0 (27 ...
« — Q0 _ _ H

paz ¢12 G= .Z +{ZH‘O}—UEU, 9)
wherAeal N 1/\/1 +[(01=ha)/hel e =V1—-afand s a rank four modification of a diagonal matrix. Since
¢ = 12,1/|t2,1|- This allows us to define F = G — aall + bb® | if we rotate I’ by the eigenvectors of

Q=0QU G, we can define the matrik = UEFU" . Therefore, defining

’ . a=U"a andb = U"b, the second step is to compute the

which will have the propertyQ? MM7Q = 3. EVD of

) Y T
V. EFFICIENTLY CALCULATING THE SVD oF M’ H =X -aa” +bb" =UXU",

Determining the singular values and left singular vectors #fhich is a rank-two modification of a diagonal matrix.
M is equivalent to determining the eigenvalues and eigenvecFinally, we can determine the EVD df asX; = ¥ and
tors of M’M'H [10], therefore we will start by analyzing theUs = UU, allowing us to write the singular values and left
e|gendecompos|t|on of singular vectors OM/ as 2/2 E and U/ = [UI|Q]UU

M'ME =[U QU | QI"MMI[U QU |Q]". VI. COMPUTING THEEVD OF G

The eigenvalues oG from (9) are the roots of its charac-
o teristic polynomial,C'(\) = det[G — AI], which can also be
=[U | QI"MM"IU" |Q]=Uss,Uf,  (5) written as

If we define

2-M| Z
SRS

then we can write
MM = (U QUs) By (U U1 QI

and it becomes obvious that the non-zero eigenvalues rﬂing [8, pp. 60-62], the determinant of a bordered diagonal

M’ M will be the eigenvalues of’, and the corresponding trix in the form of (10) can be written as
eigenvectors oiM’M’H~ will be [U"| Q]Uy. A & = T . ; ; 2

From (4), we knowM MH = MM HE _Xt—cx,{l_c +th7{{, C(/\) - H(Uz - )\) <UJ1(/\)'U)2()\) - |w.L(A)| ) 3
which we can substitute into (5), to get =t

C(\) = det (10)

where
=[U'QI"MMY[U"|Q]—aa™ +bb",  (6) o -
0 — 5 — )\ — 75t ] 177,
where the vectora andb are defined as wi(X) =6 — A Z; 032 —\ Z 2\
J]= :
a=[U'1Q)"x_., and b=[U"|Q]"x,. (11)

o; is theith diagonal element of’, z; ; is the(j, )th element
Multiplying out the matrix blocks in the first term of (6) g|vesof Z, and 4, is the ith dlagonal element of. Because the
us product term in front ofC'(\) has no effect on its roots, we
. UHMMAEU | UMM can cancel it to get
- { | @ } —aa” +bb". (7) g

QHMMHU/ ‘ QHMMHQ ’LU()\) = w1(>\)7~U2(>‘) — ‘wx()\)|27

In section IV we made it clear thdf’ M/ M"U" = %2 and \yhich is a rank-four version of the rank-two formula given in
Q"M M"Y Q = %, both of which we already have. If we defing14], and behaves similarly to the rank-two secular function
Z=U"MM"Q, from [8]. We can now get the: + 2 eigenvalues ofG by
determlnlng the roots oiy(\), which we will call 51 through
(rememberM @ = (MHQ)U and we already computeds,
M*@Q when constructing’), we can write (7) as If u is the unnormalizedth eigenvector of>, then from the
definition of an eigenvector [10], we gétu = ud;. Solving

2210 0|z = " , . . P ;
0 ' S + i ' 0| aa” +bb"”. (8) foru, (the details of which are given in the appendix), we get

The matrixF, as it is written in (8), is a rank-six modification 1 =

—1|+-= 0 (12)
of a diagonal matrix. The matricesa” and bb? are each 0 I

[2'2@;1 0}‘1 2Ly (6) | 22
o | w0 | 4



TABLE I

wherez, andz, are the first and second columnssfrespec- THE ISFAST ALGORITHM

tively. This allows us to write the normalizeith eigenvector
of G asu; = u/|ul.

To stably calculate the eigenvalues Gf they should be Step | Caleulation _
calculated as two sequential updates using [14], combined with ra)| g = L U,U,H) Xt—c
the techniques described at the end of the next section. I = U U x|
) o | o U -l x
VIl. COMPUTING THEEVD oF H )| dz2= (1= U'UH —aral) x|
After determining the EVDuofG,. we can determine the o | T=Q"MM"Q
EVD of H. The eigenvalues off = ¥ — aa® +bb¥ are the d | USUT =T
roots of the rank-two secular equation €| @=QU
.. .. .. .. 2- Z=UHMMH
() = (Wi (V) + (V) (13) i Ed OCM 0 12
which is a rank-two version of the secular function given in o 0 ' z z7 | o
[13], and whose derivation is in [8]. The parts of (13) are o) | UsU" =G
defined as 3a) | a=UF[U | Q) x_e
. " ay)? . b, b) | b=UH[U"|Q]"x
wa()\>:1—2ﬁ7 wb()\)=1+2ﬁ, ¢) | H=3%-aa" +pbb#
=1 =17 o | USUH = i
. L, azb, 4a) | U =[U'|QIUT
wab()‘) = Z (-T_j_ N\ b) $2 ¥
j=1"7
wherea; andl}j are thejth elements oﬁnandb, respectively.
The unnormalizedth eigenvector off is a linear combi- 6
nation ofa andb, and from [8] can be written as x10 ; ; ;
= (E _ &i[) - (a + wa(m)b) ) (14) 4} full decomposition /
wab(&i) 2
This allows us to write the normalizeith eigenvector offf 9 3l FAST\
asiiy; = i/|i]. } >
To stably calculate the eigenvalues Hf, they should be ©
calculated as two sequential updates using [15], with the g 27
stopping criterion from [16], and the first set of eigenvectors O
should be calculated using the method in [16], [17]. To avoid & f"‘“dar update
an O(r?) rotation, the eigenvectors df are calculated using <1
the method in this paper. For closely spaced eigenvalues, there “NSFAST
will be some loss of orthogonality, which should be able to 0 \ \ \ \
be addressed using methods like [18], [19] and [20]. 10 20 30 40 50

subspace dimension (r)

VIII. CONCLUSION

. . . Fig. 1. Computational requirements of various algorithms fdi0ax 50
In this paper, we present a method for efficiently computingmplex matrix vs. subspace dimension.

the small EVD of the IFAST algorithm. We call this modified

version of IFAST thelmproved Secular Fast Adaptive Sub-

space TrackindISFAST) algorithm. The steps of the ISFAST ) . -

algorithm are presented in table 11, and produce the same red{}§ Singular values and left singular vectors df'. The

as Table I. The dominant step computationally is step 4-a, a§fST @lgorithm [S] is given for comparison, and is almost

has one)(r3) matrix product, and oné(nr?) matrix product. computationaly equivalent to the steps in Table I. Beeular

All other steps in the algorithm only contain terms which argPdatemethod uses the method fra§¥il directly on A/, and

matrices times vectors, or their computational equivalent. Will give the same results as the full decomposition. Plots of
The computational improvement introduced by performingPProximate FLOPS vs. subspace dimension for other square

the calculations as presented in this paper are shown Mgtrix dimensions look very similar, even for very large

Fig. 1 for a50 x 50 complex matrix. Thefull decomposition ~ We have not mentioned how we determine the subspace

represents determining the full set of singular values awémension,r, but the method in [21], which is based on the

left singular vectors ofM/ using a conventional SVD [10]. energy in the noise subspace works well with this algorithm

The ISFASTalgorithm and thdFAST algorithm both produce for determiningr at each iteration.



APPENDIX
THE EIGENVECTORS OFG

In this appendix, we derive the formula for the unnormalized
ith eigenvector of. If the vectoru is theith eigenvector of

G multiplied by some scale factor, then from the definition u =

of an eigenvector [10], we gefu = ug,. Using (9), we can
write

210
0 i + Z.. | u=uoy,
0 Z

whereZ.. = [ ju &
Du = —Z,,u, whereD = (| =" 2| —=6il). If we deflated

the problem by removing unchanged eigenvalues as in [SE,
[15], then D is invertible, and we can write 4

u=-D""'Z_u. (15) 12

The matrixZ, ., is a rank-four Hermitian matrix, and can be [3]
written as the sum of four symmetric rank-one matrices, (4]

z1 Z Z1 Z " [5]
YA 1/2 1/2 — —1/2 —1/2
0 0 0 0 [6]
H H
Z3 Z3 Z3 Z3
+10 0| — 0 0 16) 1
1/2 1/2 —1/2 —1/2

(8]
El

If we partition the length+2 vectoru as[ @ | w11 | ur42 |7,
and substitute this partitionad along with (16) into (15), we
get

—— [10]

r+141 Ur42Z2

u=-D! zifu |+ | 0 A7) py
0 zila

If we partition ther + 2 x r + 2 diagonal matrixD as (12]

D 0 0 [13]
D=10 dy1 0 |, [14]
0 0  dois

then from (17), we get the two equalities,; = —za/d, 1 (15]

andu, o = —zii/d, ». Substituting foru, ., andu, o in

[16]

(17), we get
z1/dr 11 22/dy 2 [17]
u=D"![z"a —01 +zi'u o1 (18) 1)

wherez{ a andziu are scalars. If we multiply both sides off19]
the firstr elements of (18) by from the left, we get

_ _ [20]
H H
Z{{ﬁ = Z{—ID71 (Zl u Z1 + Z 4 Z2> . (19)

dr+1 dr+2

[21]
Solving forz& a in terms ofz!’a gives us

Hn-1
He  H- (42 (dry1—27 D 27y
zyu=z u - 51
r+1 Z Z2

) @

From (11), we can see that, (¢;) = d,11 — z{' D'z, and
W, (6;) = 2z D~ 'z,. Using these identities, and plugging (20)
into (18) gives us

— Z . . Z
(Z{Iu) D! —dr:—l + n(0:) 02
dr-‘,—l 6 Wy (O'z) *dr+2

Becauseu is unnormalized, we can discard the scalar
z!'4/d, 1, and because the + 1)th and(r + 2)th diagonal
elements ofD~! are 1/d,,, and 1/d,,, respectively, they

) will cancel thed,y; andd, 5 in the two vectors, leaving us
]. After rearranging some terms, we getyith (12).
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