Causes/costs of congestion: scenario 3
« foursenders
* multihop paths
« timeout/retransmit

Q: what happens as 7\,”
and Ki?rqcrease ?

_ ., : original data Pout

b= -\, original data, plus
] data
finite shared

gatpulm

10/23/12

Causes/costs of congestion: scenario 3

N\

I
in

Q)
x‘ou}‘ IS

Another “cost” of congestion:

7 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Layer

Approaches towards congestion control
Two broad approaches towards congestion control:

End-end congestion control: Network-assisted congestion
« no explicit feedback from control:

network « routers provide feedback to

* congestion inferred from end- end systems
system observed loss, delay

* approach taken by TCP

— single bit indicating
congestion (SNA, DECbit,
TCP/IP, ATM)

— explicit rate sender should
send at

Transport Layer 3-3

* When connection begins,

TCP Slow Start

7 When connection begins,
increase rate exponentially
fast until first loss event

CongWin =1 MSS
— Example: MSS = 500 bytes &
RTT = 200 msec
— initial rate = 20 kbps
available bandwidth may be
>> MSS/RTT

— desirable to quickly ramp up
to respectable rate

Transport Layer

TCP Slow Start (more)

* When connection begins,
increase rate exponentially
until first loss event:

@Hosf A
t

— double CongWin every RTT i‘
— done by incrementing

CongWin for every ACK

received

* Summary: initial rate is slow
but ramps up exponentially
fast

time

Transport Layer 3-5

Refinement

Q: When should the
exponential increase
switch to linear?

: TCPSe 2R
A: When CongWin gets to e
1/2 of its value before ‘é
timeout. s
5 o s -
o s e \ Y.
e L
IEEREEEREEETERE]
Implementanon: Transtrission round

* Variable Threshold

* Atloss event, Threshold is set to
1/2 of CongWin just before loss
event

Transport Layer

10/23/12

Refinement: inferring loss

* After 3 dup ACKs:
— CongWin is cut in half

— window then grows linearly
« But after timeout event:
— CongWin instead set to 1 MSS;
— window then grows exponentially
— to athreshold, then grows linearly

Philosophy:

0 3 dup ACKs indicates
network capable of

delivering some segments
0 timeout indicates a
“more alarming"”
congestion scenario

Transport Layer

Summary: TCP Congestion Control
* When CongWin is below Threshold, sender in slow-
start phase, window grows exponentially.

* When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

* When a triple duplicate ACK occurs, Threshold set to
CongWin/2 and CongWin set to Threshold.

* When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

Transport Layer 38

TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, | Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1MSS every RTT
data
SSorCA Loss event | Threshold = CongWin/2, Fast recovery,
detected by | CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SSor CA Timeout Threshold = CongWin/2, Enter slow start
CongWin = 1 MSS,
Set state to “Slow Start’
SSorCA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

Delay modeling

Notation, assumptions:

Q: How long does it take to receive + Assume one link between client
an object from a Web server and server of rate R
after sending a request? * S:MSS (bits)
Ignoring congestion, delay is * O:object size (bits)
influenced by: * no retransmissions (no loss, no
* TCP connection establishment corruption)
Window size:

« data transmission delay

* slow start * First assume: fixed congestion
window, W segments
* Then dynamic window,

modeling slow start

Transport Layer 3-10

Transport Layer 3-9
Fixed congestion window (1)
iritate TCP
comection "
First case: G o
dbjec
WS/R >RTT + S/R: ACK for first
segment in window returns
before window’s worth of WS
data sent
1t ack
OR returns
delay = 2RTT + O/R
time time
at clieit atserver
Transport Layer 3-1

Fixed congestion window (2)

Second case:
* WS/R<RTT +S/R: wait for e

ACK after sending window’s | T e P
worth of data sent / 4 stm
/.’///4///— -

/\
- e Istack

retums

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

e e
atclizat ot server

Transport Layer 312

TCP Delay Modeling: Slow Start (1)
Now suppose window grows according to slow start

Will show that the delay for one object is:

) ST p S
Latency 2RTT+-5+ P[R7T+ ﬁ] ~@-n32

where Pis the number of times TCP idles at server:
P=minfQ,K-1}
- where Q is the number of times the server idles
if the object were of infinite size.

-and K is the number of windows that cover the object.

Transport Layer 313

10/23/12

TCP Delay Modeling: Slow Start (2)

Delay components:

* 2 RTT for connection
estab and request

+ O/R to transmit
object

« time server idles due
to slow start

Server idles:
P = min{K-1,Q} times

Example:

+ 0/S =15 segments
* K = 4 windows
Q=2
+P=min{K-1,Q} =2

Server idles P=2 times

initiate TCP
connection
—_

request
object

object
delivered

time at
dlient

4 frstwindow
=SR
second window
SIR

third window
=4SR

fourth window
=8SR

" compete

transmission

time at
server

TCP Delay Modeling (3)

S .
= RTT = time from when server starts to send segment

until server receives acknowledgement

Tcp

24! % = time to transmit the kth window

+ e
N @S]) Rl
E+ RTT -2 il idle time after the kth window ~ *

second window
=251

third window
=4SR

,
delay= %»f 2RTT+ 2 idleTimg foun won
P
0 &S S
O RTT S+ RTT-23
R 2T S R A
O R PRTT S @S T .
R R R imea server
Transport Layer 315

Transport Layer 314
TCP Delay Modeling (4)
Recall K = number of windows that cover object
How do we calculate K ?
K =minfk:2°S+2'S+L +2¢'S= 0}
=minfk:2+2'+L +2'>0/8}
- mintk: 2129
s 0
=minfk: k= Iogz(§+1)}
- [Iogz(%+ 1)]
Calculation of Q, number of idles for infinite-size object,
is similar.
Transport Layer 3-16

