Chapter 5: The Data Link Layer

Our goals:
- understand principles behind data link layer services:
 - sharing a broadcast channel: multiple access
 - error detection, correction
 - link layer addressing
 - reliable data transfer, flow control: done!
- instantiation and implementation of various link layer technologies

Multiple Access Links and Protocols

Two types of “links”:
- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch and host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN

Ideal Multiple Access Protocol

Broadcast channel of rate $R \text{ bps}$
1. when one node wants to transmit, it can send at rate R.
2. when M nodes want to transmit, each can send at average rate R/M.
3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
4. simple

MAC Protocols: a taxonomy

Three broad classes:
- Channel Partitioning
 - divide channel into smaller “pieces” (time slots, frequency, code)
 - allocate piece to node for exclusive use
- Random Access
 - channel not divided, allow collisions
 - “recover” from collisions
 - “Taking turns”
 - nodes take turns, but nodes with more to send can take longer turns

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R
 - no a priori coordination among nodes
- two or more transmitting nodes \rightarrow “collision”,
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

Assumptions:
- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation:
- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success
Slotted ALOHA

Pros
- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

Cons
- Collisions, wasting slots
- Idle slots
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

Efficiency

- Long-run fraction of successful slots (many nodes, all with many frames to send)
- Max efficiency: find p^* that maximizes $Np(1-p)^{N-1}$
- For many nodes, take limit of $Np^*(1-p^*)^{N-1}$ as N goes to infinity, gives: Max efficiency $= \frac{1}{e} = .37$

At best: Channel used for useful transmissions 37% of time!

Pure (unslotted) ALOHA

- Unslotted ALOHA: simpler, no synchronization
- When frame first arrives, transmit immediately
- Collision probability increases:
 - Frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$?
 - Will overlap with start of i’s frame
 - Will overlap with end of i’s frame

Efficiency

- $P(success \ by \ given \ node) = P(node \ transmits)$
- $P(no \ other \ node \ transmits \ in \ [p_0-1,p_0])$
 - $P(success) = p \cdot (1-p) \cdot (1-p)^{N-1}$
 - Choosing optimum p and then letting $n \to \infty$
 - $\Rightarrow 1/(2e) = .18$

Even worse than slotted ALOHA!

CSMA (Carrier Sense Multiple Access)

CSMA: Listen before transmit:
- If channel sensed idle: transmit entire frame
- If channel sensed busy, defer transmission
- Human analogy: Don’t interrupt others!

CSMA collisions

- Collisions can still occur:
 - Propagation delay means two nodes may not hear each other’s transmission
- Collision: entire packet transmission time wasted
- Note: role of distance & propagation delay in determining collision probability
CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA
- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

“Taking Turns” MAC protocols

channel partitioning MAC protocols:
- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols
- efficient at low load: single node can fully utilize channel
- high load: collision overhead
- “taking turns” protocols look for best of both worlds!

Summary of MAC protocols

- **channel partitioning**, by time, frequency or code
 - Time Division, Frequency Division
- **random access** (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
- carrier sensing: easy in some technologies (wire), hard in others (wireless)
- CSMA/CD used in Ethernet
- CSMA/CA used in 802.11
- **taking turns**
 - polling from central site, token passing
 - Bluetooth, FDDI, IBM Token Ring
Chapter 5: Let’s take a breath

- Journey down protocol stack *complete* (except PHY)
- Solid understanding of networking principles, practice
- could stop here but *lots* of interesting topics!
 - wireless
 - multimedia
 - security
 - network management