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Abstract— File system consistency frequently involves a choice
between raw performance and integrity guarantees. A few
software-based solutions for this problem have appeared and
are currently being used on some commercial operating systems;
these include log-structured file systems, journaling file systems,
and soft updates. In this paper, we proposemeta-data snapshotting
as a low-cost, scalable, and simple mechanism that provides file
system integrity. It allows the safe use of write-back caching
by making successive snapshots of the meta-data using copy-on-
write, and atomically committing the snapshot to stable storage
without interrupting file system availability. In the presence of
system failures, no file system checker or any other operation
is necessary to mount the file system, therefore it greatly
improves system availability. This paper describes meta-data
snapshotting, and its incorporation into a file system available
for the Linux and K42 operating systems. We show that meta-
data snapshotting has low overhead: for a microbenchmark, and
two macrobenchmarks, the measured overhead is of at most 4%,
when compared to a completely asynchronous file system, with
no consistency guarantees. Our experiments also show that it
induces less overhead then a write-ahead journaling file system,
and it scales much better when the number of clients and file
system operations grows.

Furthermore, this new technique can be easily extended to
provide file system snapshotting (versioning) and transaction
support for a collection of selected files or directories.

Index Terms— Operating Systems, File Systems, Consistency,
Availability

I. I NTRODUCTION

F ILE system consistency, in the presence of system cra-
shes, has always been a strong concern in the operating

system community. Availability, integrity, and performance
are commonly the main requirements associated with file
system consistency. Consistency in file systems is achieved
by performing changes to the on-disk version of meta-data
in a consistent manner. That is, when a system crash occurs,
the on-disk version of the meta-data should contain enough
information to permit the production of a coherent state of the
file system.

In recent years, several novel software-based approaches
for solving the meta-data update problem have been studied
and implemented. One of these approaches in particular,
journaling [1], has been implemented and is in use in a wide
range of server platforms today. Other approaches, such as log-
structured file systems [2] and soft updates [3] have had less
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adoption by commercial operating systems. The soft updates
technique has been incorporated into the 4.4BSD fast file
system [4], and we have no knowledge of the incorporation
of log-structured file systems on any commercial operating
system. The implementation complexity imposed by these
mechanisms is a disadvantage that may inhibit their adoption
and inclusion in commercial file systems. Even though there
is evidence [5] that the soft updates approach can achieve
better performance and has stronger integrity guarantees than
journaling file systems, the industry so far has adopted the
latter.

In this paper, we presentmeta-data snapshotting, a new,
efficient, scalable and simple solution to the meta-data consis-
tency problem. This technique basically consists of maintain-
ing a “snapshot” of a consistent state of the file system’s meta-
data. The snapshot is kept intact during subsequent file system
operations by writing meta-data to new locations on stable
storage, using copy-on-write. The new data comprises a new
generation of the file system. When all changed meta-data has
been propagated to storage, the new generation becomes the
current consistent snapshot of the system. This approach was
conceived and prototyped in the Hurricane [6] File System [7],
[8], [9] to provide recoverability in a new operating system
environment where failures were very frequent. Our current
research extends this initial work to take into consideration
performance and it generalizes the basic approach to achieve
file system versioning and transaction support (for example,
by allowing several generations to be simultaneously active).

When the system needs or desires to make the current file
system state persistent, it forces a consistent collection of dirty
meta-data buffers out (to new locations), finally writing back a
new file system superblock for this new snapshot. If the system
crashes before the superblock is committed to stable storage,
the current on-disk version of the meta-data is still consistent,
as the “snapshotted” version has not been altered. In fact,
meta-data snapshotting is similar to theshadow-paging[10],
[11] technique designed for recovery in database systems.

Meta-data snapshotting allows the use of write-back
caching, guaranteeing that there is always a consistent version
on stable storage, so that in the presence of a system failure,
the file system can become available instantaneously. There is
no need for a file system checker, or any other pre-processing
before recovery. Our experiments indicate that availability
with meta-data snapshotting can be achieved at little cost,
at most 4% in meta-data update intensive workloads, when
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compared to a completely asynchronous file system, with no
consistency guarantees. Additionally, in the same workloads,
meta-data snapshotting can improve performance up to 109%
when compared to a write-ahead journaling file system.

Meta-data snapshotting is being designed for use in the K42
File System (KFS) [12], which has been strongly influenced
by the Hurricane File System [9]. KFS is available for the
K421 [13] and Linux [14] operating systems. KFS, as other
components of K42, uses a building-block approach [15], [9],
which permits a high degree of customization for applications.

Several service implementations (alternative structuring and
policies) are available in KFS. Each element (file, directory,
or open file instance) in the system can be serviced by the im-
plementation that best fits its requirements; if the requirements
change, the component representing the element in KFS can be
replaced accordingly. Parallel applications can achieve better
performance by using the services that match their access
patterns and synchronization requirements.

The remainder of this paper is organized as follows. Sec-
tion II further describes the meta-data consistency problem and
discusses previous solutions. Section III describes the meta-
data snapshotting technique, and the implementation details of
a prototype incorporated into KFS. An experimental evaluation
is presented in Section IV. A couple of extensions to meta-data
snapshotting are discussed in Section V. Finally, we conclude
summarizing the article’s contribution in Section VI.

II. T HE META-DATA CONSISTENCYPROBLEM

File system operations, such as file creation, file truncation,
file renaming, etc., frequently manipulate and alter different
meta-data. These meta-data can be, and usually are, located
on distinct blocks of the stable storage. For this reason, file
system operations which alter more than one block of meta-
data are non-atomic operations. Furthermore, for performance
reasons, file systems commonly manipulate their meta-data
on fast and volatile storage (memory) and the propagation of
these changes to the stable storage is done asynchronously
(i.e., write-through caching).

The lack of atomicity in updating a determined set of meta-
data is what leads to file system corruption or inconsistency.
For example, when renaming a file, the file system must per-
form two sub-operations: remove the directory entry pointing
to the inode, and create a new directory entry that points
to the same inode. If the system crashes while updating the
blocks which have been altered in these two sub-operations,
independently of the order in which they are performed, the file
system will be inconsistent. If the directory entry removal is
done first, then the file system will have lost the inode, because
there are no entries pointing to that inode anymore. On the
other hand, if the new directory entry creation is performed
first, it will end up with two entries pointing to the same inode.
While the latter case is certainly preferred against the first, as
it does not incur in losing information, it is still not the result
expected from the operation.

1K42 is a research operating system being developed for 64-bit cache-
coherent multiprocessors, designed to scale to hundreds of processors.

Software based solutions that have been previously pro-
posed for achieving file system consistency in the presence
of crashes fit into two strategies. The first strategy is to try to
guarantee atomicity by performing write-ahead logging. If the
system crashes, it has enough information on the stable storage
to recover the meta-data into a consistent state. Journaling and
log-structured file systems are based on this approach and they
are described on sections II-A and II-B.

The second strategy is to determine a strict ordering of
updates to the stable storage, so that, even though the image
on the stable storage is not correct at all times, it is consistent
and recoverable. Historically, systems such as FSF[4] have
met this requirement by synchronously writing each block of
meta-data, thereby hindering file system performance. Thesoft
updatesapproach (described below in Section II-C) guarantees
that blocks are written to disk in their required order without
using synchronous I/O.

A. Journaling File Systems

Many modern file systems use thejournaling (also
called logging) approach to keep meta-data consistent (e.g.,
CedarFS[1], Episode[16], JFS[17], XFS[18], reiserFS[19],
ext3[20], VERITAS[21], NTFS[22], BFS[23]). Some systems
perform data and meta-data logging, but in general the idea is
to keep an auxiliary log that records all meta-data operations.
The log is written sequentially, in large chunks at a time, in
such a way to guarantee that the log is written to disk before
any page containing modified data, i.e., the file system must
never perform an in-place update until the meta-data is written
out to the log. If the system crashes, the file system recovers
by replaying the log, using its information to update the disk.

The on-disk structure of the file system can be left undis-
turbed. The log is accessed read-only during crash recovery
and sometimes for log space reclamation; operations that
update the meta-data use the log in append-only mode. The
meta-data log typically records changes to inodes, directory
blocks, and indirect blocks. Information regarding the su-
perblock and disk allocation maps can be either stored in the
log or reconstructed during crash recovery. The log entries
can either store both the old and the value of the meta-data
(allowing redo-undo operations) or only the new value (redo-
only). Changes made by operations that modify multiple meta-
data objects (e.g., rename of files, creation or removal of
directories) are collected in a single log entry.

The log may reside either inside the file system itself or
externally as an independent object. Seltzer et al.[5] discuss
implementation issues and performance tradeoffs between the
two approaches.

Recovery activity requires identifying the beginning and end
of the log, since it wraps around continuously. The recovery
time is proportional to the active size of the log at the time of
the crash.

Vahalia et al.[24] and Seltzer et al.[5] provide insights into
the performance issues involved in journaling file systems.
Journaling systems always perform additional I/O to write the
log, but it is also meant to reduce the number of in-place meta-
data writes by deferring them. In addition, the log itself may
become a performance bottleneck.
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B. Log-structured File Systems

Log-structured file systems (LFS) explore the journaling
approach further by making the log itself the file system. It
uses a sequential, append-only log as its only on-disk structure
containing both data and meta-data. The fundamental idea is
to improve write performance by buffering a sequence of file
system changes in the file cache and writing all the changes
to disk sequentially in a single large disk write operation
(typically a full disk track), eliminating the need for rotational
interleaving. When writing each segment of the log, blocks
are carefully ordered. Since the log is append-only, each
write operation flushes all the dirty data from the cache,
which means the log contains all the information required
for a complete recovery. Implementations of this approach are
Sprite LFS [2] (the original implementation, developed for the
Sprite network operating system) and BSD-LFS[25] .

To service file system read requirements, an efficient way
of retrieving information from the log is necessary. Traditional
file system implementations associate each inode with a fixed
location on disk. In the LFS approach the inodes are written
to disk as part of the log, therefore they do not reside in fixed
positions. A data structure calledinode mapis used to keep
track of the current location of each inode. This mapping is
kept at memory and written to the log at periodic checkpoints.

A high degree of reliability is achieved with LFS because
all components of an operation (data blocks, attributes, index
blocks, directories) are propagated to stable storage through a
single atomic write. If it is not possible to write all the related
meta-data in a single disk transfer, it is necessary to LFS to
maintain log segment usage information in such a manner to
guarantee that it can recover the file system to a consistent
state. Sprite LFS applied a logging approach to the problem
by adding small log entries to the beginning of a log segment
and BSD LFS used a transaction-like interface.

Crash recovery locates the latest checkpoint, reinitializes
the in-memory inode map and segment usage table. Then it
replays the part of the log following the checkpoint. The work
is proportional to the amount of file system activity since the
last checkpoint.

The most difficult design issue for log-structured file sys-
tems is the management of free space in the log. The goal is
to maintain large free extents for writing the new data. This
requires a garbage collection scheme to collect data from one
segment and move it to a new location, making the original
segment reusable.

Rosenblum at al reports in [2] that LFS can use 70% of
the disk bandwidth for writing, whereas Unix file systems
typically can use only 5-10%. Seltzer et al. report in [25],
[26] that BSD-FFS is clearly superior than the traditional FFS
implementation or Sun-FFS in meta-data-intensive tests, but
Sun-FFS was faster in most I/O-intensive benchmarks.

C. Soft Updates

Soft Updates[27], [28] uses write-back caching for meta-
data and maintains explicit dependency information that spec-
ifies the order in which data must be written to the disk. When
the system selects a blockB to be written, it allows the Soft

Updates code to review the list of dependencies. If there are
any blocks that have to be written beforeB, then the parts
of B relating to these blocks are replaced with an earlier
version (where no dependency exists).B, which has been
rolled backto a state that does not depend on any cached meta-
data not propagated to storage, is then written to disk. After
the write has completed, the system updates the dependency
information, and it restores any rolled back values to their
current value. Applications always see the most recent copies
of the meta-data blocks and the disk always see copies that
are consistent with its other contents.

The dependency information covers the main changes that
require meta-data update ordering: block allocation and deal-
location, link addition and removal. To maintain the depen-
dency information, a natural solution would be to keep a
dynamically managed graph of dependency at the block level.
But meta-data blocks usually contain many pointers (e.g.,
block pointers and directory entries), leading to many cyclic
dependencies between blocks. Also, blocks could consistently
have dependencies and never be written to storage. Like false
sharing in multiprocessor caches, the problem is related to the
granularity of the dependency information. With Soft Updates,
dependency information is maintained per field or pointer.
“Before” and “after” versions are kept for each individual
update together with a list of updates on which it depends.

Soft Updates rollback operations may cause more writes
than would be minimally required if integrity were ignored,
because blocks with dependencies become dirty again imme-
diately after writing (when rollbacks are undone). If no other
changes are made to the block before it is again written to
the disk, then there is an extra write operation. To minimize
the frequency of such extra writes, the cache reclamation
algorithms and the syncer task attempt to write dirty blocks
in an order that minimizes the number of rollbacks.

If a Soft Updates system crashes, the only inconsistencies
that can appear on the disk are unused blocks/inodes that
may not appear in the free space data structures and inode
link counts that may exceed the actual number of associated
directory entries. Both situations can be easily fixed by running
a file system check utility on the background, so the file system
can be immediately reusable after a crash.

Ganger et al. report in [27] encouraging performance
numbers. For workloads that frequently perform updates on
meta-data (such as creating and deleting files), Soft Updates
improves performance by more than a factor of 2 and up to a
factor of 20 when compared to the conventional synchronous
write approach and by 4-19% when compared to an aggressive
write-ahead logging approach. In addition, Soft Updates can
improve recovery time in more than two orders of magnitude.
Seltzer et al.[5] compares the behavior of Soft Updates to
journaling. Their asynchronous journaling and Soft Updates
systems perform comparably in most cases. While Soft Up-
dates excels in some meta-data intensive microbenchmarks,
for three macrobenchmarks Soft Updates and journaling are
comparable. In a file intensive news workload, journaling
prevails, and in a small ISP workload, Soft Updates prevails.



4

III. M ETA-DATA SNAPSHOTTING

This section describes the meta-data snapshotting mech-
anism. It gives an overview description of the technique,
while also describing relevant implementation issues of meta-
data snapshotting in KFS. Then, it goes on to discuss some
relevant design issues, and the solutions we have adopted in
our implementation.

A. Mechanism Overview

Meta-data snapshotting is a mechanism that efficiently
maintains the on-disk version of meta-data consistentat all
times, while allowing the use of write-back caching. It does
not impose any ordering on the propagation of changed
metadata to the server or any restriction on cached meta-data
availability to applications.

The main problem in maintaining consistent meta-data state
is to commit completed operations to stable storage atomically.
To achieve this, the snapshotting mechanism, instead of alter-
ing current meta-data on the stable storage, copies new and
altered meta-data to new locations on the stable storage, thus
preserving the old meta-data intact. This new version of the
meta-data is called agenerationof the meta-data. The new
generation is committed to disk by updating the superblock at
the correct moment. Section III-E further describes the process
of committing a generation to stable storage and how it is done
atomically.

In essence, a snapshot of the on-disk version of the file
system meta-data is created whenever the user, operating
system or file system wants or needs to commit the file system
state. For subsequent file system operations which alter meta-
data, a copy-on-write technique is used. The blocks pertaining
to the saved snapshot will not be overwritten until the next
snapshot is committed. An example of the execution of meta-
data snapshotting when a file system operation alters an inode
is illustrated in Figure 1.

Observe, however, that for this mechanism to work using
copy-on-write, a level of indirection is required to access
physical meta-data block numbers; the only blocks with fixed
locations are the ones which belong to the superblock. While
it is common in various file systems to contain that level of
indirection inside inodes, for example, several file systems
maintain fixed positions for inode and free-block bitmaps
(such as the BSD Fast File System [4], and Linux Second
Extended File System [29]). This level of indirection already
exists in KFS to allow each file to be composed of different
sets of building-blocks. Furthermore, changing the physical
layout of a file system to remove static positions of physical
structures to dynamic assignments is not a daunting task.

With meta-data snapshotting, to commit a set of dirty meta-
data blocks, the file system must perform two steps:

1) To prevent the file system from being unavailable while
a snapshot is being flushed to stable storage, a new
generation of in-memory meta-data is created (i.e.,
prohibiting changes to both the currently committed
version of on-disk meta-data and blocks from current
generations being flushed). Changes to meta-data blocks
belonging to an older generation are done by creating

a copy of that block, and working with the new copy.
If some meta-data point to the altered block, they also
need to be altered to reflect that the block has now a new
location, so a new copy of that meta-data is also made.
This should happen iteratively until the superblock itself
is updated (if the newest version of the superblock does
not belong to the new generation, a new copy of the
superblock is also created and its generation version
updated).

2) When all meta-data blocks in the old generation have
been written out to disk, the generation’s superblock is
finally written out. Writing out the superblock is what
actually commits (persists) the generation; overwriting
the previous superblock makes previous generations
inaccessible.

When performing copy-on-write of meta-data blocks, it is
important to free previous resources from the inode maps and
free/allocated block bitmaps. For example, if a meta-data block
located at a certain positionp needs to be copied for alteration,
a new positionq is allocated, and the previous positionp is
freed. This prevents the leakage of resources which are not in
use in the current in-core generation. However, this introduces
a special case in which a generation may interfere with the
data of another generation. It occurs when reutilizing meta-
data blocks which were freed in an in-memory generation.
Meta-data blocks freed in a previous generation can not be
reused until that generation’s superblock is written out (i.e.,
all the files that referred to those blocks are now gone from
the disk image). If freed meta-data blocks are used before
the generation that freed them has been committed (and
therefore written out to stable storage), meta-data which is
still valid on the committed version of the stable storage may
be overwritten.

A solution to this problem is to have the superblock only
make freed meta-data locations available for allocation, after
the generation in which the freed occurred is committed to
disk. This guarantees that future generations will not try to
overwrite previous generation’s valuable meta-data.

In KFS, we currently adopt another solution to this problem.
We refrain the file system from submitting dirty buffers to
I/O from newer generations until the previous generation is
completely committed. With this policy, no valuable meta-
data from an older generation will be overwritten, because
writes from newer, in-memory generations will wait until the
older generation is completely committed to stable storage.
Furthermore, not submitting dirty buffers to I/O from newer
generations ensures that the operating system, when reclaiming
memory, will choose to write out buffers from the oldest
generation, speeding up that generation’s commit proccess,
and shortening the overall meta-data vulnerability window.

In a file system with meta-data snapshotting, if a crash
occurs at any time, the file system will have a consistent image:

• If the up-to-date version of the superblock has not been
written to disk, we lose the very recent modifications
to the file system,but the file system is consistent.
This is because all of the “new” generations (which
were on volatile storage, and therefore lost in the crash),
had written altered meta-data blocks on other locations,
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Fig. 1. Basic snapshotting example: white rectangles represent a clean meta-data object (i.e., residing on a clean buffer page), while gray rectangles represent
dirty objects, which need to be committed to anew locationon stable storage when propagated to storage. TheRecordMapobject is responsible for inode
mapping. LSOBasic X and LSOBasic Y are objects representing meta-data for inodes X and Y, respectively. Diagram (1) illustrates an initial setup for the
file system. (2) shows the result of a file system operation on an inode Y that requires allocation or release of blocks, such asappend or truncate. Note that
besides the change to LSOBasic Y, the global BitMap is also altered. (3) shows the propagation of meta-data snapshotting: a new location is allocated for the
LSOBasic Y, so the Record Map has to change its internal data to reflect this change. Finally, (4) shows the end result of the changes, when the SuperBlock
forks to point to the altered versions of the BitMap and the Record Map. Note that the original file system tree (in white) isunchangedat all times, as the
gray tree (comprising only modified meta-data) is being formed to represent a new generation. Also, it is possible to have several generations active at the
same time, each with its partial set of copy-on-write blocks being propagated to the disk.

not on the current ones. Since the old version of the
superblock is pointing to the old locations, nothing got
corrupted/inconsistent.

• If the up-to-date version of the superblock did get out to
disk, then all other blocks pertaining to that generation
had already gone to disk, and the file system is certainly
consistent, and contains all recent modifications.

B. Spawning generations

The meta-data snapshotting mechanism revolves around the
concept of generations. A generation is, in fact, a collection of
file system operations (or transactions), each of which needs to
be committed atomically. In theory, at any given moment in
time, the file system could have any number of in-memory
generations; it would be possible to adjust the file system
with meta-data snapshotting to an extreme scenario where

each generation is representing only an individual file system
operation.

A central point of meta-data snapshotting is deciding when
to spawn a new generation. On the one hand, delaying the
creation of a new generation is good for performance; there
is no need to create new copies of altered meta-data blocks,
therefore no extra memory pressure is made on the system. But
on the other hand, delaying the creation of new generations
has a bad side-effect, namely, the window of vulnerability for
new operations increases.

Given this dichotomy, the following events should trigger
the spawning of a new generation:

• The number of dirty meta-data buffers hits a certain limit.
Fixing a maximum number of dirty meta-data buffers
prevents starvation for the superblock, and consequently,
for the generation per se, when a large number of
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operations are issued in a short period of time. If the
file system is receiving a higher rate of operations which
affect meta-data than the stable storage can write out, the
number of dirty meta-data buffers will only increase. In
effect, the superblock would have to wait indefinitely, and
would not be able to commit itself to the stable storage.

• The superblock has not been written out for some time
(a few minutes, for example). Creating a new generation
after a fixed amount of time, in a scenario where a small
amount of operations is being generated, prevents the
window of vulnerability for new data from becoming
greater than desired. Additionally, it provides anupper-
boundon the amount of time a certain generation can live
without being committed to stable storage. Depending on
the consistency guarantees that are expected or demanded
from the file systems, the upper-bound can be adjusted
accordingly.
Note, however, that since meta-data snapshotting does
not issue dirty meta-data buffers to stable storage syn-
chronously, the upper-bound is not only this predefined
fixed amount of time; it is augmented by the time it
takes for the operating system to actually write out old
dirty buffers. In the Linux kernel, for example, a kernel
thread (kupdatein the 2.4 version) wakes up every 30
seconds, and starts sweeping the queue for dirty buffers,
sending the buffers to I/O. The time actually necessary
for a particular buffer to go to disk, depends on the length
of the queue, and the disk speed.

• A sync() system call is issued to the file system. The
reason for creating a new generation for thesync system
call is straightforward; the system must commit its current
in-memory version to disk. Therefore, a new generation
is created, and the previous is synchronously committed
to disk. The call can only return to the user after the
snapshot is completely on the stable storage.

• A fsync() system call is issued. Thefsync() system call
should return to the user only after file data and meta-
data have been propagated to storage. A new generation
is necessary forfsync() because there is no way of com-
mitting only a particular file, without having to commit
all of the transactions of the same generation. This is true
due to the fact that specific data about the transactions
(which files, directories, and blocks participated in each
transaction) are not kept. A problem with this approach is
that it might be unreasonable to make an application wait
for the whole generation to be committed. An alternative
solution is to extend the snapshot mechanism to use
logging specifically for this case.

One important issue with spawning generations is that of
guaranteeing that operations begin and finish in the same
generation. Suppose, for instance, that a file creation starts
in a generation and ends in the next generation, due to
the spawning of a new generation while the operation was
proceeding. The file creation operation typically involves a
few other sub-operations such as: inode allocation in the inode
map and its initialization, and directory entry creation in the
directory. If the inode allocation is performed in one generation

and the directory entry creation in the next, the file system will
possibly end up with an inaccessible inode (lost resource), if
the next generation does not have a chance to commit to stable
storage. On the other hand, if the directory entry is created
first, the file system might contain a directory entry pointing
to an invalid inode.

One way of guaranteeing that operations are completed
inside a single operation is to spawn new generations when
the file systems reaches a quiescent state. But, as previously
discussed, this could cause the generation to starve. A syn-
chronization barrier issued when spawning a new generation
could enforce the quiescing of the file system. This barrier
would wait for all ongoing operations to finish, and block
new operations until the superblockfork is completed. This
solution, however, would render meta-data snapshotting im-
practical. Its performance would be closely based on the speed
of the stable storage, and would, in practice, perform as slow
as synchronous, write-through file systems.

The solution adopted in KFS is to make every file system
operation receive a reference to the current context, which,
among other things, includes a reference to the superblock.
The context is then passed on to every sub-operation so that the
entire operation belongs to the same generation and operates
using the correct version of the superblock, inode maps, free
block bitmaps, etc.

In summary, the following steps are executed, in this order,
when spawning a generation:

1) The current superblock isforked, and a new version is
created. The newgeneration versionof the superblock is
incremented, and the global context is updated to point
to this new version. This is done at the very beginning
of the spawning process, so that subsequent file system
operations are serviced by the new superblock, and the
old generation has a chance to be committed.

2) Transfer any in-memory meta-data to their respective I/O
buffers, and dirty those buffers, so that the operating sys-
tem starts writing them out to stable storage. Operating
systems usually write out dirty buffers for two reasons:
a) in order to reclaim system memory: when it is low,
buffers are sent to I/O so that their pages can be reused;
and b) if a predefined amount of time period has passed,
a thread sends aged dirty buffers to be written out to
stable storage.

3) Due to the possible latency caused by step (2), the
superblock must wait until every dirty buffer from this
generation has been written to stable storage. This is
done by placing a reference to the dirty buffer on a
hash on the superblock. A callback is registered in the
I/O layer of the operating system so that whenever the
write for a particular buffer is finished, the superblock
removes the reference from its hash table.

4) When the last buffer is removed, the entire generation
has been written to stable storage. The superblock per se
is now committed to stable storage too, and its memory
representation can be safely deleted.

5) The new superblock can now safely make the freed
meta-data blocks (which were freed due to copy-on-
write during the previous generation) available for al-
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location again. The previous generation has been suc-
cessfully committed to stable storage, so it is now safe
to reuse the meta-data blocks belonging to the previous
snapshot and modified during the generation that has
been committed.

In KFS, the function of determining when to generate a
new snapshot, and effectively issuing its creation, is delegated
to a single kernel thread. The great advantage for using an
external thread is that no user file system operation will have
to be delayed, or need to wait for a snapshot to be committed;
the thread alone sleeps and waits for the superblock to hit
stable storage.

C. Short life span for files

According to [30], around 80% of all new files are deleted
or overwritten within about 3 minutes of creation. In asyn-
chronous file systems, with no consistency guarantees, depend-
ing on the memory size and usage, these files with very small
life span are never written to disk at all.

Meta-data snapshotting, or any write-back consistency me-
chanism for that matter, has to efficiently deal with this class
of files in order to keep its overhead low. With meta-data
snapshotting, some files are naturally aged in the interim of
the generation in which they are created. Nevertheless it is
also true that file creation can commence at any given time,
therefore, a file can be created a very short time before the
spawning of a generation. This will lead to the inclusion of
altered meta-data blocks, representing such files, in a snapshot.
The snapshot will be scheduled to be written to stable storage
while containing blocks of meta-data of newly created files.
Given that the great majority of newly created files are deleted
or overwritten, the snapshot will induce overhead by issuing
writes on meta-data that could have been saved if the system
permitted the file to “age”.

To overcome this possible source of overhead, meta-data
snapshotting should be implemented so that when a file is
deleted, the file system also deletes that file from previous,
uncommitted generations. File deletion is propagated to older
superblocks, and the altered meta-data buffers arecleaned. If
the file was created only a short time previous to the deletion,
the probability that its creation has not been committed to disk,
and is still in one of the in-memory generations, is high. If
that happens, the file, and its meta-data, will not be written to
disk, saving valuable disk I/O.

D. Directory Data

It is common in various file systems, to represent directory
entries as the directory’s data, in a similar way to file data
blocks. For file system consistency, it is necessary to also
ensure that directories entries are consistent with file system
meta-data; they organize the file system namespace, and grant
accessibility to underlying inodes. It would be inconsistent,
for example, for a directory entry to point to an uninitialized
inode or one that has not been allocated in the inode map yet.

For this reason, directory data is also subject to meta-data
snapshotting. In KFS, it is particularly easy to implement this.
The same object responsible for performing copy-on-write on

meta-data is used for directory data. When a change occurs on
the directory data (due to the addition or removal of an entry),
this object prevents the data from overwriting the current block
on stable storage: it allocates a new location, and writes the
data block to this new location.

E. Superblock atomicity

A minor implementation issue we must also raise is that,
unlike previously suggested, writing out the superblock isnot
an atomic operation. Usually superblocks can have different
sizes, depending on the file system, typically greater than or
equal to 4KiB. It is also true that sector sizes for hard-disk
devices can be smaller than the superblock size, typically of
only 512 bytes.

Committing the superblock atomically, however, isessential
for meta-data snapshotting to work. If only some parts of
the superblock are updated, it will contain information from
both the current and previous generations. In this scenario,
meta-data snapshotting would not guarantee consistency in the
presence of system failures.

The solution we have adopted for this problem is to have
two superblocks, instead of only one. Adding the generation
version number to a field on the last word oneachsector of the
superblock, and alternating between the two locations when
writing out the superblock, will guarantee that on any given
moment, the on-disk superblock with the greatest generation
version is the one consistent with the on-disk image of the file
system. When the system is mounted, the two superblocks are
read and the version number of all sectors in a superblock
are verified to determine that they are all the same, (i.e.,
the superblock was completely written to stable storage), and
finally the two superblocks are compared to determine the
correct (most up-to-date) superblock.

IV. PERFORMANCEEVALUATION

In this section, we analyze the performance behavior of
our implementation of meta-data snapshotting. We show that
a file system with meta-data snapshotting can achieve meta-
data integrity and consistency at a small cost in performance.
Additionally, we also compare the performance of meta-data
snapshotting with a write-ahead journaling file system, and
show that meta-data snapshotting induces a smaller overhead,
and scales better with increased I/O workloads.

The results of one microbenchmark and two macrobench-
marks are presented. The microbenchmark shows the perfor-
mance impact on a simple workload focusing on file system
operations that involve only meta-data. The macrobenchmarks
investigate a real use scenario for file systems and how
concurrency of requests affects the performance.

A. Experimental Setup

As previously stated, KFS is being implemented on the
Linux and K42 operating systems. In order to produce com-
parable results, we have chosen to perform all experiments on
the Linux operating system. The kernel version in use was
version 2.4.22. All of the experiments performed compare the
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performance of four different file systems:ext2fs, ext3fs, KFS
andKFS+snap.

The ext2fs [29] was chosen because, besides being the
default file system in many Linux distributions, it is the only
available file system which has a journalled version, namely,
ext3fs [20]. The ext2 and ext3 file systems are compatible
file systems, and share the same on-disk structures. This
compatibility suggests that differences in performance are
likely to be related to the journaling capability.

We refer toKFS in this article as being the K42 File System
without any consistency guarantees, or data ordering, and
KFS+snapas the version of KFS with meta-data snapshotting
capability. InKFS, meta-data buffers are written out to stable
storage in a completely asynchronous manner, and therefore its
performance can be considered an upper-bound forKFS+snap.

In order to better compare KFS-based file systems with
ext2-based ones, we have taken extra care with KFS’s on-disk
file system structure. While it is true that KFS innot compat-
ible with the ext2 on-disk structure, we have made available
in KFS specific inode and directory structure implementations
that match ext2’s. Implementing these specific structures are
specially easy to do in KFS, due to its component-based
architecture. While some structures are inherently different
between these two file systems, such as block bitmaps and
the superblock, we believe that having the same on-disk
structure for inodes and directories allows for the performance
comparisons we make in this article.

The ext3 file system has three journaling modes:journal,
ordered and writeback. In the journal mode, full data and
meta-data journaling is provided. Bothorderedandwriteback
modes do not perform any data journaling, but only meta-data
journaling. The difference between them is that theordered
mode guarantees that file system data is written to stable
storage before their respective meta-data, so that all on-disk
meta-data point to valid data. This guarantee does not exist
in the writeback mode, where meta-data can be written out
before that actual data. Theorderedmode is the default mode
used by the ext3 formatting tools, and is the mode used on all
experiments in this article.

All experiments were performed on a commodityPC system
cointaining a 2.00 GHz Pentium IV processor, 628 MiB of
main memory, and two disk drives. One of them contained
the Linux installation and other system files, while the other
was used to run the experiments. The disk drive used in
the experiments is a 60GiB IBM drive (ATA/100 EIDE,
7200RPM, with 9ms of average read seek time). While running
the experiments, the system was not running any other activity,
besides the essential system daemons.

Recall from Section III-A that a separate thread issues the
creation of new snapshots if one has not been created in a
configurable amount of time after the previous generation has
been committed. Thetime-outused for all experiments in the
KFS thread for generating new snapshots is of 10 seconds.

B. Microbenchmark Performance

In this section we present the results of a microbenchmark
for the four file system implementations. This microbenchmark

Operation ext2 ext3 KFS KFS+snap

create 369 192 626 629
delete 366 190 621 623
read 368 191 623 626
append 367 190 622 624

TABLE I

POSTMARK RESULTS, IN TRANSACTIONS PER SECOND, FOR THE FOUR

FILE SYSTEM IMPLEMENTATIONS. EACH LINE COMPARES A DIFFERENT,

SPECIFIC FILE SYSTEM OPERATION. THE VALUES REPRESENT THE

AVERAGE OF 5 CONSECUTIVE RUNS.

focuses on operations whichonly manipulate meta-data (and
no file data): creation of empty files and their deletion. The
experiment consists in repeating the same workload 3 times in
a row: the creation of 100,000emptyfiles, distributed amongst
1,000 directories, and their deletion.

Since the files are empty, and no data is being transferred,
with the total amount of memory available on our test machine,
all the buffers and other pages this experiment needs to run
fit entirely in memory. The result is that this benchmark was
completely CPU-bound, and all four file system implementa-
tions obtained very similar results. Therefore we have limited
the operating system memory to only 64MiB, in order to make
this benchmark more I/O intensive.

Figure 2 presents the results for this benchmark, comparing
the total execution time of the four file system implementa-
tions. The results are very encouraging, showing that meta-
data snapshotting adds only 3.6% in the execution time when
compared to its upper-bound. Journaling, on the other hand,
provokes a bit more degradation in performance: ext3 takes
9% more time to finish this benchmark than ext2.

C. Macrobenchmark Performance

To demonstrate the performance of meta-data snapshotting
under “real world” scenarios, we have benchmarked the four
mentioned file systems against two benchmarks, and present
the results here. The benchmarks used are thePostMarkand
Dbenchbenchmarks. They are both synthetic benchmarks that
try to reproduce the load observed in Internet servers (e.g.,
file, mail, newsgroup, etc.).

D. Postmark

Figure 3 shows measurements (overall transactions per
second) of the four file systems running PostMark [31]. The
PostMark benchmark was designed to simulate the workload
seen by Internet Service Providers under heavy load. The load
comprises the manipulation of a large amount of very small
files, with short lifetimes. It first creates a pool of randomly
sized files, and then measures the time required to perform a
series of transactions. Each transaction is chosen at random,
and consists of a pair of file system operations:

• Create a randomly lengthened file, or delete a file.
• Completely read a file, or append data to a file.
We have used the following settings in this experiment:

100,000 transactions with equal bias for read/append and
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Fig. 2. Microbenchmark results, representing the total time of execution, in seconds, for each of the four file system implementations. The values represent
the average of 3 consecutive runs.

Fig. 3. PostMark results, in total transactions per second, for each of the four file system implementations. The values represent the average of 5 consecutive
runs.

create/delete, 20,000 initial files, with file sizes ranging from
500 bytes to 16KiB, distributed in 400 directories, so that
directory lookup times are not a source of major overhead.

At the end of execution, PostMark reports the overall
transactions per second measure, and in addition, transactions
per second for each type of file system operation performed.
Each test was executed 5 consecutive times, and the average of
the numbers is reported. The same file system partition was
used in all runs to avoid seek time discrepancies. Figure 3
shows the results for overall transaction measurements, and
the results per specific operation is listed on Table I.

The overall results indicate that, for this workload, jour-
naling in ext2 causes a big degradation in performance: ext3
takes 90% more time to finish the benchmark than ext2 does.
With meta-data snapshotting no degradation is observed, and

in fact, a very small improvement is noticed (less than 0.5%).

E. Dbench

Figure 4 compares the four file system implementations
under the Dbench [32] benchmark. The Dbench benchmark
is an open-source benchmark, very much used in the Linux
development community. Its creation was inspired by the
Netbench [33] benchmark. Netbench is a bench created to
measure the performance of Windows file-servers implementa-
tions, such as WindowsNT [22] and Samba [34]. The problem
with this benchmark is that it requires a large number of
clients to produce a significant load on the tested server.
Dbench, therefore, is a synthetic benchmark which tries to
emulate NetBench, and the load imposed of such a file-server.
Specifically, dbench tries to produce only thefile systemload,
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Fig. 4. Dbench results. The plotted values represent the execution time necessary to complete a dbench run with the indicated number of clients, for each
of the four file system implementations. The values represent the average of 5 consecutive runs.

Number
of ext2 ext3 KFS KFS+snap

clients

1 323.362 251.179 291.108 279.665
4 328.636 186.646 288.199 277.702
8 330.204 204.118 290.809 278.369
16 323.293 178.313 271.658 261.600
32 282.465 111.326 240.511 232.517

TABLE II

DBENCH RESULTS, IN MEGABYTES PER SECOND, FOR EACH OF THE FILE

SYSTEM IMPLEMENTATIONS. THE VALUES REPRESENT THE AVERAGE OF5

CONSECUTIVE RUNS.

and another benchmark, the tbench, is used to produce the
TCP and process load.

Dbench loads a file describing the operations it must per-
forms, parses the file, and executes the operations. Among the
operations performed are: file creation, deletion, and renaming;
reading, writing and flushing out data; directory creation
and removal; and retrieval of information about files and
directories (through thestat system call). The file used in our
experiments is the defaultclient plain.txt, which was obtained
by a network sniffer dump of a real Netbench run. It consists
of more than 120 thousand operations, and manipulates files
with size ranging from a few kilobytes up to more than 20
megabytes.

Additionally, the dbench benchmark allows one to specify
the number of concurrent clients to run. A dbench process
creates all the client processes, and through a simple barrier,
waits for the creation of all child processes to finish. After
that, the barrier is released, and each client creates a private
directory, and executes all operations. In the end, a single
throughput value (MiB/second) is reported.

On these tests, we have also performed 5 consecutive runs,

on the same partition (reformatting in between tests), and the
average was taken. To better illustrate the differences between
the tested file system implementations, we have plotted the
time of execution of each run in Figure 4, and the throughput
results, as reported by dbench, are listed on Table II.

The results of this test indicate the performance impact
of meta-data snapshotting on a file-server workload. It also
illustrates how the overhead behaves in a multiprogramming
environment, as the number of clients and requisitions grows.
As expected, the overhead caused by meta-data snapshotting
is small; the highest overhead was measured with only 1
process, and was of about 4%. Interestingly, as the number
of client processes grows, and the benchmark becomes more
I/O intensive, and less CPU bound, due to shortage of memory,
meta-data snapshotting overhead slightly decreases to almost
3%.

In addition, also for this workload, journaling in ext2 causes
a big degradation in performance. But besides the degradation,
it is interesting to notice how ext3 scales as the number of
clients grows. With only one process, ext3 takes 60% more
time to finish than ext2; and as Figure 4 suggests this overhead
grows exponentially. With 32 concurrent client processes, ext3
takes 152% more time to finish than ext2.

V. EXTENSIONS

Meta-data snapshotting, unlike soft updates, journaling and
log-structured mechanisms, does not require specific actions
for each type of file system operation. The only guarantee
needed for meta-data snapshotting to work is that all blocks
pertaining to the same snapshot be coherent with respect
to each other. The use of copy-on-write to guarantee this
coherency, and the lack of specific actions for different op-
erations is what makes meta-data snapshotting so simple.

In addition, due to its characteristics, meta-data snapshotting
can be easily extended for regular file data. In fact, snapshot-
ting of data is already done in regular meta-data snapshotting
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of directories, as described in Section III-D. In this section we
discuss two extensions for meta-data snapshotting: file system
transaction support; and versioning of files and directories.

A. Transactions

In KFS’s snapshot mechanism, it is possible, for example,
to support transaction-like capabilities (with all-or-nothing
semantics) for a series ofwrite() operations on any specific
file data, or even a series of operations on directories (creation,
deletion, rename, etc.). To do this, it is necessary to include
all dirty file and meta-data pages of a transaction in the same
generation. If the generation containing the transaction’s dirty
buffers is committed to stable storage, then the transaction is
completely committed. However, if there is a system failure
which prevents the generation from being committed, the
entire transaction is prevented from altering the file system.
With this mechanism, you have a guarantee that not onlypart
of the modifications of the transaction are made: either all of
the modifications are made (generation is committed), or none
of them (generation is not committed).

B. Versioning

If the meta-data technique is changed so that blocks for
older generations are not freed, it is possible to have various
snapshots (or versions) of a selected set of files or directories,
or even the entire file system, similar to snapshot capability
available in logical volume managers (LVMs).

This kind of versioning snapshot is also expected to be
created efficiently. All that is needed is to mark the selected
blocks belonging to files and directories, and their respective
meta-data, as immutable; no data or meta-data has to be
copied or duplicated for copy-on-write versioning. Further
modifications will be made to new locations of the stable
storage, similar to the descrption of snapshotting directory data
in Section III-D.

A key difference between meta-data snapshotting and ver-
sioning snapshots is that while the first operates completely
in memory, the latter has to persist versioning information
to able to determine (across reboots, for example) which
are immutable and which are mutable data and meta-data
blocks. So, in order to manage various versions, and keep
track of immutable blocks, additional features need to be
incorporated to directory and file implementations. Besides
persisting information related to immutable data and meta-
data blocks, a user interface needs to be made available so that
users can access different versions of the file or directory.

VI. CONCLUSIONS

In this paper, we have presentedmeta-data snapshotting
as a low-cost, scalable and simple technique for file system
consistency. One novelty which meta-data snapshotting brings
in comparison to other techniques aimed at file system con-
sistency, is that meta-data snapshotting permits the on disk
image of the file system to be consistent at all times. Our
experiments indicate that meta-data snapshotting provides this
kind of availability at very little cost. In meta-data update

intensive workloads, it performs with at most 4% performance
degradation when compared to its upper-bound, and runs
109% faster when compared to a write-ahead journaling file
system.

To summarize some of the advantages of meta-data snap-
shotting presented:

1) It reduces the number of writes issued by the file system,
if compared to journaling, log-structured or soft update
mechanisms. Journaling and log-structured use write-
ahead logging, and therefore have to write the same
information twice, while the soft updates mechanism has
to possibly write the same buffer more than one time in
order to respect the buffer’s pending dependencies.

2) It is a much simpler technique than soft updates, and
also arguably simpler than logging-based solutions.

3) The meta-data snapshotting scheme is highly concur-
rent, and results show that it scales at the same rate
as an asynchronous file system, with no consistency
guarantees. Journaling file systems have a central point
of contention: the transaction journal. It is unclear how
journaling file systems scale as the size of the file system
grows. (Bryant et al.[35] describe results of performance
and scalability for four Linux journaling file systems).
As disk seek times have not improved at the same rate
as CPU and memory performance and disk transfer
rates, keeping the journal up-to-date could become a
performance bottleneck.

4) It can be easily extended to support transaction and
versioning capabilities for both meta-data and data.

5) The on-disk version of the file system is consistent, at
all times. With meta-data snapshotting, as with other file
system consistency techniques, applications always see
the most current version of meta-data, while the disk
always contains a consistent copy. But an advantage
with meta-data snapshotting is that the file system is
completely consistent upon a system crash, whereas
soft update based file systems have to run file system
checkers to recollect unused resources [36] and logging
schemes have to process the log. Even though the file
checker has been implemented to run as a background
task, to not hinder availability, as disk sizes grow, so
should the time needed for the file checker to complete
scanning the file system.
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