
1

1

Class Notes 

Instructor: Ken Q. Yang
Dept. of ECE, URI

Embedded Computer Systems and 
Applications 

2

Course Objectives, Plans, and 
Lab Tools

Section 0

3

Course Objectives: What to learn?
• Embedded Computer Architecture Concepts

– Instruction Set Architecture
– CPU, Memory, and I/O Organizations
– Interfacing and Communication

• Serial and parallel ports
• GPIO, I2C,UART, DMA, Timer
• AD/DAC, Programming, Coding, and Storage

• New Computing Era: mobile and cloud
• Machine Intelligence: smart device, smart city
• Applying Embedded Processor to Design Systems
An example embedded processor: ARM Processor

4

Course Plan: How to Learn?

• Regular lectures (2.5 hours/week) 
– Covers basic concepts and knowledge
– Explain tools and techniques necessary 

• Weekly laboratory experiments (minimum 2 hours/week)
• Reading and Network surfing to learn tools, languages, and 

applications (2 hours/week)
• Assessments:

v 2 Lab Experiments, 10% of your grade
v 1 Design project, 60% of your grade

Ø Design and documentations, 10% of your grade
Ø Proper working prototype, 35%
Ø Project proposal Presentation (10 minutes), 5%
Ø Progress report and discussions (10 minutes), 5%
Ø Final project demo and presentation (10 minutes), 5%

v1 Exam: 30%.

5Source : http://www.alternet.org/speakeasy/alyssa-figueroa/recording-memories-why-must-we-capture-our-every-moment

“When smartphones 

and tablets 

light up the sky,     

load up the clouds.”

Pope’s 
Inauguration

Then…

A few year 
later…

Internet of Things (IoTs)

5G/6G Cellular Networks

Virtual/Augmented Reality

Self-Driving Cars

Smart City
Autonomous Cars,

Energy, & Networking

Cyber-Physical
Systems: CPS

Machine Learning
Artificial 

Intelligence

High-Performance
Computer 

Big Data Analytics & Virtualization

A New Digital Era



2

All Boil Down to One Thing

Computer
A Very Large Fraction: Embedded Computers and Systems

– End user devices
– Variety of appliances
– Network cores
– Consumer Electronics
– IoT
– More and more

7

Sec. 1. ARM Family Processors

• ARM Cortex™-M Family
• Cortex™-M4 Features
• ARM AArch

8

History

9

The Cortex™ Processor Family

10

ARM Cortex Processors

11

• ARM Cortex-A family:
– Applications processors 
– Support OS and high-

performance applications
– Such as Smartphones, Smart TV

• ARM Cortex-R family:
– Real-time processors with high 

performance and high reliability
– Support real-time processing 

and mission-critical control

• ARM Cortex-M family:
– Microcontroller
– Cost-sensitive, support SoC

What is Cortex™-M

• Harvard Architecture
• 3 stage pipeline
• Single cycle multiply
• Hardware Divide
• Thumb-2 Instruction Set
• Vectored Interrupt 

Controller

12



3

Cortex™-M Pipeline

13

Register Sets 1
The processor has the following 32-bit registers:
• 13 general-purpose registers, R0-R12
• Stack Pointer (SP), R13 alias of banked registers, P_process and SP_main
• Link Register (LR), R14
• Program Counter (PC), R15
• Special-purpose Program Status Registers, (xPSR).

14

Register Sets 2
Low registers  

Registers R0-R7 are accessible by all instructions that specify a general-purpose register. 
High registers  

Registers R8-R12 are accessible by all 32-bit instructions that specify a general-purpose register. 
Registers R8-R12 are not accessible by any 16-bit instructions. 

Registers R13, R14, and R15 have the following special functions:
Stack pointer  

Register R13 is used as the Stack Pointer (SP). Because the SP ignores writes to bits [1:0], it is auto aligned 
to a word, four-byte boundary.

Handler mode always uses SP_main, but you can configure Thread mode to use either SP_main or 
SP_process.

Link register  
Register R14 is the subroutine Link Register (LR).
The LR receives the return address from PC when a Branch and Link (BL) or Branch and Link with 
Exchange (BLX) instruction is executed.
The LR is also used for exception return.

At all other times, you can treat R14 as a general-purpose register. 
Program counter  

Register R15 is the Program Counter (PC).
Bit [0] is always 0, so instructions are always aligned to word or half word  boundaries.

15

Program Status Register

16

• Application PSR (APSR),  Interrupt PSR (IPSR),  Execution PSR (EPSR)

} Combine them together into one register (PSR)
} Use PSR in code 

31 30 29 28 27 26:25 24 23:20 19:16 15:10 9 8 7 6 5 4:0
APSR N Z C V Q GE
IPSR Exception Number
EPSR ICI/IT T ICI/IT

31 30 29 28 27 26:25 24 23:20 19:16 15:10 9 8 7 6 5 4:0
PSR N Z C V Q ICI/IT T GE ICI/IT Exception Number

Note: GE flags are only available on Cortex-M4 and M7

ARM Cortex-M4 Organization 
(STM32L4)

17

System-on-a-chip

Instructions

System Bus

In
te

rr
up

t C
on

tr
ol

le
r 

(N
VI

C
)

Memory 
Protection 
Unit (MPU)

Instruction Bus

Data Bus

Interrupts
`

M
em

or
y 

In
te

rf
ac

e

Cortex-M4 Processor Core 

SW/JTAG

In
st

ru
ct

io
n 

Fe
tc

h 
U

ni
t

In
st

ru
ct

io
n 

D
ec

od
er

A
LU

Pr
oc

es
so

r C
on

tr
ol

 
U

ni
t

Tr
ac

e 
&

 D
eb

ug
 

In
te

rf
ac

e

Flash 
Memory

AHB to APB Bridge 1

AHB to APB Bridge 2

APB1

ABP2

LCD
TIM2
TIM3
TIM4
TIM6
TIM7
USART2
USART3
USART4
USART5
LPUART1

SPI2
SPI3
I2C1/SMBUS
I2C2/SMBUS
I2C3/SMBUS
USB 2.0 FS
bxCAN
SWPMI1
LPTIM1
LPTIM2
OpAmp

GPIO Port A
GPIO Port B
GPIO Port C
GPIO Port D
GPIO Port E
GPIO Port F
GPIO Port G
GPIO Port H

EXTI
WKUP
TIM1/PWM
TIM8/PWM
TIM15
TIM16
TIM17
USART1

SPI1
SAI1
SAI2
DFSDM
COMP1
COMP2
Firewall

AH
B 

Bu
s 

M
at

rix

Direction Memory 
Access (DMA) 

Controllers

Data
SRAM

Advanced 
Peripheral Bus 

(APB)

Advanced High-
performance Bus 

(AHB)

FP
U

 (o
pt

io
na

l) 

Si
ng

le
 In

st
ru

ct
io

n 
M

ul
tip

le
 D

at
a 

(D
SP

)

Arithmetic and Logic Instructions
• Shift 

– LSL (logic shift left), LSR (logic shift right),  ASR (arithmetic shift right), ROR (rotate right), RRX (rotate right with extend)
• Logic 

– AND (bitwise and), ORR (bitwise or), EOR (bitwise exclusive or), ORN (bitwise or not), MVN (move not)

• Bit set/clear 
– BFC (bit field clear), BFI (bit field insert), BIC (bit clear), CLZ (count leading zeroes)

• Bit/byte reordering 
– RBIT (reverse bit order in a word), REV (reverse byte order in a word), REV16 (reverse byte order in each half-word independently), 

REVSH (reverse byte order in each half-word independently)
• Addition 

– ADD, ADC (add with carry)
• Subtraction 

– SUB, RSB (reverse subtract), SBC (subtract with carry)
• Multiplication 

– MUL (multiply), MLA (multiply-accumulate),  MLS (multiply-subtract), SMULL (signed long multiply-accumulate),  SMLAL (signed long 
multiply-accumulate), UMULL (unsigned long multiply-subtract),  UMLAL (unsigned long multiply-subtract)

• Division 
– SDIV (signed), UDIV (unsigned)

• Saturation 
– SSAT (signed), USAT (unsigned)

• Sign extension 
– SXTB (signed), SXTH, UXTB, UXTH

• Bit field extract 
– SBFX (signed), UBFX (unsigned)

• Syntax
<Operation>{<cond>}{S} Rd, Rn, Operand2

18



4

19

Example: 64-bit Addition

0   0   0   0   0   0   0   2     F   F F F F F F F
0   0   0   0   0   0   0   4     0   0   0   0    0   0   0   1

0   0   0   0   0   0   0   7     0   0   0   0   0   0   0   0

Most-significant (Upper) 32 bits Least-significant (Lower) 32 bits

+

Carry out

• A register can only store 32 bits
• A 64-bit integer needs two registers
• Split 64-bit addition into two 32-bit additions

20

Example: AND r2, r0, r1

1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  1

1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1

32 bits

r0

r1

r2

Bit-wise Logic AND

21

Example: ORR r2, r0, r1

1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  1

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1

32 bits

r0

r1

r2

Bit-wise Logic OR

22

Example: BIC r2, r0, r1

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0

r0

NOT r1

r2

Bit Clear

r2 = r0 & NOT r1

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1r1

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0NOT r1

Step 1:

Step 2:

Check a Bit

23

bit = a & (1<<k)

a7 a6 a5 a4 a3 a2 a1 a0

0 0 1 0 0 0 0 0

0 0 a5 0 0 0 0 0

Example:  k = 5

a

1 << k

a & (1<<k)

Set a Bit

24

a  |=  (1 << k)

a = a | (1 << k)
or

a7 a6 a5 a4 a3 a2 a1 a0

0 0 1 0 0 0 0 0

a7 a6 1 a4 a3 a2 a1 a0

Example:  k = 5

a

1 << k

a | (1 << k)



5

Clear a Bit

25

a &= ~(1<<k)

a7 a6 a5 a4 a3 a2 a1 a0

1 1 0 1 1 1 1 1

a7 a6 0 a4 a3 a2 a1 a0

Example:  k = 5

a

~(1 << k)

a & ~(1<<k)

Logic View of Memory
• When we refer to memory locations by address, 

we can only do so in units of bytes, halfwords or 
words

• Words
– 32 bits = 4 bytes = 1 word = 2 halfwords
– In the right diagram, we have two words at 

addresses:
• 0x20000000
• 0x20000004

– Can you store a word anywhere?  NO.
– A word can only be stored at an address 

that's divisible by 4.
– Memory address of a word is the lowest 

address of all four bytes in that word.

26

01110010

00100101

11100010

10000100

01100001

10001111

00010010

10010100

Low Address

High Address

0x20000007

0x20000006

0x20000005

0x20000004

0x20000003

0x20000002

0x20000001

0x20000000

8 bits

Word-address mod 4 = 0

Quiz

0015

0014
0013
0012
0011
0010
0009
0008
0007
0006
0005
0004

32-bit
Words

Bytes Addr.

0003
0002
0001
0000

Addr
=
??

Addr
=
??

Addr 
=
??

Addr 
=
??

What are the memory address 
of these four words?

Word 3

Word 2

Word 1

Word 0

Quiz (Answer)

0015

0014
0013
0012
0011
0010
0009
0008
0007
0006
0005
0004

32-bit
Words

Bytes Addr.

0003
0002
0001
0000

Addr
=

0x0012

Addr
=

0x0008

Addr
=

0x0004

Addr
=

0x0000

What are the memory address 
of these four words?

Word 3

Word 2

Word 1

Word 0

29

Endianess

msb lsb

byte 3   byte 2   byte 1  byte 0 Little endian

byte 0   byte 1   byte 2   byte 3Big endian

High address

Low address

Little 
Endian

MSB

LSB

Big 
Endian

LSB

MSB

30

Endianess
• Little Endian: Most significant byte is stored at a high address
• Big Endian: Most significant byte is stored at a low address
• Regardless endian, the address of a word is defined as the lowest 

address of all bytes it occupies. 
• ARM is Little Endian by default. However it can be made Big 

Endian by configuration. 



6

31

Endianess
} Little Endian: Most significant byte is stored at a high address
} Big Endian: Most significant byte is stored at a low address
} Regardless endian, the address of a word is defined as the lowest 

address of all bytes it occupies. 
} ARM is Little Endian by default. However it can be made Big 

Endian by configuration. 

Example

32

Memory 
Address

Memory Data

0x20008003 0xA7
0x20008002 0x90
0x20008001 0x8C
0x20008000 0xEE

0xEE8C90A7

If big endianess is used

The word stored at address 
0x20008000 is

Example

33

0xA7908CEE

If little endianess is used

The word stored at address 
0x20008000 is

Memory 
Address

Memory Data

0x20008003 0xA7
0x20008002 0x90
0x20008001 0x8C
0x20008000 0xEE

Endian only specifies byte order, not bit 
order in a byte!

Load-Modify-Store

34

; Assume the memory address of x is stored in r1

LDR r0, [r1]     ; load value of x from memory
ADD r0, r0, #1   ; x = x + 1
STR r0, [r1]     ; store x into memory

x = x + 1;
C statement

Load Instructions

• LDR rt, [rs]
– fetch data from memory into register rt.
– The memory address is specified in register rs.

– For Example:

35

; Assume r0 = 0x08200004
; Load a word:

LDR r1, [r0] ; r1 = Memory.word[0x08200004]

Store Instructions

• STR rt, [rs]: 
– save data in register rt into memory
– The memory address is specified in a base register 

rs.

– For Example:

36

; Assume r0 = 0x08200004
; Store a word

STR r1, [r0] ; Memory.word[0x08200004] = r1



7

Branch & Conditional Instructions

37

• B label: causes a branch to label.
• BL label: instruction copies the address of the next instruction into r14 (lr, 

the link register), and causes a branch to label.
• BX Rm: branch to the address held in Rm
• BLX Rm: copies the address of the next instruction into r14 (lr, the link 

register) and branch to the address held in Rm

Instruction Operands Brief description Flags
B label Branch -

BL label Branch with Link -
BLX Rm Branch indirect with Link -
BX Rm Branch indirect -

38

Branch With Link

• The "Branch with link (BL)" instruction 
implements a subroutine call by writing PC+4 into 
the LR of the current bank. 
– i.e. the address of the next instruction following the 

branch with link (allowing for the pipeline).

• To return from subroutine, simply need to restore 
the PC from the LR:
– MOV pc, lr

– Again, pipeline has to refill before execution continues.

• The "Branch" instruction does not affect LR.

Example 1: Greatest Common Divisor 
(GCD)

39

While (a != b ) {
if (a > b) a = a – b; 
else b = b – a; 

}

; suppose r0 = a and r1 = b
gcd CMP r0, r1 ; a > b?

BEQ end ; if a = b, done

BLT less ; a < b
SUB  r0, r0, r1 ; a = a – b
B gcd

less SUB r1, r1, r0 ; b = b – a
B gcd

Euclid’s Algorithm

Example 2

40

int foo(int x, int y) {
if ( x + y < 0 )

return 0;
else

return 1;
}

foo ADDS r0, r0, r1
BPL PosOrZ

done MOV r0, #0
MOV pc, lr

PosOrZ MOV r0, r1
B done

foo ADDS r0, r0, r1 ;  r1 = x + y,  setting CCs
MOVPL r0, #1 ;  return 1 if n bit = 0
MOVMI r0, #0 ;  return 0 if n bit = 1
MOV pc, lr ;  exit foo function

From C to Assembly

41

Load-Modify-Store

42



8

Load-Modify-Store

43

Assembly Instructions Supported

44

• Arithmetic and logic
– Add, Subtract, Multiply, Divide, Shift, Rotate

• Data movement
– Load, Store, Move

• Compare and branch
– Compare, Test, If-then, Branch, compare and branch on 

zero

• Miscellaneous
– Breakpoints, wait for events, interrupt enable/disable, 

data memory barrier, data synchronization barrier

ARM Instruction Format

45

label mnemonic operand1, operand2, operand3 ; comments

} Label is a reference to the memory address of this instruction. 
} Mnemonic represents the operation to be performed.
} The number of operands varies, depending on each specific instruction. 

Some instructions have no operands at all. 
} Typically, operand1 is the destination register, and operand2 and operand3 are 

source operands. 

} operand2 is usually a register. 

} operand3 may be a register, an immediate number, a register shifted to a constant 
amount of bits, or a register plus an offset (used for memory access). 

} Everything after the semicolon “;” is a comment, which is an annotation 
explicitly declaring programmers’ intentions or assumptions. 

ARM Instruction Format

46

label mnemonic operand1, operand2, operand3 ; comments

target   ADD r0, r2, r3  ; r0 = r2 + r3

label mnemonic commentdestination 
operand

2nd source 
operand

1st source 
operand

ARM Instruction Format

47

label mnemonic operand1, operand2, operand3 ; comments

Examples:  Variants of the ADD instruction
ADD r1, r2, r3    ; r1 = r2 + r3
ADD r1, r3        ; r1 = r1 + r3
ADD r1, r2, #4    ; r1 = r2 + 4
ADD r1, #15       ; r1 = r1 + 15

First Assembly

48



9

First Assembly

49

First Assembly

50

Structured Programming

Divide and Conquer

51

"Nothing is particularly hard if you divide it into small 
jobs."

Henry Ford, Founder of Ford Motor

Three basic control structures

52

Sequence Structure Selection Structure Loop Structure

Top-Down Design

53

Top-Down Design Example

54

• Find all Armstrong numbers less than 10,000

• Given a positive integer that has n digits, it is an 
Armstrong number if the sum of the nth powers of 
its digits equals the number itself. 

• For example, 371 is an Armstrong number since 
we have 371 = 33 + 73 + 13. 



10

Top-Down Design Example

55

Top-Down Design Example

56

Top-Down Design Example

57

Top-Down Design Example

58

Top-Down Design Example:
Counting digits

59 60

Summary
v Introduction to ARM Processor
v Architecture of ARM
v Instruction set of ARM Cortex M4

Ø A&L Instructions
Ø Memory Instructions
Ø Flow Control Instructions
Ø Conditional Instructions

v C and Assembly Programming
Ø Format and directives

v Structured Programming with examples
Read Chapter 1-7 of Textbook


