Selective Repeat

 receiver individually acknowledges all correctly received
pkts
— buffers pkts, as needed, for eventual in-order delivery to upper
layer

« sender only resends pkts for which ACK not received
— sender timer for each unACKed pkt

* sender window
— N consecutive seq #’ s
— again limits seq #s of sent, unACKed pkts

Transport Laye 31

10/23/12

Selective repeat: sender, receiver windows

send_base nexisegnum alrecidy wable, not
¢ v ack’ed yet sent
00D CANDNERTIOTINONOND | sev] otosame
window size—24
PN
(a) sender view of sequence numbers
out of order acceptable

(buffered) but
dlready ack’ed (within window)

T e R
yet received
 window size—4
1 N
rev_base

(b) receliver view of sequence numbers

Transport Layer 32

Selective repeat

—sender ———— — receiver
data from above : pkt n in [rcvbase, revbase+N-1]
« if next available seq # in window, 7 send ACK(n)
send pkt 7 out-of-order: buffer
timeout(n): 7 in-order: deliver (also deliver

buffered, in-order pkts),
advance window to next not-
yet-received pkt

* resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:
* mark pkt n as received

pkt n in [rcvbase-N,revbase-1]
« if n smallest unACKed pkt,

7 ACK|
advance window base to next (rf)
unACKed seq # otherwise:
7 ignore
Transport Laye 33

Selective repeat in action

pkt0 sent

pktl sent

sent.

56789

sent.

sent.

sent.

pkts

ACK3_rcvd, nothing sent

sender window receiver window

. . after receipt) after receipt)
Selective repeat: {aferceceint faftereceot
dilemma
Example:
. ? co timeout
seq#'5:0,1,2,3 retransmit pkig
. i 7= 12301 ————3p receive packet
window size=3 with se;number 0
* receiver sees no @
difference in two sender window receiver window
scenarios! (after receipt) (after receipt)

incorrectly passes
duplicate data as new in

(a)

Q: what relationship between
seq # size and window
size?

receive packet
with seq number 0

(b)

Transport Laye

TCP: Overview recs 7s3, 1122, 1323, 2018, 2581

* point-to-point:
— one sender, one receiver
 reliable, in-order byte
steam:
— no “message boundaries”

« full duplex data:

— bi-directional data flow in
same connection

— MSS: maximum segment
size

* connection-oriented:

— handshaking (exchange of
control msgs) init” s sender,
receiver state before data

* send & receive buffers exchange
flow controlled:

— sender will not overwhelm
receiver

* pipelined:
— TCP congestion and flow
control set window size

Transport Layer 36

10/23/12

TCP segment structure

32 bits

URG: urgent data

counting
(generally not used) source port # | Zest port # by bytes
sequence number
ACK: ACK # i of data
valid\\a}“\wledgement number (not segments!)
head [not o
PSH: push data now I Sed PRISIF| Receive window oot
(generally not used) ytes
8 Y W Urg data pnter revr willing
to accept

RST, SYN, FIN:

Opti/ons/(variable length)

connection estab
(setup, teardown
commands)

application
Internet data
checksum (variable length)
(asin UDP)

TCP seq. # s and ACKs

Seq. #'s:
280 % 5 @ Host A Host B @
— byte stream
“number” of first byte User Seges
in segment’ s data types 2 ACks7g data
. o =
ACKs: ¢ host ACKs

— seq # of next byte
expected from other
side

— cumulative ACK

Q: how receiver handles out- host ACKs
of-order segments receipt Seq=q
, f echoed % Ack=g
— A: TCP spec doesn’ t of echoe
say, - up to c
implementor

¢ receipt of

TCP reliable data transfer

* TCP creates rdt service on
top of IP” s unreliable
service

* Pipelined segments
* Cumulative acks

* TCP uses single
retransmission timer

Retransmissions are
triggered by:

— timeout events

— duplicate acks

Initially consider simplified
TCP sender:

— ignore duplicate acks

— ignore flow control,
congestion control

TCP sender events:

data rcvd from app:

* Create segment with seq
#

* seq #is byte-stream
number of first data byte
in segment

* start timer if not already
running (think of timer as
for oldest unacked
segment)

* expiration interval:
TimeOutInterval

¢ retransmit segment that
caused timeout

* restart timer

Ack revd:

* If acknowledges
previously unacked
segments

— update what is known to be
acked

— start timer if there are
outstanding segments

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqgNum

if (timer currently not running)
start timer
pass segment to IP

NextSegNum = NextSeqNum + length(data)

event: timer timeout

retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y

if (y > SendBase) {
SendBase =y

if (there are currently not-yet-acknowledged segments)

start timer

} 1* end of loop forever */

TCP

sender
(simplified)

Comment;

* SendBase-1: last
cumulatively

ack’ ed byte
Example:

« SendBase-1=71;
y=73, s0 the revr
wants 73+;

y > SendBase, so
that new data is
acked

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

¢ longer than RTT
— but RTT varies

* too short: premature
timeout
— unnecessary

retransmissions

* too long: slow reaction to

segment loss

Q: how to estimate RTT?
¢ SampleRTT: measured time from
segment transmission until ACK
receipt
— ignore retransmissions
* SampleRTT will vary, want
estimated RTT “smoother”
— average several recent
measurements, not just current
SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

71 Exponential weighted moving average
7 influence of past sample decreases exponentially fast
T typical value:a =0.125

10/23/12

Example RTT estimation:

RT: gaia.cs.umass.edu to fantasia.eurecomfr

00 Il 1

18 15 2 20 3% 4 s 57 6 71 78 8 % % 106
time (soconnds)

[SampleRTT —=—Estimated RTT

Transport Laye 314

TCP Round Trip Time and Timeout

Setting the timeout

* EstimtedRTT plus “safety margin”
— large variation in EstimatedRTT -> larger safety margin
« first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-P)*DevRTT +
p* | SampleRTT-EstimatedRTT |

(typically, P = 0.25)
Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

TCP: retransmission scenarios

@Host A Host B@ @Host A Host B@

Seq=

92,8 bytes data N

1 H

5 400 £

8 poe® £

£ X %

l loss &

Seg=, J

©9=92, 8 byteg data Sendbase T

=100 =

SendBase §

=120 £

=100 b

oK 8

&

g

SendBase <

2100 SendBase ")
=120 premature timeout
time

lost ACK scenario - -

TCP retransmission scenarios (more)

Host A Host B @

&

Seq=
] 9292, 8 bytes et
5 =100
§ SEQ:,OOV 2 POK
S datg
£ X
loss.
SendBase ,;c\’\"lb
=120

time
Cumulative ACK scenario

TCP ACK generation [rrc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment startsat lower end of gap

Transport Laye 318

10/23/12

Fast Retransmit

* Time-out period often * If sender receives 3 ACKs
relatively long: for the same data, it
— long delay before resending supposes that segment
lost packet after ACKed data was lost:
* Detect lost segments via — fast retransmit: resend

duplicate ACKs. segment before timer

expires
— Sender often sends many P

segments back-to-back

— If segment is lost, there will
likely be many duplicate
ACKs.

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {
resend segment with sequence number y

a duplicate ACK for fast retransmit
already ACKed segment

Transport Laye 320

TCP Flow Control

flow control

. . sender won’ t overflow
* receive side of TCP receiver’ s buffer by

connection has a receive transmitting too much,
buffer: too fast
f— RovWindow —4

7

« speed-matching service:

data from application A
» process matching the send rate to
the receiving app’ s drain

f———— RoevBuffer ————f rate

7 app process may be slow
at reading from buffer

TCP Flow control: how it works

#— RevWindow —a

* Rcvr advertises spare room
application DY including value of
RcvWindow in segments
* Sender limits unACKed
Odrar data to ReviWindow
(Suppose TCP fggaingbdiscards trap.rae guarantees receive buffer
out-of-order segments) doesn’ t overflow

data from
P

7247

f———— RovBuffer ————

* spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]

Transport Laye 322

Principles of Congestion Control

Congestion:
« informally: “too many sources sending too much data too
fast for network to handle”
« different from flow control!
* manifestations:
— lost packets (buffer overflow at routers)
— long delays (queueing in router buffers)
* atop-10 problem!

Causes/costs of congestion: scenario 1

HostA

M- original data

¢ two senders, two
receivers

unlimited shared
output link buffers

Host B

* one router, infinite
buffers

* no retransmission

C/2+ —— > ; large delays when
- 3 congested
3 T |
< H * maximum
{ achievable
cro 2 throughput
}\’\n klr’\

Causes/costs of congestion: scenario 2

« one router, finite buffers
* sender retransmission of lost packet

HostA ., original data Aout
‘ original data, plus
data
Host B finite shared output
o | vbuffers
I P

=

10/23/12

o

Causes/costs of congestion: scenario 2
« always: }\,in= }\c()%?odput) ,
« “perfect” retransmission only when loss: }\,. > A

in out, .
* retransmission of delayed (not lost) packet makes Iarggvihthan perfect
case) for same

out
Ri2 , Ri2 Rz
: R
' < B
% s "% b A s
a b. c.

“costs” of congestion:
7 more work (retrans) for given “goodput”
71 unneeded retransmissions: link carries multiple copies of pkt

Transport Layer 326

Causes/costs of congestion: scenario 3

« foursenders
* multihop paths
« timeout/retransmit

Q: what happens as }\i
and Ki?r?crease ?

_ ., : original data Pout

) Original data, plus b
data ¢F

finite shared

_optput lin

Host B

Causes/costs of congestion: scenario 3

PNt

in

Q)
x‘ou}‘ IS

Another “cost” of congestion:

7 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Layer 328

