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Abstract—The advent of IP-based storage networking has  Though the iSCSI protocol is fully compatible with
brought specialized network adapters that directly support commodity networking infrastructures, specialized network
TCP/IP and storage protocols on the market to get comparable adapters, such as TCP Offload Engine (TOE) and Host Bus

%ergg]?tgﬁutgzt Sfoev?:ja;h.zed high-performance storage network- Adapter (HBA), exist on the market. Vendors claim that they

This paper describes an efficient software implementation of can obtain comparable performance with existing specialized
the iISCSI protocol with a commaodity networking infrastructure.  storage networking architectures by offloading the overheads
Though several studies have compared the performances of spe-of |P-based storage networking. A TOE adapter offloads
cialized network adapters and commodity network adapters, our -y, Tcp/|p protocol overhead on the host CPU by directly
iSCSI implementation eliminates data copying overhead unlike . .
straightforward iSCSI implementations used in previous studies. supporting the TCP/IP protocol functions. Furthermore, _an
To achieve it, we modified a general-purpose operating system by HBA adapter offloads the TCP/IP protocol and data copying
using techniques studied for improving TCP performance in the overheads by directly supporting the TCP/IP protocol and
literature and features that commodity Gigabit Ethernet adapters  storage protocol functions. Several studies have compared the

support. We also quantified their effects. Al .
Our microbenchmarks show, compared with a straightforward performance of specialized network adapters and commodity

iSCSI driver that does not use these techniques, the iISCSI driver Gigabit Ethernet adapters.
with these optimizations reduces CPU utilization from 39.4% to This paper provides an analysis on how high a level of
30.8% when writing with an 1/O size of 64 KB. However, when performance the iSCSI protocol can provide without having
reading, any performance gain is negated due to the high cost gpecialized hardware. We made changes to the Linux kernel
of operations on the virtual memory system. to get the best performance with commodity networking
I. INTRODUCTION infrastructures by using techniques studied for improving TCP
To cope with the rapidly growing volume of data, manyperformance in the literature. We also used three features that

companies have started to adopt new storage architectufg@nmodity Gigabit Ethernet adapters support, i.e., checksum
in which servers and storage devices are interconnected dffoading, jumbo frames, and TCP segmentation offloading
specialized high-speed links such as Fibre Channel. The neéi0O). Unlike the straightforward iSCSI implementations used
storage architectures, called storage networking architectui@sprevious studies, ours avoids copying between buffers in
have superseded traditional storage architectures, in whtbg virtual memory (VM) system and those in the network
servers and storage devices are directly connected by sysftasystem.
buses. Storage networking architectures make it easier to exIhis paper focuses on the implementation of an initiator,
pand, distribute and administer storage than with the traditiond., @ client of a SCSI interface that issues SCSI “commands”
storage architectures. to request services from a target, typically a disk array, that
With advances in Ethernet technology, more advanced stekecutes SCSI commands. However, most of the discussion is
age networking technology, i.e., the iSCSI protocol [1] is ofpplicable to a target in the case it is implemented by software
the horizon. It encapsulates a block-level storage protocbke some iSCSI appliances on the market.
that is, the SCSI protocol into the TCP/IP protocol, and it The outline of the rest of this paper is as follows. Section
carries packets over IP networks. The iSCSI protocol hdssummarizes related work. Section Il covers the issues
some advantages over other storage networking architectuféated to optimizations for to achieve the high performance,
it is based on two well-known technologies, that is, thand discusses some of the detailed implementations. Section
SCSI protocol and the TCP/IP protocol, which have bedW presents our performance results. And then Section V
used for many years. Integrating storage networking wimmarizes the main points to conclude the paper.
mainstream data communications is possible by using Ethernet
networks. Furthermore, many engineers who are familiar with

these technologies may provide economic and managemen?©me performance studies of the iSCSI protocol have
advantages. been conducted in the past. Sarkar et al. [2] evaluated the

performance of a software implementation and those of im-
plementations with TOE and HBA adapters. Stephen Aiken
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et al. [3] contrasted the performance of a software imple- Commonly cited disadvantages of IP-based storage net-
mentation with that of Fibre Channel. Wee Teck Ng et alorking over existing specialized storage networking archi-
[4] investigated the performance of the iSCSI protocol ovéectures are the TCP/IP protocol and data copying overheads.
wide area networks with high latency and congestion. Unlikehey can decrease the performance of applications by con-
our iSCSI implementation, their software implementations aseming CPU and memory system bandwidth.
straightforward, that is, they are based on unmodified TCP/IPThough general SCSI host bus adapter drivers directly
stacks, copy data between buffers in a VM system and thaseve data between buffers in a VM system and the target,
in a network subsystem in an operating system, and do mettaightforward iSCSI drivers copy data between buffers in
exploit some of the features that the network adapter suppoesVM system and those in a network subsystem. We were
We cannot directly compare the performance that we oble to find four implementations of an iSCSI initiator [13]-
tained with those obtained from their studies on TOE adaptelt6], which are licensed under open source licenses [17], for
HBA adapters, and Fibre Channel, due to differences in tHee Linux operating system. All implementations copy data
experimental infrastructure. However, we believe that the ibetween the VM cache and the network subsystem. However,
direct comparison between their studies and ours may provitie copying can be avoided in some cases.
some useful information. We discuss techniques for copy avoidance and the issues
There are a number of papers that point out that TG¥ implementing them in the Linux kernel in the following
performance on high-speed links is limited by the host syste#fictions.
and study several optimization approaches. Chase et al. [5]
outline a variety of approaches. In this paper, we adopt g
technique calledpage flippingor page remappingo avoid

Initiator

Operating System Software Components

copying, and evaluate how much it affects the performance of Virtual Memory system
optimized software implementation of the iSCSI protocol. C VM Cache )
Unlike many studies [6]-[8] on TCP performance, this papéri l T

does not address the avoidance of copying data between |the
kernel and user address spaces. Instead, it focuses on|t
avoidance of redundant copying between buffers in sevelgl: | General SCSI driver | | ISCS! driver
subsystems in an operating system. That is, our goal is "sindlg- l T
copy” from the application point of view. Even if using Network subsystem
techniques studied in the literature to avoid copying daja C Butter )
between the kernel and user address spaces may posqiljly T ]
result in better performance, making the techniques work Y [
with the iSCSI protocol requires extensive modifications | System Bus |
subsystems in an operating system, such as file systemg,|a l T 1 T
memory management architecture and a network subsystej. |SCSI Host BusAdapter| | Network Adapter |
TCP overhead on the host system is mostly inherited fr
its design. It leads to many newly low overhead networki
protocols, called user level protocol or light weight protocql | SCS| cable | | Network cable |
[9]-[11]. These works result in specialized file systems sug¢h
as DAFS [12]. These protocols that are free from negatiye Target [
inheritances of the TCP protocol can achieve bett_er perf Disk drive, Tape, etc 14_
mance. Furthermore, to take advantage of the merits of both
new protocols and TCP protocol, integrating them with TCP Fig. 1.
protocol has been addressed.

SCSI subsystem
N Extra Data Copy
I

SCSiI driver architecture.

I1l. OPTIMIZATION TECHNIQUES A. Network adapter Support

Figure 1 shows the difference between the architectures! "0Ugh commodity Gigabit Ethernet adapters cannot di-
of general SCSI drivers and iSCSI drivers, and data flofgCtly Process the TCP/IP protocol and the iSCSI protocol un-
inside an operating systémin general, an iSCSI initiator like specialized network adapters, they provide some features
is implemented as a SCSI host bus adapter driver. Howeviiat can be useful for offloadlng the TCP/IP protocol and data
unlike general SCSI drivers interacting with their own hogioPying overheads, which IP-based storage networking has.
bus adapter hardware, an iSCSI driver interacts with a netwdi€ Use the following three features.
subsystem. « Checksum offloading. Calculating checksums to detect

the corruption of a packet is an expensive operation.
1We assume that cached file system data are managed by a virtual memory Checksum calculation on a network adapter instead of the
system, as in the Linux kernel. host CPU can improve performance, and it is common



today. Six out of nine kinds of chipsets for a Gigabit 1) The SCSI subsystem receives referencegatge struc-
Ethernet adapter that the Linux kernel version 2.6.0-testl  tures describing dirty pagé$rom the VM system, and

supports provide this feature. hands over them to the iSCSI driver.
Checksum offloading works on both the transmitting and 2) The iSCSI driver associates these references with skbuffs
receiving sides for iISCSI packets by using sendpage interfaces.

. Jumbo frames. Large packets can improve performance 3) References are passed on to a network adapter driver and
by reducing the number of packets that the host processes. the contents of referred pages are transmitted by using
However, standard IEEE 802.3 Ethernet frame sizes allow  direct memory access (DMA).

the MTU size to be 1500 bytes at the most. Nowadays Unlike the avoidance of copying data between the kernel
most Gigabit Ethernet adapters support jumbo framegnd user address spaces, the iSCSI driver does not require
that allow the host to use the larger MTU size (typicallpinning and unpinning of transferred pages during DMA
up to 9000 bytes). Seven out of nine kinds of chipsets f@iansfers, because the VM system increases a usage count of
a Gigabit Ethernet adapter that the Linux kernel versiafese pages. It guarantees that the VM system does not reclaim

2.6.0-test1 supports provide this feature. ~ these pages until the iSCSI command related them finishes.
Jumbo frames are mandatory to achieve copy avoidancero get the best performance improvement from copy avoid-
when reading data. ance, a network adapter has to provide checksum offloading to

« TCP Segmentation offloading. A network subsystem calculate data checksums during DMA transfers. Without this
must break a packet whose size is larger than the T@ture, the performance gain from copy avoidance becomes
segment size into smaller pieces at the TCP layer befaiggligible [5], because in the Linux kernel the TCP stack
it is passed to the IP layer. TCP Segmentation offloadingtegrates calculating the checksum on data with copying the
(TSO) can improve performance by executing some pagsta.
of this work on a network adaptor, and is relatively new. 1y iSCS| digestWithout modifications to the Linux kernel,
Two out of nine kinds of chipsets for a Gigabit Etherne is possible to avoid copying when writing data in most cases.
adapter that the Linux kernel version 2.6.0-test1 supporfwever, this scheme for copy avoidance does not work in the
provide this feature. case thedata digestfeature that the iSCSI protocol supports
Though copy avoidance is possible without TCP Segme-enabled.

tation offloading, it can improve the performance when The iSCSI protocol defines a 32-bit CRC digest on an iSCSI

writing large data. packet to detect the corruption of iISCSI PDU (protocol data
_ unit) headers and/or data because a 16 bit checksum used by
B. Write TCP to detect the corruption of a TCP packet was considered

The avoidance of copying when data travel from an initiatdp be too weak for the requirements of storage on long distance
to a target (i.e., write) is easier than when data travel fromdg@ta transfer [18]. These digests are caledder digesand
target to an initiator (i.e., read). Instead of copying data froffata digestrespectively. When these digests are used, the
the VM cache into buffers in the network subsystem, our iSC&1CSI driver performs in a slightly different way.
driver hands over references to buffers in the VM system to1) The SCSI subsystem receives references to dirty pages

the network subsystem when writing. from the VM system, and hands over them to the iSCSI
In the Linux kernel, arsk buff structure is used for memory driver.

management in the network subsystem. It is cadlielouff and 2) The iSCSI driver associates these references with skbuffs

is equivalent to ammbuf structure in the BSD lineage. An for iISCSI packets by using sendpage interfaces.

skbuff holds not only its own buffer space, but also references3) If the header digest feature is enabled, the iSCSI driver
to apagestructure describing a page in order to support avoid- ~ computes a digest on an iSCSI PDU header.

ing redundant copying between the VM cache and skbuffs.4) If the data digest feature is enabled, the iSCSI driver
Moreover, the Linux kernel also provides interfaces called computes a digest on an iSCSI PDU data, that is, the
sendpageénterfaces to use these data structures. contents of dirty pages.

These interfaces pass referencepagestructures describ- 5) References are passed on to a network adapter driver and
ing pages in the VM system to the network subsystem. And, a  the contents of referred pages are transmitted by using
network adapter driver receives skbuffs holding the references DMA.
from the network subsystem, and then the contents of theNote that the Linux kernel permits modifying the contents of
referred pages are transferred to the wire. a page that are being written to persistent storage. Therefore,

By using these interfaces, our iSCSI driver can avoid process or a subsystem can modify the contents of a page
copying data between the VM cache and skbuffs withoat any time during all of the above operations.
modifications to the Linux kernel. Our iSCSI driver performs If the contents of a transferred page are modified between
the following operations when writing. the fourth and fifth operations, a target sees the combination

2Some network adapters can compute checksums on only transmittingA dirty page means a page whose contents are modified in the VM system
packets. that must be written to persistent storage.



of the data digest on the old contents and the new contentetwork subsystefn though such operations are mandatory
Thus, the verifying of the data digest fails on the target. with copy avoidance between the kernel and user address
this case, the iSCSI driver must compute again a data digepaces. The reason for this is that any kernel virtual address
on the new contents of the page before a network adapito which a page in a VM system will do in UNIX operating
transmits them. However, the iSCSI driver has no chance dgstems as long as the page is mapped.

do it. Therefore, the iISCSI driver must keep a transferred pagen general, pages in a VM system are temporarily mapped
untouched after computing a data digest on the page until théo the kernel virtual address space. When a process or a
iISCSI command related to the page finishes. A synchronaaghsystem reads or writes the contents of a page, the page
scheme to avoid such a situation is necessary to enable Bumapped into a kernel virtual address. When it finishes the
copy avoidance scheme to work with the data digest featuoperation, the page is unmapped. The page can be mapped
The current version of our iSCSI driver simply copies datato another kernel virtual address next time. That is, a process
between the VM cache and skbuffs instead of using sendpatyes not directly see the kernel virtual address into which a
interfaces in the case the data digest feature is used. page is mapped.

On the other hand, the header digest feature always worksThis scheme does not work if a page in the VM system is
with our scheme to avoid copying, because a header of @apped into user virtual addresses, e.g, if files or devices are
iISCSI PDU can be modified only by the iSCSI driver. mapped into user virtual addresses by usingntimeapsystem
C. Read call, high-cost MMU operations are inevitable. In this case,

) . . ) a process directly sees user virtual addresses, and thus a new
With regard to reading data, the avoidance of copying cge must be mapped into the same user virtual addresses.

be more problematical. This is because an iSCSI driver hasoyy iscs| driver requires some modifications to two parts

to place incoming data from a network subsystem at arbitragy the Linux kernel: the memory management in the network
virtual addresses specified by a VM system without COpyinébbsystem and the VM cache management.

the data. o 1) Memory management in the network subsystdte
An HBA adapter processing iSCSI and network protocol§joe skh function does not allow allocating space for the

can determine the virtual addresses chosen by a VM systeg it with arbitrary alignment. Thus, we slightly modified
corresponding to incoming data, and directly place the dg{@, function and amsk buff structure.
in the appropriatg places. Thus the driver does hot have 105 nepwork adapter allocates all skbuffs in expectation of
do anything with it. On the other hand, a commodity n,etwo%ceiving an iSCSI packet including a response to a READ
adapter cannot process these protocols. Therefore, it canqgt, and. Therefore, after the network subsystem and the
directly place incoming data at the virtual addresses speciﬁghsI driver finish processing the protocol headers, iSCSI
by a VM sys.tem. ) i i ) PDU data, that is, request data stored on the disk of the
One technlque to avoid copying data with a commodlty n?ltérget, show up on page boundaries. This scheme can only be
work adapter is page remapping. It changes address bindingieq 1o the first TCP packet in the case that one iSCSI PDU
between buffers in a VM system and a network subsystefiygists of several TCP packets. This is because the length of
This scheme is widely used in research systems; howevenyt header of the first packet is different from that of the rest.
has some restrictions. Therefore, after using page remapping for the first TCP packet,
« The Maximum Transfer Unit (MTU) size must be largepyr iSCSI driver copies data in the rest of the packets.
than the system virtual memory page size. 2) VM cache managemenEigure 2 shows how the copy
- The network adapter must place incoming data in @ Wayoidance scheme works after the iSCSI driver finishes pro-
that the data that a VM system requires are aligned @Bssing an iSCSI PDU header.

page boundaries after removing the Ethernet, IP, TCP, a”q:igure 2(a) represents data structures just before page
ISCSI headers. . _ ~ remapping. Ongage structure 'A' describes a page 'A in
- Page remapping requires the high-cost operations @ik v\ system and onpagestructure ‘B’ describes a page
manipulating data structures related to a memory maig sed for the space for an skbuff. Figure 2(b) shows
agement unit (MMU) and flushing an address-translatiqQRe structures after page remapping. Toege structure 'A
cache, called a translation lookaside buffer (TLB). Thesgscribes the page 'B’ in the VM system. Thagestructure
operations are particularly slow in symmetric multi-g' gnd the page 'A are not used, and tis& buff structure is
processor (SMP) environments. freed. If necessary, the iSCSI driver performs MMU operations
The first issue means that the technique does not work withchange the address bindings between these pages.
standard IEEE 802.3 Ethernet frame sizes, and thus jumborhis scheme allows the contents of the page thage
frames are mandatory. structure 'A’ describes to be updated without copying. Before

The requirement in the second issue can be achieved Wifge remapping, when a process or a subsystem tries to read
some modifications to a general-purpose operating system. We

explain these modifications in subsequent paragraphs. “The word page remapping’ means changing address bindings by perform-
MMU operations. Therefore, page remapping may not be the appropriate

. . . . : i
The operations in the last issue can be avoidable with _d%rt%ne for the scheme to avoid copying between buffers in a VM system and
movement between buffers in a VM system and those inttese in a network subsystem.
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Fig. 2. VM cache and skbuff management.

the contents of the page thaéagestructure 'A describes, the old page is not freed until the new page is freed, or replaced
page ‘A is mapped into the kernel virtual address space, anith another page.

then they see the contents of a page 'A. After page remapping, ) )

the page 'B’ is mapped into the kernel virtual address spadé, Another potential solution

and then they see the contents of a page 'B’. Another potential solution to avoid copying when reading
To implement our scheme, we made two modifications t@ould be to directly replace pagestructure with another.
the Linux VM system. As shown in Figure 2(a), we can directly replacepage

First, in the modified VM system, the relationship betweensiructure ‘A" with apagestructure 'B’. This solution requires
pagestructure and the page that it describes is dynamic. In tegtensive modifications to the Linux kernel, becauspage
Linux VM system, apagestructure is allocated for every pagestructure contains various data structures that subsystems use.
frame when the system boots, and the relationship betwekake for example the case where a process is waiting for the
them is static. We add the index of a page frame toage contents of a page to be updated by using data structures in the
structure to enable it to describe any page. This modificatipagestructure that describes the page. If fegestructure is
increases the overheads of some operations related to memepjaced, the operating system must guarantee that the replaced
management. For example, it becomes complicated to knpagestructure remains untouched until all processes that use
the kernel virtual address into which a page is mapped kyto wait for the contents resume.
using apage structure describing the page. It also becomes
complicated to know gage structure describing a page by IV. PERFORMANCE
using the physical address of the page. We performed microbenchmarks to get the basic perfor-

To keep modifications to a minimum, we implement pageance characteristics of our iSCSI driver.
remapping by using a special kernel virtual address space, ) )
called high memory which is used for a host system with &7 Experimental infrastructure
large amount of physical memory. Though the original Linux « Initiator The Dell Precision Workstation 530 uses two
VM system maps most pages into the kernel virtual address 2 GHZ Xeon processors with 1 GB of PC800 RDRAM
space all the time, some pages are temporarily mapped into main memory, an Intel 860 chipset and an Intel Pro/1000
the high memory address space as the need arises. In the MT Server Adapter connected to a 66-MHz 64-bit PCI
Linux VM system, pages are mapped into the kernel virtual slot. The network adapter supports checksum offloading
address space starting from 3 GB with Intel 32 bit architecture. on both the transmitting and receiving sides, jumbo
Without high memory, therefore, about only 1GB of the main  frames, and TSO.
memory at most can be used. The iSCSI driver expands this The initiator runs a modified version of the Linux kernel
address space and uses some amount of the physical memory version 2.5.67 and our iSCSlI initiator implementation that

exclusively for page remapping. is based on the source code of the IBM iSCSI initiator
Secondly, in the modified VM system, page structure [16], [19] for the Linux kernel version 2.4 series. The

holds the reference to anotheage structure as shown in operating system has an 18GB patrtition on the local disk,

Figure 2(b). This extension allows thegagestructures to be and the iSCSI driver uses a 73.4 GB partition on the target

restored to their original state when the page is reclaimed. The server.



« Target The IBM TotalStorage IP Storage 200i is an iSCSD. Results

appliance on two 1.13 GHz Pentium Ill processors with 1) CPU utilization and bandwidthFigure 3(a) shows the

1 GB of PC133 SDRAM main memory and an Intelesuits of CPU utilization during the write microbenchmarks
Pro/1000 F network adapter connected to a 66-MHz 6¢iith an MTU of 1500 bytes. Except for the sizes ranging from
bit PCI slot. Our system houses Ultra 160 73.4 GB 1000§} 2 pytes to 1024 bytes, the two configurations with which
RPM SCSI disks. the iSCSI driver avoids copying, theero-copy, checksum
While the details of the software have not been disclose@tﬂoading and TSQand zero-copy and checksum offloading

it is believed that the appliance runs the Linux kemelonfigurations, yield a lower CPU utilization than the others.
version 2.4.2 and the iSCSI target implementation thgtmeans that copy avoidance improves performance over the

runs in kernel mode. large 1/O sizes, and that over the small I/O sizes, the cost of
The initiator and the target are connected by an Extreriéndpage interfaces is slightly higher than the cost of coping
Summit 7i Gigabit Ethernet switch. data.

The iSCSI initiator and target implementations are com- 1nough TSO is used for all I/O sizes, it effectively works
patible with the iSCSI draft version 8. Though it is not thdor /O sizes greater than 2048 bytes. This is because in the
latest, we believe this issue does not significantly affect tffCk sizes of 512 bytes to 1024 bytes TCP segmentation does

performance under our experimental conditions, i.e., higROt happen. Thatis, one TCP/IP packet can carry all data that
speed and low-latency networks. constitute one iISCSI PDU. Therefore, when the 1/O sizes are

over 2048 bytes, theero-copy, checksum offloading and TSO
configuration yields a lower CPU utilization than thero-copy
B. Measurement tool and checksum offloadirgpnfiguration does. But the gain from

We implemented microbenchmarks that run in kernel mode>© IS not clear. For example, CPU utilization is 29.0% in
and directly interact with the VM system in order to bypas{€Zero-copy, checksum offloading and T&Mfiguration and
the VM cache. All ISCSI commands request the operation oi¢-2% in thezero-copy and checksum offloadienfiguration
the same disk block address. This leads to the best cache u} KB. . ) )
on the target. Therefore, the effect of the target server factoﬁrﬁﬂ s explained in Section IlI, the gap between tfeecksum

such as disk performance, on the results is kept to a minimu Vc\’/:dszgdtﬂg lgftglzaganf}%or;]fl%uragogs dfnzgn:ilé 4 KB. CPU
To measure the CPU utilization and where the CPU timeii gestgal Ry avol '

S o i .
is spent while running the microbenchmarks, we use OProf! lization is 30.0% in thezero-copy, checksum offloading and

0% | - 1 0
suite [20], which is a system-wide profiler for the Linux kernel. Q 30.8% in thezero-copy and checksum offloadii#g.4%

; o i S
The OProfile suite uses Intel Hardware Performance Countt'ar}sthe checksum offloading42.0% in theno optimizations

. . : configuration with the 1500-byte MTU.
[21] to report detailed execution profiles. We could not determine the reason why ttexo-copy and

checksum offloadingonfiguration yields a lower CPU than
C. Configuration the zero-copy, checksum offloading and T&@nfiguration in

q d the microbenchmarks with ¢ t61e block size of 2048 bytes.
We conducted the microbenchmarks with an MTU of 150 Figure 3(b) shows the results of throughput during the write

bytes (standard Ethernet) or 9000 bytes (Ethernet with jumBg..henchmarks with the 1500-byte MTU. All configurations
frames). _ _ provide comparable throughputs.

The microbenchmarks were run with the following four Figyres 4(a) and 4(b) show the results of CPU utilization
configurations:zero-copy, checksum offloading and TS@ and throughput during the write microbenchmarks with the
which the iSCSI driver avoids copying data between the Vidooo-byte MTU, respectively. These results are similar to
cache and skbuffs, and uses checksum offloading and T§fgdse with the 1500-byte MTU. But, as expected, CPU uti-
that the network adapter supportsgro-copy and checksumjization with the 9000-byte MTU is lower than one with the

offloading for which the iSCSI driver avoids copying data, and 500-pyte MTU. The throughput with the 9000-byte MTU is
uses checksum offloadinghecksum offloadindor which the ' petter than the one with the 1500-byte MTU.

ISCSI driver copies data in the same way that a straightforwardrigures 5(a) and 5(b) show the results of CPU utilization
ISCSI driver does and uses checksum offloading; aod and throughput during the read microbenchmarks with the
optimizations for which the iSCSI driver copies data and doe$500-byte MTU. As explained in Section I, our scheme
not use checksum offloading or TSO. to avoid copying is impossible with the 1500-byte MTU.
The microbenchmarks read or write data 100,000 times with addition, TSO has no effect with regard to the read
the I/O sizes ranging from 512 bytes to 64 KB. Except imicrobenchmarks. Therefore, only theecksum offloading
the 64 KB case, one 1/O request is converted to one iSC&id no optimizationsconfigurations are presented. Like the
command. For the 64 KB case, one I/O request is convertgfite microbenchmarks, thehecksum offloadingonfiguration
to two iISCSI commands due to a restriction on the maximugields a slightly lower CPU utilization than theo optimiza-
I/O size on the target. tions configuration. Furthermore, both configurations perform
Here, we report the averages of five runs for all experimentsomparably with regard to throughput.
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Fig. 4. Results of write microbenchmarks with a 9000-byte MTU.

Figures 6(a) and 6(b) show the results of CPU utilizatiochecksum offloadingonfiguration and 21.3% in thehecksum
and throughput during the read microbenchmarks with tledfloading configuration at 8192 bytes. Moreover, at 4096
9000-byte MTU. Though theero-copy and checksum offloacdytes and over 16 KB, thehecksum offloadingonfiguration
configuration is feasible under 4096 bytes (the system virtugklds the lower CPU utilization. We investigate the reasons
memory page size) through the combination of page remdpr this behavior in subsequent paragraphs.
ping and copying data, its gain is smaller than the one forin the read microbenchmarks, the iSCSI driver provides
the 4096-byte I/O size and over. Therefore we concentrate comparable throughput in all configurations with the 9000-
the results over 4096 bytes with regard to #exo-copy and byte MTU, as it does with the 1500-byte MTU.
checksum offloadonfiguration. 2) Distribution of CPU time: Next, we investigate where

While at over 16 KB, both page remapping and copying dathe CPU time is spent while running the microbenchmarks.
are required, at 8192 bytes, the iSCSI driver does not needTable | and 1l show the distribution of CPU time during the
copy; that is, it only needs to manipulate some data structuseste and read microbenchmarks for the 8192-byte 1/O size,
for memory management. Therefore, it gets the largest ga@spectively. The reason why we choose the I/O size of 8192
from the optimizations at 8192 bytes. However, we cannot sbgtes is that this size most clearly shows the characteristics
a clear gain. CPU utilization is 21.1% in tleero-copy and of the zero-copy and checksum offloadiognfiguration in the
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read microbenchmarks. crobenchmarks. The combination of copy avoidance and

As mentioned in the previous paragraph, we cannot seelgecksum offloading decreases the CPU time spent on copying
clear gain from TSO. Therefore, we omit the result of thdata and calculating checksums. Furthermore, a large MTU
zero-copy, checksum offloading and T@dnhfiguration. decreases the CPU time spent on the TCP/IP stack and on

There are six types of large overhead: the iSCSI drivedhe network adapter driver. The major difference is that the
copying data and checksums, the SCSI subsystem, the netwapkimization for copy avoidance increases the CPU time spent
adapter driver, the TCP/IP stack, and the VM system. on the VM system and the TCP stack.

The results shows that in the write microbenchmarks, theThe increased overhead of the VM is mainly due to the
combination of copy avoidance and checksum offloading desmplexity of the modified VM system. As explained in
creases the CPU time spent on copying data and calculat®ection Ill, in the modified VM system, the relationship
checksums. And we also clearly see the effect of a large MThletween apage structure and the page that it describes is
It greatly decreases the CPU time spent on the TCP/IP stabjknamic. This increases the overhead of memory-management
and also decreases the time spent on the network adapieerations. Furthermore, the increased overhead of memory-
driver. management operations increases the CPU time spent on the

The read microbenchmarks perform like the write miTfCP/IP stack, which often uses these operations. As a result,



TABLE |
DISTRIBUTION OF CPUTIME DURING THE WRITE MICROBENCHMARKS FOR THEB192BYTE I/O SIZE.

Percent Time

no optimizations| checksum offload Zc o coPY and

checksum offload

MTU (byte) 1500 9000| 1500 9000| 1500 9000
Idle 66.81 79.85| 68.35 79.23| 71.86 83.32
iISCSI driver 1.52 1.34| 153 1.41) 1.32 1.30
SCSI subsystem 1.90 1.25| 1.86 1.42| 1.17 1.23
Copy and Checksum 3.76 3.40| 2.93 241 0.27 0.27
Network adapter driver 2.12 0.96| 2.27 1.07| 2.60 1.06
TCP/IP 12.16 3.72| 11.75 4.39| 11.48 3.82
VM system 4.21 2.98| 4.11 3.16| 3.67 271

TABLE I

DISTRIBUTION OF CPUTIME DURING THE READ MICROBENCHMARKS FOR THE8192BYTE I/O SIZE.

Percent Time

no optimizations| checksum offload Zero-copy and

checksum offload

MTU (byte) 1500 9000| 1500 9000| 1500 9000
Idle 64.84 74.77| 69.08 78.74| nla 79.89
iISCSI driver 2.01 1.99| 1.93 1.79| nla 212
SCSI subsystem 1.44 1.49| 1.25 1.19| n/a 1.29
Copy and Checksum 6.78 6.65| 3.81 3.77 nla 0.16
Network adapter driver 2.28 1.92| 2.14 1.93| n/a 2.18
TCP/IP 9.84 3.36| 9.75 2.92| nla 4,79
VM system 4.54 3.22| 4.28 3.08/ nla 4.89

the copy avoidance’s performance gain is negated. driver copying data. In addition, the copy avoidance technique

These investigations also give some ideas on how muittat we used can be easily integrated into the Linux kernel by
performance the iSCSI protocol provides with specializedsing existing interfaces. However, we cannot see a clear gain
adapters. The important observation is that the overheadf@m TCP segmentation offloading.
processing the iSCSI protocol and the SCSI subsystem conWith regards to reading, the copy avoidance technique
sumes a relatively small amount of CPU time. For examplegquires modifications to the Linux kernel. Furthermore, the
during the write microbenchmarks in tlero-copy and check- overhead due to our modifications to the VM system negates
sum offloadingwith the 1500-byte MTU, it accounts for only any gain in performance that could be had from copy avoid-
8.9% of the processing time in which the CPU is not idle. Thance.
largest source of overhead is the TCP/IP protocol. It accountsOur experiments show that the CPU is not the performance

for 40.8% of the total processing time. bottleneck in all configurations and the iSCSI driver provides
comparable throughput with each MTU.
V. CONCLUSION The quantitative analysis shows that the overhead relative

. L . . the iSCSI protocol and the SCSI subsystem consumes
. _Th|s paper presents an eff|_C|en.t|mpIementat|on of an iSC Irelatively small amount of CPU time (8.9% of the total
|n|t|gtor with a commoqny Gigabit Ethernet_adapter, an(_j ) ocessing time during the write microbenchmarks with an
per!mentqlly gnalyzeq Its perfqrmance. Our implementation TU of 1500 bytes) and the largest overhead comes from
an |SCS_I initiator avoids copying betwee_n the VM cache an rocessing the TCP/IP protocol with standard IEEE 802.3
buffers in the network subsystem by using page remappi hernet frame sizes
and exploits features that commodity Gigabit Ethernet adapters '
support, i.e., checksum offloading, jumbo frames, and TCP REFERENCES
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