
10/2/12	

1	

2:	 Applica-on	 Layer 1

Lecture 2: Application Layer Overview
goals: 	

•  conceptual + implementation

aspects of network
application protocols	

–  client server paradigm	

–  service models	

•  learn about protocols by
examining popular
application-level protocols	

•  specific protocols:
–  http
–  Networked Storage

•  programming network
applications
–  Bluetooth/ZigBee

Applications

2:	 Applica-on	 Layer 2

Applications and application-layer protocols
Application: communicating,

distributed processes
–  running in network hosts in
“user space”

–  exchange messages to
implement app

–  e.g., email, file transfer,
the Web

Application-layer protocols
–  one “piece” of an app
–  define messages

exchanged by apps and
actions taken

–  user services provided by
lower layer protocols

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2:	 Applica-on	 Layer 3

Network applications: some jargon
•  A process is a program that

is running within a host.
•  Within the same host, two

processes communicate with
interprocess communication
defined by the OS.

•  Processes running in
different hosts communicate
with an application-layer
protocol

•  A user agent is an
interface between the
user and the network
application.
–  Web:browser
–  E-mail: mail reader
–  streaming audio/video:

media player

2:	 Applica-on	 Layer 4

Client-server paradigm
Typical network app has two

pieces: client and server
application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
❒  initiates contact with server

(“speaks first”)
❒  typically requests service from

server,
❒  for Web, client is implemented

in browser; for e-mail, in mail
reader

Server:
❒  provides requested service to

client
❒  e.g., Web server sends

requested Web page, mail
server delivers e-mail

request

reply

2:	 Applica-on	 Layer 5

Application-layer protocols (cont).
API: application

programming interface
•  defines interface

between application and
transport layer

•  socket: Internet API
–  two processes

communicate by sending
data into socket, reading
data out of socket

Q: how does a process
“identify” the other
process with which it
wants to communicate?
–  IP address of host

running other process
–  “port number” - allows

receiving host to
determine to which local
process the message
should be delivered

… lots more on this later.
2:	 Applica-on	 Layer 6

Services provided by Internet transport
protocols

TCP service:
•  connection-oriented: setup

required between client,
server

•  reliable transport between
sending and receiving process

•  flow control: sender won’t
overwhelm receiver

•  congestion control: throttle
sender when network
overloaded

•  does not provide: timing,
minimum bandwidth
guarantees

UDP service:
•  unreliable data transfer

between sending and
receiving process

•  does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

Q: why bother? Why is
there a UDP?

10/2/12	

2	

2:	 Applica-on	 Layer 7

The Web: some jargon
•  Web page:

–  consists of “objects”
–  addressed by a URL

•  Most Web pages
consist of:
–  base HTML page, and
–  several referenced

objects.
•  URL has two

components: host name
and path name:

•  User agent for Web is
called a browser:
–  MS Internet Explorer
–  Netscape Communicator

•  Server for Web is
called Web server:
–  Apache (public domain)
–  MS Internet

Information Server

www.someSchool.edu/someDept/pic.gif
2:	 Applica-on	 Layer 8

The Web: the http protocol
http: hypertext transfer

protocol
•  Web’s application layer

protocol
•  client/server model

–  client: browser that
requests, receives,
“displays” Web objects

–  server: Web server sends
objects in response to
requests

•  http1.0: RFC 1945
•  http1.1: RFC 2616

PC running
Explorer

Server
running
a Web
server

Mac running
Navigator

http request

http request

http response

http
 response

2:	 Applica-on	 Layer 9

The http protocol: more
http: TCP transport

service:
•  client initiates TCP

connection (creates socket)
to server, port 80

•  server accepts TCP
connection from client

•  http messages (application-
layer protocol messages)
exchanged between browser
(http client) and Web server
(http server)

•  TCP connection closed

http is “stateless”
•  server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

❒  past history (state) must
be maintained

❒  if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

2:	 Applica-on	 Layer 10

http example
Suppose user enters URL www.someSchool.edu/someDepartment/home.index

1a. http client initiates TCP
connection to http server
(process) at
www.someSchool.edu. Port 80
is default for http server.

2. http client sends http request
message (containing URL) into
TCP connection socket

1b. http server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection,
notifying client

3. http server receives request
message, forms response
message containing requested
object (someDepartment/
home.index), sends message
into socket

time

(contains text,
references to 10
jpeg images)

2:	 Applica-on	 Layer 11

http example (cont.)

5. http client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. http server closes TCP
connection.

time

2:	 Applica-on	 Layer 12

Non-persistent and persistent connections
Non-persistent
•  HTTP/1.0
•  server parses request,

responds, and closes
TCP connection

•  2 RTTs to fetch each
object

•  Each object transfer
suffers from slow
start

Persistent
•  default for HTTP/1.1
•  on same TCP connection:

server, parses request,
responds, parses new
request,..

•  Client sends requests
for all referenced
objects as soon as it
receives base HTML.

•  Fewer RTTs and less
slow start.

But most 1.0 browsers use
parallel TCP connections.

10/2/12	

3	

2:	 Applica-on	 Layer 13

http message format: request
•  two types of http messages: request, response
•  http request message:

–  ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0
Host: www.ele.uri.edu
Connection: close
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,
HEAD commands)

header
 lines

Carriage return,
line feed
indicates end
of message

2:	 Applica-on	 Layer 14

http request message: general format

2:	 Applica-on	 Layer 15

http message format: respone

HTTP/1.0 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
html file

2:	 Applica-on	 Layer 16

http response status codes

200 OK
–  request succeeded, requested object later in this message

301 Moved Permanently
–  requested object moved, new location specified later in

this message (Location:)
400 Bad Request

–  request message not understood by server
404 Not Found

–  requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

2:	 Applica-on	 Layer 17

Trying out http (client side) for yourself
1. Telnet to your favorite Web server:

 Opens TCP connection to port 80
(default http server port) at www.eurecom.fr.
Anything typed in sent
to port 80 at www.eurecom.fr

telnet www.eurecom.fr 80

2. Type in a GET http request:

GET /~ross/index.html HTTP/1.0 By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by http server!

2:	 Applica-on	 Layer 18

User-server interaction: authentication
Authentication goal: control

access to server documents
•  stateless: client must present

authorization in each request
•  authorization: typically name,

password
–  authorization: header

line in request
–  if no authorization

presented, server refuses
access, sends
WWW authenticate:
header line in response

client server
usual http request msg
401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization:line
usual http response msg

usual http request msg
+ Authorization:line

usual http response msg time
Browser caches name & password so
that user does not have to repeatedly enter it.

10/2/12	

4	

2:	 Applica-on	 Layer 19

User-server interaction: cookies
•  server sends “cookie” to

client in response mst
Set-cookie: 1678453

•  client presents cookie in
later requests
cookie: 1678453

•  server matches
presented-cookie with
server-stored info
–  authentication
–  remembering user

preferences, previous
choices

client server
usual http request msg
usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

usual http request msg
cookie: #

usual http response msg

cookie-
spectific
action

cookie-
spectific
action

2:	 Applica-on	 Layer 20

User-server interaction: conditional GET
•  Goal: don’t send object if

client has up-to-date stored
(cached) version

•  client: specify date of
cached copy in http request
If-modified-since:

<date>

•  server: response contains no
object if cached copy up-
to-date:
HTTP/1.0 304 Not

Modified

client server

http request msg
If-modified-since:
<date>

http response
HTTP/1.0
304 Not Modified

object
not
modified

http request msg
If-modified-since:
<date>

http response
HTTP/1.1 200 OK
…

<data>

object
modified

2:	 Applica-on	 Layer 21

Web caches (proxy server)

•  user sets browser: Web
accesses via cache

•  browser sends all HTTP
requests to cache
–  object in cache: cache

returns object
–  else cache requests

object from origin
server, then returns
object to client

Goal:	 sa-sfy	 client	 request	 without	 involving	 origin	 server	

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

2:	 Applica-on	 Layer 22

More about Web caching
•  Cache acts as both client and

server
•  Typically cache is installed by

ISP (university, company,
residential ISP)

Why Web caching?
•  Reduce response time for

client request.
•  Reduce traffic on an

institution’s access link.
•  Internet dense with caches

enables “poor” content
providers to effectively
deliver content (but so does
P2P file sharing)

2:	 Applica-on	 Layer 23	

Caching	 example	 	
Assump-ons	
•  average	 object	 size	 =	 100,000	 bits	
•  avg.	 request	 rate	 from	

ins-tu-on’s	 browsers	 to	 origin	
servers	 =	 15/sec	

•  delay	 from	 ins-tu-onal	 router	 to	
any	 origin	 server	 and	 back	 to	
router	 	 =	 2	 sec	

Consequences	
•  u-liza-on	 on	 LAN	 =	 15%	
•  u-liza-on	 on	 access	 link	 =	 100%	
•  total	 delay	 	 	 =	 Internet	 delay	 +	 access	

delay	 +	 LAN	 delay	
	 	 =	 	 2	 sec	 +	 minutes	 +	 milliseconds	

origin	
servers

public	
	 Internet

ins-tu-onal	
network 10	 Mbps	 LAN

1.5	 Mbps	 	
access	 link

ins-tu-onal	
cache

2:	 Applica-on	 Layer 24	

Caching	 example	 (cont)	
Possible	 solu-on	
•  increase	 bandwidth	 of	 access	 link	

to,	 say,	 10	 Mbps	
Consequences	
•  u-liza-on	 on	 LAN	 =	 15%	
•  u-liza-on	 on	 access	 link	 =	 15%	
•  Total	 delay	 	 	 =	 Internet	 delay	 +	 access	

delay	 +	 LAN	 delay	
	 	 =	 	 2	 sec	 +	 msecs	 +	 msecs	
•  oUen	 a	 costly	 upgrade	

origin	
servers

public	
	 Internet

ins-tu-onal	
network 10	 Mbps	 LAN

10	 Mbps	 	
access	 link

ins-tu-onal	
cache

10/2/12	

5	

2:	 Applica-on	 Layer 25	

Caching	 example	 (cont)	
Install	 cache	
•  suppose	 hit	 rate	 is	 .4	
Consequence	
•  40%	 requests	 will	 be	 sa-sfied	

almost	 immediately	
•  60%	 requests	 sa-sfied	 by	 origin	

server	
•  u-liza-on	 of	 access	 link	 reduced	

to	 60%,	 resul-ng	 in	 negligible	 	
delays	 (say	 10	 msec)	

•  total	 avg	 delay	 	 	 =	 Internet	 delay	
+	 access	 delay	 +	 LAN	 delay	 	 	 =	 	 .
6*(2.01)	 secs	 	 +	 milliseconds	 <	
1.4	 secs	

origin	
servers

public	
	 Internet

ins-tu-onal	
network 10	 Mbps	 LAN

1.5	 Mbps	 	
access	 link

ins-tu-onal	
cache

