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Abstract— The advent of IP-based storage networking has
brought specialized network adapters that directly support
TCP/IP and storage protocols on the market to get comparable
performance that specialized high-performance storage network-
ing architectures provide.

This paper describes an efficient software implementation of
the iSCSI protocol with a commodity networking infrastructure.
Though several studies have compared the performances of spe-
cialized network adapters and commodity network adapters, our
iSCSI implementation eliminates data copying overhead unlike
straightforward iSCSI implementations used in previous studies.
To achieve it, we modified a general-purpose operating system by
using techniques studied for improving TCP performance in the
literature and features that commodity Gigabit Ethernet adapters
support. We also quantified their effects.

Our microbenchmarks show, compared with a straightforward
iSCSI driver that does not use these techniques, the iSCSI driver
with these optimizations reduces CPU utilization from 39.4% to
30.8% when writing with an I/O size of 64 KB. However, when
reading, any performance gain is negated due to the high cost
of operations on the virtual memory system.

I. I NTRODUCTION

To cope with the rapidly growing volume of data, many
companies have started to adopt new storage architectures,
in which servers and storage devices are interconnected by
specialized high-speed links such as Fibre Channel. The new
storage architectures, called storage networking architectures,
have superseded traditional storage architectures, in which
servers and storage devices are directly connected by system
buses. Storage networking architectures make it easier to ex-
pand, distribute and administer storage than with the traditional
storage architectures.

With advances in Ethernet technology, more advanced stor-
age networking technology, i.e., the iSCSI protocol [1] is on
the horizon. It encapsulates a block-level storage protocol,
that is, the SCSI protocol into the TCP/IP protocol, and it
carries packets over IP networks. The iSCSI protocol has
some advantages over other storage networking architectures:
it is based on two well-known technologies, that is, the
SCSI protocol and the TCP/IP protocol, which have been
used for many years. Integrating storage networking with
mainstream data communications is possible by using Ethernet
networks. Furthermore, many engineers who are familiar with
these technologies may provide economic and management
advantages.
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Though the iSCSI protocol is fully compatible with
commodity networking infrastructures, specialized network
adapters, such as TCP Offload Engine (TOE) and Host Bus
Adapter (HBA), exist on the market. Vendors claim that they
can obtain comparable performance with existing specialized
storage networking architectures by offloading the overheads
of IP-based storage networking. A TOE adapter offloads
the TCP/IP protocol overhead on the host CPU by directly
supporting the TCP/IP protocol functions. Furthermore, an
HBA adapter offloads the TCP/IP protocol and data copying
overheads by directly supporting the TCP/IP protocol and
storage protocol functions. Several studies have compared the
performance of specialized network adapters and commodity
Gigabit Ethernet adapters.

This paper provides an analysis on how high a level of
performance the iSCSI protocol can provide without having
specialized hardware. We made changes to the Linux kernel
to get the best performance with commodity networking
infrastructures by using techniques studied for improving TCP
performance in the literature. We also used three features that
commodity Gigabit Ethernet adapters support, i.e., checksum
offloading, jumbo frames, and TCP segmentation offloading
(TSO). Unlike the straightforward iSCSI implementations used
in previous studies, ours avoids copying between buffers in
the virtual memory (VM) system and those in the network
subsystem.

This paper focuses on the implementation of an initiator,
i.e., a client of a SCSI interface that issues SCSI “commands”
to request services from a target, typically a disk array, that
executes SCSI commands. However, most of the discussion is
applicable to a target in the case it is implemented by software
like some iSCSI appliances on the market.

The outline of the rest of this paper is as follows. Section
II summarizes related work. Section III covers the issues
related to optimizations for to achieve the high performance,
and discusses some of the detailed implementations. Section
IV presents our performance results. And then Section V
summarizes the main points to conclude the paper.

II. RELATED WORK

Some performance studies of the iSCSI protocol have
been conducted in the past. Sarkar et al. [2] evaluated the
performance of a software implementation and those of im-
plementations with TOE and HBA adapters. Stephen Aiken



et al. [3] contrasted the performance of a software imple-
mentation with that of Fibre Channel. Wee Teck Ng et al.
[4] investigated the performance of the iSCSI protocol over
wide area networks with high latency and congestion. Unlike
our iSCSI implementation, their software implementations are
straightforward, that is, they are based on unmodified TCP/IP
stacks, copy data between buffers in a VM system and those
in a network subsystem in an operating system, and do not
exploit some of the features that the network adapter supports.

We cannot directly compare the performance that we ob-
tained with those obtained from their studies on TOE adapters,
HBA adapters, and Fibre Channel, due to differences in the
experimental infrastructure. However, we believe that the in-
direct comparison between their studies and ours may provide
some useful information.

There are a number of papers that point out that TCP
performance on high-speed links is limited by the host system
and study several optimization approaches. Chase et al. [5]
outline a variety of approaches. In this paper, we adopt a
technique calledpage flippingor page remappingto avoid
copying, and evaluate how much it affects the performance of
optimized software implementation of the iSCSI protocol.

Unlike many studies [6]–[8] on TCP performance, this paper
does not address the avoidance of copying data between the
kernel and user address spaces. Instead, it focuses on the
avoidance of redundant copying between buffers in several
subsystems in an operating system. That is, our goal is ”single-
copy” from the application point of view. Even if using
techniques studied in the literature to avoid copying data
between the kernel and user address spaces may possibly
result in better performance, making the techniques work
with the iSCSI protocol requires extensive modifications to
subsystems in an operating system, such as file systems, a
memory management architecture and a network subsystem.

TCP overhead on the host system is mostly inherited from
its design. It leads to many newly low overhead networking
protocols, called user level protocol or light weight protocol
[9]–[11]. These works result in specialized file systems such
as DAFS [12]. These protocols that are free from negative
inheritances of the TCP protocol can achieve better perfor-
mance. Furthermore, to take advantage of the merits of both
new protocols and TCP protocol, integrating them with TCP
protocol has been addressed.

III. O PTIMIZATION TECHNIQUES

Figure 1 shows the difference between the architectures
of general SCSI drivers and iSCSI drivers, and data flow
inside an operating system1. In general, an iSCSI initiator
is implemented as a SCSI host bus adapter driver. However,
unlike general SCSI drivers interacting with their own host
bus adapter hardware, an iSCSI driver interacts with a network
subsystem.

1We assume that cached file system data are managed by a virtual memory
system, as in the Linux kernel.

Commonly cited disadvantages of IP-based storage net-
working over existing specialized storage networking archi-
tectures are the TCP/IP protocol and data copying overheads.
They can decrease the performance of applications by con-
suming CPU and memory system bandwidth.

Though general SCSI host bus adapter drivers directly
move data between buffers in a VM system and the target,
straightforward iSCSI drivers copy data between buffers in
a VM system and those in a network subsystem. We were
able to find four implementations of an iSCSI initiator [13]–
[16], which are licensed under open source licenses [17], for
the Linux operating system. All implementations copy data
between the VM cache and the network subsystem. However,
the copying can be avoided in some cases.

We discuss techniques for copy avoidance and the issues
of implementing them in the Linux kernel in the following
sections.
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Fig. 1. SCSI driver architecture.

A. Network adapter support

Though commodity Gigabit Ethernet adapters cannot di-
rectly process the TCP/IP protocol and the iSCSI protocol un-
like specialized network adapters, they provide some features
that can be useful for offloading the TCP/IP protocol and data
copying overheads, which IP-based storage networking has.
We use the following three features.

• Checksum offloading.Calculating checksums to detect
the corruption of a packet is an expensive operation.
Checksum calculation on a network adapter instead of the
host CPU can improve performance, and it is common



today. Six out of nine kinds of chipsets for a Gigabit
Ethernet adapter that the Linux kernel version 2.6.0-test1
supports provide this feature.
Checksum offloading works on both the transmitting and
receiving sides2.

• Jumbo frames. Large packets can improve performance
by reducing the number of packets that the host processes.
However, standard IEEE 802.3 Ethernet frame sizes allow
the MTU size to be 1500 bytes at the most. Nowadays
most Gigabit Ethernet adapters support jumbo frames,
that allow the host to use the larger MTU size (typically
up to 9000 bytes). Seven out of nine kinds of chipsets for
a Gigabit Ethernet adapter that the Linux kernel version
2.6.0-test1 supports provide this feature.
Jumbo frames are mandatory to achieve copy avoidance
when reading data.

• TCP Segmentation offloading.A network subsystem
must break a packet whose size is larger than the TCP
segment size into smaller pieces at the TCP layer before
it is passed to the IP layer. TCP Segmentation offloading
(TSO) can improve performance by executing some parts
of this work on a network adaptor, and is relatively new.
Two out of nine kinds of chipsets for a Gigabit Ethernet
adapter that the Linux kernel version 2.6.0-test1 supports
provide this feature.
Though copy avoidance is possible without TCP Segmen-
tation offloading, it can improve the performance when
writing large data.

B. Write

The avoidance of copying when data travel from an initiator
to a target (i.e., write) is easier than when data travel from a
target to an initiator (i.e., read). Instead of copying data from
the VM cache into buffers in the network subsystem, our iSCSI
driver hands over references to buffers in the VM system to
the network subsystem when writing.

In the Linux kernel, ansk buff structure is used for memory
management in the network subsystem. It is calledskbuff, and
is equivalent to anmbuf structure in the BSD lineage. An
skbuff holds not only its own buffer space, but also references
to apagestructure describing a page in order to support avoid-
ing redundant copying between the VM cache and skbuffs.
Moreover, the Linux kernel also provides interfaces called
sendpageinterfaces to use these data structures.

These interfaces pass references topagestructures describ-
ing pages in the VM system to the network subsystem. And, a
network adapter driver receives skbuffs holding the references
from the network subsystem, and then the contents of the
referred pages are transferred to the wire.

By using these interfaces, our iSCSI driver can avoid
copying data between the VM cache and skbuffs without
modifications to the Linux kernel. Our iSCSI driver performs
the following operations when writing.

2Some network adapters can compute checksums on only transmitting
packets.

1) The SCSI subsystem receives references topagestruc-
tures describing dirty pages3 from the VM system, and
hands over them to the iSCSI driver.

2) The iSCSI driver associates these references with skbuffs
for iSCSI packets by using sendpage interfaces.

3) References are passed on to a network adapter driver and
the contents of referred pages are transmitted by using
direct memory access (DMA).

Unlike the avoidance of copying data between the kernel
and user address spaces, the iSCSI driver does not require
pinning and unpinning of transferred pages during DMA
transfers, because the VM system increases a usage count of
these pages. It guarantees that the VM system does not reclaim
these pages until the iSCSI command related them finishes.

To get the best performance improvement from copy avoid-
ance, a network adapter has to provide checksum offloading to
calculate data checksums during DMA transfers. Without this
feature, the performance gain from copy avoidance becomes
negligible [5], because in the Linux kernel the TCP stack
integrates calculating the checksum on data with copying the
data.

1) iSCSI digest:Without modifications to the Linux kernel,
it is possible to avoid copying when writing data in most cases.
However, this scheme for copy avoidance does not work in the
case thedata digestfeature that the iSCSI protocol supports
is enabled.

The iSCSI protocol defines a 32-bit CRC digest on an iSCSI
packet to detect the corruption of iSCSI PDU (protocol data
unit) headers and/or data because a 16 bit checksum used by
TCP to detect the corruption of a TCP packet was considered
to be too weak for the requirements of storage on long distance
data transfer [18]. These digests are calledheader digestand
data digestrespectively. When these digests are used, the
iSCSI driver performs in a slightly different way.

1) The SCSI subsystem receives references to dirty pages
from the VM system, and hands over them to the iSCSI
driver.

2) The iSCSI driver associates these references with skbuffs
for iSCSI packets by using sendpage interfaces.

3) If the header digest feature is enabled, the iSCSI driver
computes a digest on an iSCSI PDU header.

4) If the data digest feature is enabled, the iSCSI driver
computes a digest on an iSCSI PDU data, that is, the
contents of dirty pages.

5) References are passed on to a network adapter driver and
the contents of referred pages are transmitted by using
DMA.

Note that the Linux kernel permits modifying the contents of
a page that are being written to persistent storage. Therefore,
a process or a subsystem can modify the contents of a page
at any time during all of the above operations.

If the contents of a transferred page are modified between
the fourth and fifth operations, a target sees the combination

3A dirty page means a page whose contents are modified in the VM system
that must be written to persistent storage.



of the data digest on the old contents and the new contents.
Thus, the verifying of the data digest fails on the target. In
this case, the iSCSI driver must compute again a data digest
on the new contents of the page before a network adapter
transmits them. However, the iSCSI driver has no chance to
do it. Therefore, the iSCSI driver must keep a transferred page
untouched after computing a data digest on the page until the
iSCSI command related to the page finishes. A synchronous
scheme to avoid such a situation is necessary to enable our
copy avoidance scheme to work with the data digest feature.
The current version of our iSCSI driver simply copies data
between the VM cache and skbuffs instead of using sendpage
interfaces in the case the data digest feature is used.

On the other hand, the header digest feature always works
with our scheme to avoid copying, because a header of an
iSCSI PDU can be modified only by the iSCSI driver.

C. Read

With regard to reading data, the avoidance of copying can
be more problematical. This is because an iSCSI driver has
to place incoming data from a network subsystem at arbitrary
virtual addresses specified by a VM system without copying
the data.

An HBA adapter processing iSCSI and network protocols
can determine the virtual addresses chosen by a VM system
corresponding to incoming data, and directly place the data
in the appropriate places. Thus the driver does not have to
do anything with it. On the other hand, a commodity network
adapter cannot process these protocols. Therefore, it cannot
directly place incoming data at the virtual addresses specified
by a VM system.

One technique to avoid copying data with a commodity net-
work adapter is page remapping. It changes address bindings
between buffers in a VM system and a network subsystem.
This scheme is widely used in research systems; however, it
has some restrictions.
• The Maximum Transfer Unit (MTU) size must be larger

than the system virtual memory page size.
• The network adapter must place incoming data in a way

that the data that a VM system requires are aligned on
page boundaries after removing the Ethernet, IP, TCP, and
iSCSI headers.

• Page remapping requires the high-cost operations of
manipulating data structures related to a memory man-
agement unit (MMU) and flushing an address-translation
cache, called a translation lookaside buffer (TLB). These
operations are particularly slow in symmetric multi-
processor (SMP) environments.

The first issue means that the technique does not work with
standard IEEE 802.3 Ethernet frame sizes, and thus jumbo
frames are mandatory.

The requirement in the second issue can be achieved with
some modifications to a general-purpose operating system. We
explain these modifications in subsequent paragraphs.

The operations in the last issue can be avoidable with data
movement between buffers in a VM system and those in a

network subsystem4, though such operations are mandatory
with copy avoidance between the kernel and user address
spaces. The reason for this is that any kernel virtual address
into which a page in a VM system will do in UNIX operating
systems as long as the page is mapped.

In general, pages in a VM system are temporarily mapped
into the kernel virtual address space. When a process or a
subsystem reads or writes the contents of a page, the page
is mapped into a kernel virtual address. When it finishes the
operation, the page is unmapped. The page can be mapped
into another kernel virtual address next time. That is, a process
does not directly see the kernel virtual address into which a
page is mapped.

This scheme does not work if a page in the VM system is
mapped into user virtual addresses, e.g, if files or devices are
mapped into user virtual addresses by using themmapsystem
call, high-cost MMU operations are inevitable. In this case,
a process directly sees user virtual addresses, and thus a new
page must be mapped into the same user virtual addresses.

Our iSCSI driver requires some modifications to two parts
in the Linux kernel: the memory management in the network
subsystem and the VM cache management.

1) Memory management in the network subsystem:The
alloc skb function does not allow allocating space for the
skbuff with arbitrary alignment. Thus, we slightly modified
the function and ansk buff structure.

A network adapter allocates all skbuffs in expectation of
receiving an iSCSI packet including a response to a READ
command. Therefore, after the network subsystem and the
iSCSI driver finish processing the protocol headers, iSCSI
PDU data, that is, request data stored on the disk of the
target, show up on page boundaries. This scheme can only be
applied to the first TCP packet in the case that one iSCSI PDU
consists of several TCP packets. This is because the length of
the header of the first packet is different from that of the rest.
Therefore, after using page remapping for the first TCP packet,
our iSCSI driver copies data in the rest of the packets.

2) VM cache management:Figure 2 shows how the copy
avoidance scheme works after the iSCSI driver finishes pro-
cessing an iSCSI PDU header.

Figure 2(a) represents data structures just before page
remapping. Onepage structure ’A’ describes a page ’A’ in
the VM system and onepagestructure ’B’ describes a page
’B’ used for the space for an skbuff. Figure 2(b) shows
the structures after page remapping. Thepage structure ’A’
describes the page ’B’ in the VM system. Thepagestructure
’B’ and the page ’A’ are not used, and thesk buff structure is
freed. If necessary, the iSCSI driver performs MMU operations
to change the address bindings between these pages.

This scheme allows the contents of the page thatpage
structure ’A’ describes to be updated without copying. Before
page remapping, when a process or a subsystem tries to read

4The word ’page remapping’ means changing address bindings by perform-
ing MMU operations. Therefore, page remapping may not be the appropriate
name for the scheme to avoid copying between buffers in a VM system and
those in a network subsystem.
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the contents of the page thatpagestructure ’A’ describes, the
page ’A’ is mapped into the kernel virtual address space, and
then they see the contents of a page ’A’. After page remapping,
the page ’B’ is mapped into the kernel virtual address space,
and then they see the contents of a page ’B’.

To implement our scheme, we made two modifications to
the Linux VM system.

First, in the modified VM system, the relationship between a
pagestructure and the page that it describes is dynamic. In the
Linux VM system, apagestructure is allocated for every page
frame when the system boots, and the relationship between
them is static. We add the index of a page frame to apage
structure to enable it to describe any page. This modification
increases the overheads of some operations related to memory
management. For example, it becomes complicated to know
the kernel virtual address into which a page is mapped by
using apage structure describing the page. It also becomes
complicated to know apage structure describing a page by
using the physical address of the page.

To keep modifications to a minimum, we implement page
remapping by using a special kernel virtual address space,
called high memory, which is used for a host system with a
large amount of physical memory. Though the original Linux
VM system maps most pages into the kernel virtual address
space all the time, some pages are temporarily mapped into
the high memory address space as the need arises. In the
Linux VM system, pages are mapped into the kernel virtual
address space starting from 3 GB with Intel 32 bit architecture.
Without high memory, therefore, about only 1GB of the main
memory at most can be used. The iSCSI driver expands this
address space and uses some amount of the physical memory
exclusively for page remapping.

Secondly, in the modified VM system, apage structure
holds the reference to anotherpage structure as shown in
Figure 2(b). This extension allows thesepagestructures to be
restored to their original state when the page is reclaimed. The

old page is not freed until the new page is freed, or replaced
with another page.

D. Another potential solution

Another potential solution to avoid copying when reading
would be to directly replace apagestructure with another.

As shown in Figure 2(a), we can directly replace apage
structure ’A’ with apagestructure ’B’. This solution requires
extensive modifications to the Linux kernel, because apage
structure contains various data structures that subsystems use.
Take for example the case where a process is waiting for the
contents of a page to be updated by using data structures in the
pagestructure that describes the page. If thepagestructure is
replaced, the operating system must guarantee that the replaced
pagestructure remains untouched until all processes that use
it to wait for the contents resume.

IV. PERFORMANCE

We performed microbenchmarks to get the basic perfor-
mance characteristics of our iSCSI driver.

A. Experimental infrastructure

• Initiator The Dell Precision Workstation 530 uses two
2 GHZ Xeon processors with 1 GB of PC800 RDRAM
main memory, an Intel 860 chipset and an Intel Pro/1000
MT Server Adapter connected to a 66-MHz 64-bit PCI
slot. The network adapter supports checksum offloading
on both the transmitting and receiving sides, jumbo
frames, and TSO.
The initiator runs a modified version of the Linux kernel
version 2.5.67 and our iSCSI initiator implementation that
is based on the source code of the IBM iSCSI initiator
[16], [19] for the Linux kernel version 2.4 series. The
operating system has an 18GB partition on the local disk,
and the iSCSI driver uses a 73.4 GB partition on the target
server.



• Target The IBM TotalStorage IP Storage 200i is an iSCSI
appliance on two 1.13 GHz Pentium III processors with
1 GB of PC133 SDRAM main memory and an Intel
Pro/1000 F network adapter connected to a 66-MHz 64-
bit PCI slot. Our system houses Ultra 160 73.4 GB 10000
RPM SCSI disks.
While the details of the software have not been disclosed,
it is believed that the appliance runs the Linux kernel
version 2.4.2 and the iSCSI target implementation that
runs in kernel mode.

The initiator and the target are connected by an Extreme
Summit 7i Gigabit Ethernet switch.

The iSCSI initiator and target implementations are com-
patible with the iSCSI draft version 8. Though it is not the
latest, we believe this issue does not significantly affect the
performance under our experimental conditions, i.e., high-
speed and low-latency networks.

B. Measurement tool

We implemented microbenchmarks that run in kernel mode
and directly interact with the VM system in order to bypass
the VM cache. All iSCSI commands request the operation on
the same disk block address. This leads to the best cache usage
on the target. Therefore, the effect of the target server factors,
such as disk performance, on the results is kept to a minimum.

To measure the CPU utilization and where the CPU time
is spent while running the microbenchmarks, we use OProfile
suite [20], which is a system-wide profiler for the Linux kernel.
The OProfile suite uses Intel Hardware Performance Counters
[21] to report detailed execution profiles.

C. Configuration

We conducted the microbenchmarks with an MTU of 1500
bytes (standard Ethernet) or 9000 bytes (Ethernet with jumbo
frames).

The microbenchmarks were run with the following four
configurations:zero-copy, checksum offloading and TSO, for
which the iSCSI driver avoids copying data between the VM
cache and skbuffs, and uses checksum offloading and TSO
that the network adapter supports;zero-copy and checksum
offloading, for which the iSCSI driver avoids copying data, and
uses checksum offloading;checksum offloading, for which the
iSCSI driver copies data in the same way that a straightforward
iSCSI driver does and uses checksum offloading; andno
optimizations, for which the iSCSI driver copies data and does
not use checksum offloading or TSO.

The microbenchmarks read or write data 100,000 times with
the I/O sizes ranging from 512 bytes to 64 KB. Except in
the 64 KB case, one I/O request is converted to one iSCSI
command. For the 64 KB case, one I/O request is converted
to two iSCSI commands due to a restriction on the maximum
I/O size on the target.

Here, we report the averages of five runs for all experiments.

D. Results

1) CPU utilization and bandwidth:Figure 3(a) shows the
results of CPU utilization during the write microbenchmarks
with an MTU of 1500 bytes. Except for the sizes ranging from
512 bytes to 1024 bytes, the two configurations with which
the iSCSI driver avoids copying, thezero-copy, checksum
offloading and TSOand zero-copy and checksum offloading
configurations, yield a lower CPU utilization than the others.
It means that copy avoidance improves performance over the
large I/O sizes, and that over the small I/O sizes, the cost of
sendpage interfaces is slightly higher than the cost of coping
data.

Though TSO is used for all I/O sizes, it effectively works
for I/O sizes greater than 2048 bytes. This is because in the
block sizes of 512 bytes to 1024 bytes TCP segmentation does
not happen. That is, one TCP/IP packet can carry all data that
constitute one iSCSI PDU. Therefore, when the I/O sizes are
over 2048 bytes, thezero-copy, checksum offloading and TSO
configuration yields a lower CPU utilization than thezero-copy
and checksum offloadingconfiguration does. But the gain from
TSO is not clear. For example, CPU utilization is 29.0% in
thezero-copy, checksum offloading and TSOconfiguration and
30.2% in thezero-copy and checksum offloadingconfiguration
at 32 KB.

As explained in Section III, the gap between thechecksum
offloadandno optimizationsconfigurations is small.

We see the largest gain from copy avoidance at 64 KB. CPU
utilization is 30.0% in thezero-copy, checksum offloading and
TSO, 30.8% in thezero-copy and checksum offloading, 39.4%
in the checksum offloading, 42.0% in theno optimizations
configuration with the 1500-byte MTU.

We could not determine the reason why thezero-copy and
checksum offloadingconfiguration yields a lower CPU than
the zero-copy, checksum offloading and TSOconfiguration in
the block size of 2048 bytes.

Figure 3(b) shows the results of throughput during the write
microbenchmarks with the 1500-byte MTU. All configurations
provide comparable throughputs.

Figures 4(a) and 4(b) show the results of CPU utilization
and throughput during the write microbenchmarks with the
9000-byte MTU, respectively. These results are similar to
those with the 1500-byte MTU. But, as expected, CPU uti-
lization with the 9000-byte MTU is lower than one with the
1500-byte MTU. The throughput with the 9000-byte MTU is
better than the one with the 1500-byte MTU.

Figures 5(a) and 5(b) show the results of CPU utilization
and throughput during the read microbenchmarks with the
1500-byte MTU. As explained in Section III, our scheme
to avoid copying is impossible with the 1500-byte MTU.
In addition, TSO has no effect with regard to the read
microbenchmarks. Therefore, only thechecksum offloading
and no optimizationsconfigurations are presented. Like the
write microbenchmarks, thechecksum offloadingconfiguration
yields a slightly lower CPU utilization than theno optimiza-
tions configuration. Furthermore, both configurations perform
comparably with regard to throughput.
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Fig. 4. Results of write microbenchmarks with a 9000-byte MTU.

Figures 6(a) and 6(b) show the results of CPU utilization
and throughput during the read microbenchmarks with the
9000-byte MTU. Though thezero-copy and checksum offload
configuration is feasible under 4096 bytes (the system virtual
memory page size) through the combination of page remap-
ping and copying data, its gain is smaller than the one for
the 4096-byte I/O size and over. Therefore we concentrate on
the results over 4096 bytes with regard to thezero-copy and
checksum offloadconfiguration.

While at over 16 KB, both page remapping and copying data
are required, at 8192 bytes, the iSCSI driver does not need to
copy; that is, it only needs to manipulate some data structures
for memory management. Therefore, it gets the largest gain
from the optimizations at 8192 bytes. However, we cannot see
a clear gain. CPU utilization is 21.1% in thezero-copy and

checksum offloadingconfiguration and 21.3% in thechecksum
offloading configuration at 8192 bytes. Moreover, at 4096
bytes and over 16 KB, thechecksum offloadingconfiguration
yields the lower CPU utilization. We investigate the reasons
for this behavior in subsequent paragraphs.

In the read microbenchmarks, the iSCSI driver provides
comparable throughput in all configurations with the 9000-
byte MTU, as it does with the 1500-byte MTU.

2) Distribution of CPU time: Next, we investigate where
the CPU time is spent while running the microbenchmarks.
Table I and II show the distribution of CPU time during the
write and read microbenchmarks for the 8192-byte I/O size,
respectively. The reason why we choose the I/O size of 8192
bytes is that this size most clearly shows the characteristics
of the zero-copy and checksum offloadingconfiguration in the
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Fig. 5. Results of read microbenchmarks with a 1500-byte MTU.
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Fig. 6. Results of read microbenchmarks with a 9000-byte MTU.

read microbenchmarks.
As mentioned in the previous paragraph, we cannot see a

clear gain from TSO. Therefore, we omit the result of the
zero-copy, checksum offloading and TOEconfiguration.

There are six types of large overhead: the iSCSI driver,
copying data and checksums, the SCSI subsystem, the network
adapter driver, the TCP/IP stack, and the VM system.

The results shows that in the write microbenchmarks, the
combination of copy avoidance and checksum offloading de-
creases the CPU time spent on copying data and calculating
checksums. And we also clearly see the effect of a large MTU.
It greatly decreases the CPU time spent on the TCP/IP stack
and also decreases the time spent on the network adapter
driver.

The read microbenchmarks perform like the write mi-

crobenchmarks. The combination of copy avoidance and
checksum offloading decreases the CPU time spent on copying
data and calculating checksums. Furthermore, a large MTU
decreases the CPU time spent on the TCP/IP stack and on
the network adapter driver. The major difference is that the
optimization for copy avoidance increases the CPU time spent
on the VM system and the TCP stack.

The increased overhead of the VM is mainly due to the
complexity of the modified VM system. As explained in
Section III, in the modified VM system, the relationship
between apage structure and the page that it describes is
dynamic. This increases the overhead of memory-management
operations. Furthermore, the increased overhead of memory-
management operations increases the CPU time spent on the
TCP/IP stack, which often uses these operations. As a result,



TABLE I

DISTRIBUTION OF CPU TIME DURING THE WRITE MICROBENCHMARKS FOR THE8192-BYTE I/O SIZE.

Percent Time

no optimizations checksum offload
zero-copy and
checksum offload

MTU (byte) 1500 9000 1500 9000 1500 9000
Idle 66.81 79.85 68.35 79.23 71.86 83.32
iSCSI driver 1.52 1.34 1.53 1.41 1.32 1.30
SCSI subsystem 1.90 1.25 1.86 1.42 1.17 1.23
Copy and Checksum 3.76 3.40 2.93 2.41 0.27 0.27
Network adapter driver 2.12 0.96 2.27 1.07 2.60 1.06
TCP/IP 12.16 3.72 11.75 4.39 11.48 3.82
VM system 4.21 2.98 4.11 3.16 3.67 2.71

TABLE II

DISTRIBUTION OF CPU TIME DURING THE READ MICROBENCHMARKS FOR THE8192-BYTE I/O SIZE.

Percent Time

no optimizations checksum offload
zero-copy and
checksum offload

MTU (byte) 1500 9000 1500 9000 1500 9000
Idle 64.84 74.77 69.08 78.74 n/a 79.89
iSCSI driver 2.01 1.99 1.93 1.79 n/a 2.12
SCSI subsystem 1.44 1.49 1.25 1.19 n/a 1.29
Copy and Checksum 6.78 6.65 3.81 3.77 n/a 0.16
Network adapter driver 2.28 1.92 2.14 1.93 n/a 2.18
TCP/IP 9.84 3.36 9.75 2.92 n/a 4.79
VM system 4.54 3.22 4.28 3.08 n/a 4.89

the copy avoidance’s performance gain is negated.
These investigations also give some ideas on how much

performance the iSCSI protocol provides with specialized
adapters. The important observation is that the overhead of
processing the iSCSI protocol and the SCSI subsystem con-
sumes a relatively small amount of CPU time. For example,
during the write microbenchmarks in thezero-copy and check-
sum offloadingwith the 1500-byte MTU, it accounts for only
8.9% of the processing time in which the CPU is not idle. The
largest source of overhead is the TCP/IP protocol. It accounts
for 40.8% of the total processing time.

V. CONCLUSION

This paper presents an efficient implementation of an iSCSI
initiator with a commodity Gigabit Ethernet adapter, and ex-
perimentally analyzed its performance. Our implementation of
an iSCSI initiator avoids copying between the VM cache and
buffers in the network subsystem by using page remapping,
and exploits features that commodity Gigabit Ethernet adapters
support, i.e., checksum offloading, jumbo frames, and TCP
segmentation offloading.

Our analysis of writing showed that the combination of copy
avoidance and checksum offloading reduces CPU utilization
from 39.4% to 30.8% with an I/O size of 64 KB in our
microbenchmarks as compared with a straightforward iSCSI

driver copying data. In addition, the copy avoidance technique
that we used can be easily integrated into the Linux kernel by
using existing interfaces. However, we cannot see a clear gain
from TCP segmentation offloading.

With regards to reading, the copy avoidance technique
requires modifications to the Linux kernel. Furthermore, the
overhead due to our modifications to the VM system negates
any gain in performance that could be had from copy avoid-
ance.

Our experiments show that the CPU is not the performance
bottleneck in all configurations and the iSCSI driver provides
comparable throughput with each MTU.

The quantitative analysis shows that the overhead relative
to the iSCSI protocol and the SCSI subsystem consumes
a relatively small amount of CPU time (8.9% of the total
processing time during the write microbenchmarks with an
MTU of 1500 bytes) and the largest overhead comes from
processing the TCP/IP protocol with standard IEEE 802.3
Ethernet frame sizes.
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