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• Show how the block Hankel structure can increase SNR when
one has a large array of sensors, multiple exponential signals,
and severe snapshot constraints

• Combine the two rank determination methods of Shah and Tufts,
which apply to either unstructured or Hankel matrices, into one
general method which also works for block Hankel matrices

• Present a real-time rank determination implementation, where
threshold values are precalculated using only matrix dimensions,
allowing quantile calculations to be done outside algorithm

• Show an application of this method on some simulated passive
sonar array data



Creating Hankel Snapshots
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• We have a n× c data matrix X = [x1 x2 · · · xc], the columns of
which are c snapshots from an array of length n

xi = ni +

r∑
k=1

ai,kzk where zk =


z0
k

z1
k...

zn−1
k


• We now create an nh × ch Hankel matrix from each snapshot,

X̂i = N̂i+

r∑
k=1

ai,kẐk where Ẑk =


z0
k z1

k · · · zch−1
k

z1
k z2

k · · · zch

k... ... ...
znh−1
k znh

k · · · zn−1
k


• Each matrix Ẑk will be rank one, thus the signal subspace will be

at most rank r, but the noise matrix N̂i will be full rank.



Reasoning for Block Hankel Matrix
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• Concatenate the c Hankel matrices, X̂1, · · · , X̂c, that we made
from our c snapshots to create the matrix X̂ = [X̂1 X̂2 · · · X̂c]

X̂ = N̂ +

r∑
k=1

Ŝk

Ŝk =
[

a1,kẐk a2,kẐk · · · ac,kẐk

]
• Each nh × chc matrix Ŝk will be rank one, therefore the signal

subspace will be at most rank r, but the noise matrix N̂ will be full
rank.

• For each element that we shorten our snapshots by, we lose one
row and gain c columns in our data matrix, X.



Forming a Block Hankel Matrix
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xi ∈ C7 ⇒ X̂i ∈ C6×2 X ∈ C7×3 ⇒ X̂ ∈ C6×6

n - length of array snapshot (7) c - number of array snapshots (3)

nh - length of Hankel column (6) ch - number of columns in a
single Hankel block (2)

rank(X) ≤ 3, rank(X̂) ≤ 6 chc - number of columns in a
block Hankel matrix (6)
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Frobenius Norm and Singular Values
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• Given an n× c matrix X, and its singular values σ1 · · ·σn, we can
write its squared Frobenius norm as

‖X‖2
F =

n∑
i=1

c∑
j=1

|xi,j|2 =

n∑
i=1

σ2
i

• We project out the subspace corresponding to the r largest
singular values of X, then take its squared Frobenius norm, to
get the statistic F̂r

F̂r = ‖(I − UrU
H
r )X‖2

F =

n∑
i=r+1

σ2
i = ‖X‖2

F −
r∑

i=1

σ2
i

which is the “energy” in the hypothesized noise-only subspace



Estimating the Signal Subspace Rank
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• We test the hypothesis that F̂r (= σ2
r+1 + σ2

r+2 + · · · + σ2
n) depends

only on noise, by choosing a false alarm probability α, then
computing the threshold values Tr, for each r = 0, · · · , n

P (F̂r > Tr|Hr) = α Is it probable that F̂r depends only on noise?

• When the energy in the hypothesized noise-only subspace is truly
only from noise, F̂r will be less than Tr with a probability (1− α)

• To determine the dimension of the signal subspace, we find the
smallest value of r where both F̂r > Tr and F̂r+1 < Tr+1

• For zero-mean i.i.d. Gaussian noise and the structured matrices
described previously, it is possible to determine the thresholds
exactly. The distribution is a χ2

n mixture, but is difficult to compute
for large matrix dimensions.



Estimating the Thresholds
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• For the case H0 (no signal present), the expected value, µf , and
variance, σ2

f , of F̂0 = ‖X‖2
F , are

µf = σ2nmcmc and σ2
f = σ4c(dn2

m + 2

nm−1∑
i=1

i2)

where nm, cm, c, and d are matrix dimensions of the structured
matrix, and σ2 is the variance of the original unstructured noise

• A good approximation to the distribution of F̂0, is a scaled
Chi-Square distribution, sχ2

n, with mean ns = µf and variance
2ns2 = σ2

f , giving us

n =
2µ2

f

σ2
f

and s =
σ2

f

2µf

which are just functions of matrix dimensions and variance



False Alarm Probability vs. Threshold
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Calculating the Threshold Values

University of Rhode Island

12

sea 2005 - toolan

• We can calculate T0 as

T0 = sF−1
n (1− α)

where F−1
n is the inverse c.d.f. of the Chi-Square distribution

• Since s contains the noise variance σ2, we can define

T̂0 =
T0

σ2
=

s

σ2
F−1

n (1− α)

then calculate T̂0 independent of σ2, since it is just a function of
matrix dimensions and α

• After we have an estimate of the noise variance, σ2, we get

T0 = T̂0σ
2



Estimating the Additional Rank Thresholds
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• Approximate (I − UrU
H
r )X with

a noise-only matrix where the
last r rows have been removed

• We are approximating Ur by the
last r columns of identity matrix

• We can use P (F̂0r
> T0r

|H0) to
approximate P (F̂r > Tr|Hr)

where F̂0r
= ‖[e1 · · · en−r]

TX‖2
F ,

• This allows us to determine all
thresholds as Tr ' T0r
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• For each value of r, we take the SVD of both [e1 · · · en−r]
TX and

(I − UrU
H
r )X with different random Ur, of 5000 noise-only block

Hankel matrices, X, and average the result



Rank Tracking Example
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Summary of Presentation
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• Block Hankel structure - Useful for limited snapshot applications
with multiple exponential signals

• Improved Rank Estimation - Combined the signal rank estimation
methods of Shah and Tufts into one general method, and
presented a practical real-time implementation
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