Embedded Computer Systems and

Applications

Class Notes

Instructor: Ken Q. Yang
Dept. of ECE, URI

UNIVERSITY ¢ |
Rhode fsland

Course Objectives, Plans, and
Lab Tools

UNIVERSITY ¢ |
Rhode fsland

Course Objectives: What to learn?

* Embedded Computer Architecture Concepts
— Instruction Set Architecture
— CPU, Memory, and I/O Organizations

— Interfacing and Communication
« Serial and parallel ports
« GPIO, I)C,UART, DMA, Timer
« AD/DAC, Programming, Coding, and Storage

* New Computing Era: mobile and cloud
+ Machine Intelligence: smart device, smart city
* Applying Embedded Processor to Design Systems

An example embedded processor: ARM Processor

3 UNIVERSITY ¢ l
: Rhode fsland

Course Plan: How to Learn?

« Regular lectures (2.5 hours/week)
— Covers basic concepts and knowledge
— Explain tools and techniques necessary
* Weekly laboratory experiments (minimum 2 hours/week)
* Reading and Network surfing to learn tools, languages, and
applications (2 hours/week)
* Assessments:
« 2 Lab Experiments, 10% of your grade
« 1 Design project, 60% of your grade
> Design and documentations, 10% of your grade
> Proper working prototype, 35%
> Project proposal Presentation (10 minutes), 5%
> Progress report and discussions (10 minutes), 5%
> Final project demo and presentation (10 minutes), 5%

<1 Exam: 30%.
4 UNIVERSITY ¢ l
Rhode fsland

13
When smartphones
and tablets

light up the sky,

»
load up the clouds

A few year
later...

Machine Learning
Artificial
Intelligence

o
=

gl

Internet of Things (IoTs)

" "~ ™
o N
s 2
Autonomous Cars, \ ‘if
Energy, & Networking .ﬂ .;ﬂ

UNIVERSITY ¢
Rhode fsland

All Boil Down to One Thing

Computer
A Very Large Fraction: Embedded Computers and Systems
— End user devices
— Variety of appliances
— Network cores

— Consumer Electronics
— IoT

— More and more

UNIVERSITY ¢
Rhode fsland

Sec. 1. ARM Family Processors

* ARM Cortex™-M Family
¢ Cortex™-M4 Features
« ARM AArch

UNIVERSITY ¢
Rhode fsland

Thumb/
Thumb-2/
Thumb/ ARM32/
Thumb-2/
ARM64
Thumb/ARM32 ARM32

ARMv1 ARMv2 ARMv3 ARMV4/VAT ARMVS ARMvE ARMV7 ARMv8

I 1985 1986 1993 1995 1998 2002 2004 2013 >
T T A T B S
ARM1 ARM2 ARM& ARM7 ARM ARM ARM Cortex A15
TOMI 946E 10 11 M3| | Cortex
ARM9 Cortex | M4
TOMI R4 Cortex
Cortex A0
AB/A9
[P 9 UNIVERSITY g l
Rhode fstand

The Cortex™ Processor Family

Cortex™-A '
a &

servers set top boxes netbooks mobile applications

Cortex™-R ——
N

disk drives

digital cameras mobile baseband

appliances motors audio

b 10 l\I\II(SH'\rf ’ '

* ARM Cortex-A family:
— Applications processors
— Support OS and high-
performance applications

— Such as Smanghones, Smart TV

* ARM Cortex-R family:
— Real-time processors with high
performance and high reliability

— Support real-time processing
and mission-critical control

* ARM Cortex-M family:
— Microcontroller
— Cost-sensitive, support SoC

[1

UNIVE Rsn\ul/

What is Cortex™-M

L. A R B B B R OB B!

* Harvard Architecture o T G_VD - D D
* 3 stage pipeline D Y

« Single cycle multiply m
* Hardware Divide E
* Thumb-2 Instruction Set |
« Vectored Interrupt C
Controller a
(5
[m

OO0 00O OO0 O e

UNIVERSITY ¢
Rhode fstand

Register Sets 1

Fe De Ex
Da |
Address| | phase
phase Load/
and - Store
writeback| and
n
|
7
Ll Muily
Instruction D?\::e WR]
Decode
Felch [+ and N~
Register e
Read A
—» Shit - and
Branch
\ ==
Branch

UNIVE I
Rhode

The processor has the following 32-bit registers:

13 general-purpose registers, RO-R12

+ Stack Pointer (SP), R13 alias of banked registers, P_process and SP_main
+ Link Register (LR), R14

+ Program Counter (PC), R15

+ Special-purpose Program Status Registers, (xPSR)

low registers N

high registers R10

R13 (SP) [SPprocess | [SP_main

Program Status Register XPSR

UNIVERSITY g I
Rhode Island

Register Sets 2

Low registers
Registers RO-R7 are accessible by all instructions that specify a general-purpose register.
High registers
Registers R8-R12 are accessible by all 32-bit instructions that specify a general-purpose register.
Registers R8-R12 are not accessible by any 16-bit instructions.
Registers R13, R14, and R15 have the following sp
Stack pointer
Register R13 is used as the Stack Pointer (SP). Because the SP ignores writes to bits [1:0], it is auto aligned
t0 a word, four-byte boundary.

ial functions:

Handler mode always uses SP_main, but you can configure Thread mode to use either SP_main or
SP_process.
Link register
Register R14 is the subroutine Link Register (LR).
The LR receives the return address from PC when a Branch and Link (BL) or Branch and Link with
Exchange (BLX) instruction is executed.
The LR is also used for exception return.
Atall other times, you can treat R14 as a general-purpose register.
Program counter
Register R15 is the Program Counter (PC).

Bit [0] is always 0, 50 instructions are always aligned to word or hawmr«\.hmmd.mnﬁ
UNIVERSI

s Rhode fsland

Program Status Register

« Application PSR (APSR), Interrupt PSR (IPSR), Execution PSR (EPSR)

27 26:25 24 23:20 19:16 15:10

Exception Number

EPSR icT T | ficurT]

» Combine them together into one register (PSR)
» Use PSR in code

Exception Number

Note: GE flags are only available on Cortex-M4 and M7

UNIVERSITY ¢ l
Rhode fsland

ARM Cortex-M4 Organization

Arithmetic and Logic Instructions

o e
e s
e rousuaus
st e rczsueus
Twe rzcysweus
T USB20FS
Cortex-Wé Processor Core rsirucions ustaTz AN
N - NE Insucton Bus { e | frovisibet
o [z 153|-| 5|38 o i
3 HHR I HH I e R R
5| EH _|3z| 5 f.gﬁg protection | | & pAmp
32 |S8hzEd 2|35 EF Unit(p0) | | S | Advarced vigr-
G2 REESCIER)E|E s |perormance Bys -
3] e e ey s Advanced
5 £ BEIE| |E|E 2 PerphersiBus
H HE HE H [P aez] e
e
PoPoTA
Sropais
Gropoic B T sen
Direcion Memory horns [
‘Accoss (WA Torne TP SA
Contrllers SPiopat TNGPAM DrSDM
Sriopars ™S coupt
Cho pars e cowpz
M Froval
UshRT

System-on-a-chip

—
[17 UNIVE A\ul/ ’

shift
LSL (logic shift lef), LSR (logic shiftright), ASR (arithmetic shift right), ROR (rotate right), RRX (rotate right with extend)
Logic
| ORR (bitwise or), EOR), ORN (bitwisc or not), MVN (move not)
Bit set/clear
BFC (bit field clear), BF (bit ield insert), BIC (bt clear), CLZ (count leading zeroes)
Bitlbyte reordering
RBIT (reverse bit order ina word), REV ina word), REVI6 ¥ incach
REVSH (reverse bytc order in cach half-word independently)
Addition
ADD, ADC (add with carry)
Subtraction
SUB, RSB (reverse subtract), SBC (subtract with carry)
Multiplication
MUL (muliply), MLA , MLS ly . SMULL (signed long . SMLAL (signed long
. UMULL. (unsigned ly . UMLAL (unsigned long multiply-subtract)
Division
SDIV (signed), UDIV (unsigned)
Saturation

SSAT (signed), USAT (unsigned)
Sign extension
SXTB (signed), SXTH, UXTB, UXTH
Bil field exiract
SBEX (signed), UBFX (unsigned)
Syntax
<Operation>{<cond>} (S} Rd, Rn, Operand2

UNIVERSITY ¢
Rhode fstand

Example:

0000002 |FFFFFFF

0000004 0000000

nooooou7€oooooon
'

em»l—\wmh[.\M Upper) 32 bits >'€a»\—»1umlwmn Lower) 32 bits)
I : I
| |
1 1
I I

Carry out

A register can only store 32 bits
A 64-bit integer needs two registers
Split 64-bit addition into two 32-bit additions

UNIVERSITY g l
Rhode Island

Example:

2 1000000000000001000000000000000 1

Bit-wise Logic AND

UNIVERSITY g |
Rhode Island

Example:

Bit Clear

12=10 & NOT rl

171010101010101010101010101010101
! 10101010101010111010101010101011 Step 1:
2 111111111111 11111111111111111111 rl 00000000000000000000000000001111
NOT 11 11111111111111111111111111110000
Bit-wise Logic OR
Step 2:
0
11111111111111111111111111111111
NOTrl 11111111111111111111111111110000
n 171111111111111111111111111110000
21 UNIVE 1\:{ | 2 l\I\IIL\H\l{ |
Rhode Island Rhode Island
bit = a & (1<<kK) o
Example: k=5
Example: k=5
a a7 a6 as a4 a3 a2 al a0
1<<k| @ 2] 1 [} [} 2} [} 2} al a7 a6 as a4 a3 a2 al a0
a & (1<<k)]] as] 2] 2] 2]) 1<<k]] 1]]]] o
al(1<<k)| a7 a6 1 a4 a3 a2 al a0

UNIVERSHY of l

ﬁ
24 l\I\IRsH\tf ’

Clear a Bit

a &= ~(1<<k)

Logic View of Memory

When we refer to memory locations by address,
we can only do so in units of bytes, halfwords or

8 bits
words | |

Words High Address /V
- 32 bits = 4 bytes = 1 word = 2 halfwords 0x20000007 [l oirtooio]
Example: k=5 — In the right diagram, we have two words at ox 00100101
addresses: 0x20000005 11100010
al a7 a6 as a4 a3 a2 al a0 «+ 0x20000000
~(1<<k) | 1 1 o 1 1 1 1 1 - 0x20000004 0x20000004 || 10000100
a&~(1<<k) [a7 a6 ° a4 a3 a2 a1 20 — Can you store a word anywhere? NO. 0x20000003 o1100001
— A word can only be stored at an address 0x20000002 1ooonint
that's divisible by 4. 0x20000001 00010010
— Memory address of a word is the lowest 0x20000000 lee1a1e0
address of all four bytes in that word.
Low Address /\/
— Word-address mod 4 = 0
b 25 UNIVERSITY g 2 UNIVERSITY g
Rhode fsland Rhode i
32-bit 32-bit
Bytes Addr. Bytes Addr.
Words Y Words 4
0015 0015
addr | T addr | T
Word 3 = — 0014 Word 3 = — 0014
22 |1 o013 oooiz| || ee13
] |—] 012 || ee12
What are the memory addrc5§ 0011 What are the memory addrc5§ 0011
o A — g A
of these four words? . ddr 0010 of these four words? ddr 0010
‘ord 2 = — ‘Word 2 = fr—
22 0009 0x0008 0009
— |——] ©9ves — |——] ©ves
Addh 0007 Add 0007
ol |
Word 1 - |__| o006 Word 1 - || ©o006
22 0005 0x0004 0005
0004 0004
0003 0003
Adar | [Adar |
Word0 | = 0002 Wordo | = || 0002
22 Pz | 0x0000 [~ sz |
g ’i/ [t : 1} 'i/
L IRL_JIs%3A01 L IRL_IIs%3A01

High address

LSB

Low address

byte 3 byte 2 byte 1 byte 0

o I

Big endian byte 0 byte 1 byte 2 byte 3

Little endian

Isb

UNIVERSHY of l

Little Endian: Most significant byte is stored at a high address
Big Endian: Most significant byte is stored at a low address

Regardless endian, the address of a word is defined as the lowest
address of all bytes it occupies.

ARM is Little Endian by default. However it can be made Big
Endian by configuration.

Most Least
Significant Bit Significant Bit

AWord (32 bits)

Base Address + 3

Base Address + 2 [Byte 2

Base Address + 1| B

Base Address | Byte @

Little Endian _‘
3 l\I\IRsH\tf

Endianess

» Little Endian: Most significant byte is stored at a high address

» Big Endian: Most significant byte is stored at a low address

» Regardless endian, the address of a word is defined as the lowest
address of all bytes it occupies.

» ARM is Little Endian by default. However it can be made Big
Endian by configuration.

Most Least
Significant Bit Significant Bit
A Word (32 bits)

T, [
Base Address +3

3

Base Address + 3 [[Byte 3 | =>
Base Address + 2 | Byte 2
Base Address + 1 o
Base Address - Base Address

Little Endian Big Endian l

31 UNIVERSETY u[

If big endianess is used

The word stored at address Memory Memory Data
0x20008000 is Address

020008003 OXA7
[exEE8Co0A7]
* 0x20008002 ox90
020008001 OX8C
020008000 OXEE
UNIVERSITY ¢
» Rhode fsland

If little endianess is used

The word stored at address Memory Memory Data
0x20008000 is Address

0x20008003 OxA7
[0xA7908CEE |
[exazoescee | 0x20008002 0x90
S:\ddei:\in“:nLyy:J’ecifies byte order, not bit 0x20008001 ox8C
0x20008000 OXEE
[33 UNIVERSITY 'fsland |

Load-Modify-Store

C statement

X + 1

!

; Assume the memory address of x is stored in ril

LDR ro, [ri] ; load value of x from memory
ADD ro, ro, #1 ;X =x+1

STR ro, [ri] ; store x into memory

[34 l\|\|vxsm,f |

Load Instructions

« LDR rt, [rs]
- fetch data from memory into register rt.
- The memory address is specified in register rs.
- For Example:

; Assume r@ = 0x08200004

; Load a word:
LDR r1, [re@] ; rl = Memory.word[0x08200004]

UNIVERSITY ¢ l
Rhode fsland

Store Instructions

* STR rt, [rs]:
- save data in register rt into memory
- The memory address is specified in a base register
rs.

- For Example:

; Assume r@ = 0x08200004
; Store a word
STR r1, [re] ; Memory.word[0x08200004] = rl

[] 36 UNIVERSITY ’f ’ '

Branch & Conditional Instructions

Instruction Operands Brief description Flags
B label Branch -
BL label Branch with Link
BLX Rm Branch indirect with Link
BX Rm Branch indirect

* B label: causes a branch to label.

* BL label: instruction copies the address of the next instruction into r14 (Ir,
the link register), and causes a branch to label.

* BX Rm: branch to the address held in Rm

* BLX Rm: copies the address of the next instruction into r14 (Ir, the link
register) and branch to the address held in Rm

i " “Rhode island

Branch With Link

* The "Branch with link (BL)" instruction
implements a subroutine call by writing PC+4 into
the LR of the current bank.

— i.e. the address of the next instruction following the
branch with link (allowing for the pipeline).

* To return from subroutine, simply need to restore
the PC from the LR:
- MOV pc, 1lr
— Again, pipeline has to refill before execution continues.
» The "Branch" instruction does not affect LR.

" " “Rhode island

Example 1: Greatest Common Divisor

Euclid’s Algorithm

while (a != b) {
if (a>b)a=a-b;
else b =b - a;

3
; suppose r@ = a and rl = b
ged CMP ro, ri ; a>b?
BEQ end ; if a = b, done
BLT less ;acx<
SUB re, re, ri ;a=a-b
B gcd

less SUB r1, ri, ro ;b=b-a
B gcd

39 l\I\II(SH\:f ’

Example 2

int foo(int x, int y) { foo ADDS re, re, ri
if (x+y<o) BPL PosOrz
return 0; done MoV re, #o
else MoV pc, 1r
return 1; Posorz MOV re, ri
B done
foo ADDS re, re, ri 5 rl=x+y, setting CCs
MOVPL re, #1 5 return 1 if n bit = @
MOVMI re, #o 5 return @ if n bit = 1
MoV pc, 1r 5 exit foo function
40 l\I\II(SH\lf ’ |

From C to Assembly

int x = -2;

X =x+1;

Task: Compute
2+1 Assembly program

AREA c,CODE

C Program
—

LDR r8, =x @

Load-Modify-Store

Assembly program

AREA c¢,CODE

C Program
LDR r@, =x

Microprocessor

LDR ri1,[re] @
ADD r1, rl, #1 @
STR r1,[re] @

AREA d,DATA
X DCW -2

[- 41 UNIVERSITY g |
: Rhode island

LDR ri,[re]
ADD r1, ri, #1
STR r1,[ro]

int x = -2; |
X =X + 1; —

0000

AREA d,DATA
™ x DCW -1

—
P l\I\IRsH\ul/ §

Load-Modify-Store

. Save 32-bit data in R

/ 0 register R1 into memory. Tl
/ Sl
| 32 bits .
\ — N
*\ R0 [ex20000000 |-~ .
R OxFFFFFFFE \ Memory
R2 ! address
e A ’ll x20000004
Ré A ' ex20000003
G \ ex20000002
(3 ©x20000001
&7 “: oxz0000000
R8
R9
R10
R11
R12
R13 (SP)
R14 (LR) Control Unit ‘
R15 (PC) N .
rocessor Core
—~—

£

Assembly Instructions Supported

¢ Arithmetic and logic
— Add, Subtract, Multiply, Divide, Shift, Rotate
» Data movement
— Load, Store, Move
» Compare and branch
— Compare, Test, If-then, Branch, compare and branch on
zero
 Miscellaneous
— Breakpoints, wait for events, interrupt enable/disable,
data memory barrier, data synchronization barrier

UNIVERSITY g |
Rhode Island

44

ARM Instruction Format

label mnemonic operandl, operand2, operand3 ; comments
» Label is a reference to the memory address of this instruction.
» Mnemonic represents the operation to be performed.
» The number of operands varies, depending on each specific instruction.
Some instructions have no operands at all.
» Typically, operand] is the destination register, and operand2 and operand3 are
source operands.
» operand2 is usually a register.
» operand3 may be a register, an immediate number, a register shifted to a constant
amount of bits, or a register plus an offset (used for memory access).
» Everything after the semicolon “;” is a comment, which is an annotation

explicitly declaring programmers’ intentions or assumptions.

UNIVERSITY ¢ l
Rhode fsland

45

ARM Instruction Format

label mnemonic operandl, operand2, operand3 ; comments

target ADD r@, r2, r3 ; réo =r2 + r3

T IS

label mnemonic destination 1% source 20 source comment
operand operand operand
[16 UNIVERSITY ¢ |

Rhode fsland

ARM Instruction Format

First Assembly

label mnemonic operandl, operand2, operand3 ; comments

Examples: Variants of the ADD instruction
ADD ri1, r2, r3 ; rl=r2 +r3

ADD ri1, r3 ; rl=r1+r3
ADD rl1, r2, #4 ; rl=r2+ 4
ADD r1, #15 ; rl=rl1+ 15

47 UNIVERSITY g
Rhode Island

AREA string_copy, CODE, READONLY
EXPORT __
ALTGN
ENTRY

__main PROC

o strcpy LDR rl, =srcStr ; Retrieve address of the source string
LOR r@, =dststr ; Retrieve address of the destination string
loop LDRB r2, [r1], #1 ; Load a byte & increase src address pointer
STRB r2, [re], #1 ; Store a byte & increase dst address pointer

P r2, #0 ; Check for the null terminator

BNE loop ; Copy the next byte if string is not ended
stop B stop ; Dead loop. Embedded program never exits.

ENDP

AREA myData, DATA, READWRITE
ALIGN

srcStr DCB "The source string.”,@ ; Strings are null terminated
dststr DB "The destination string.”,@ ; dststr has more space than srcstr

END

—
48 l\l\llhn\ul/ §

AREA string_copy, CODE, READONLY

EXPORT __main ~

ENTRY

__main PROC
Code strcpy LDR rl, =srcStr ’7; Retrieve address of the source string |
arca | LDR re, =dststr |'; Retrieve address of the destination string |
loop LORE r2, [r1], #1 |; Load a byte & increase src address pointer |
STRB r2, [re], #1 |3 Store a byte & increase dst address pointer
P r2, #o ; Check for the null terminator !
BNE loop I} Copy the next byte if string is not ended |
stop B stop |'; Dead loop. Embedded program never exits. |
ENDP
AREA myData, DATA, READWRITE
ALIGN
“?ﬂ" srcStr DCB "The source string.",@ r; Strings are null terminated 1
rea dststr DCB "The destination string.”,e | ; dststr has more space than srestr |
- __
END 3

e
UNIVERSITY g |
Rhode Island

49

i [AREA string_copy, CODE, READONLY |

! [EXPORT _main |

v A | Comments
_mainlproc] | -

; Retrieve address of the source string

5 Retrieve address of the destination string
; Load a byte & increase src address pointer
; Store a byte & increase dst address pointer
; Check for the null terminator

; Copy the next byte if string is not ended

Code
Area

stop Dead loop. Enbedded program never exits.
BRI \ssembly Instructions
I'enop.
| - I
| AREA myData, DATA, READWRITE
(ALIG i
Data srcstr [DCB "The source string.”, ; Strings are null terminated
) dststr | DCB e destination string. ; dststr has more space than srcstr
****** S A
END ! '
1
Comments
50 UNIVERSETY g

Structured Programming

Divide and Conquer

""Nothing is particularly hard if you divide it into small
jobs.”
Henry Ford, Founder of Ford Motor

51 UNIVERSITY ¢ l
Rhode fsland

R A
Statement 1
False - O\
False Condition _
\4 N
v v True
A4
iaemeni Statement 1 Statement 2
! Statement
oy
<
Statement 2 v v
v
Sequence Structure Selection Structure Loop Structure

UNIVERSITY ¢ l
Rhode fsland

op-Down Design

Top-Down Design

Main task

Smaller subtasks

<
&
N
‘.\\'O
Trivial g
subtasks &
g
§

53 UNIVERSITY g
Rhode Island

op-Down Design Example

* Find all Armstrong numbers less than 10,000

* Given a positive integer that has » digits, it is an
Armstrong number if the sum of the nt powers of
its digits equals the number itself.

* For example, 371 is an Armstrong number since
we have 371 =33+ 73 + 13,

ﬁ
54 l\I\IRsH\tf ’

Top-Down Design Example

START

If 1 is an Armstrong number, then print 1
If 2 is an Armstrong number, then print 2.
If 3 is an Armstrong number, then print 3.
If 4 is an Armstrong number, then print 4.
If 5 is an Armstrong number, then print 5.
If 6 is an Armstrong number, then print 6.

ifv9999 is an Armstrong number, then print 9999.

STOP

55

UNIVERSITY ¢ |
Rhode fsland

Top-Down Design Example

START

x=1

If x is an Armstrong number,
then print x

YES x < 10000

NO

UNIVERSITY ¢ |
Rhode fsland

op-Down Design Example

START

s x an Armstrong number?

UNIVERSITY ¢ l
Rhode fsland

p-Down Design Example

—
Determine how many
digits x has.
Determine all digits of x.
Calculate the sum of the
power of all digits
Check whether x equals to
the sum

—

Check whether x is <
an Armstrong Number

UNIVERSITY ¢ l
Rhode fsland

Top-Down Design Example:

Determine how many
digits x has.
Determine al digis of x.

The
power of al digits
[Check whether x equals (o]
the sum

Yes

number = number/10

1

59 UNIVERSITY

Rhode fsland

Introduction to ARM Processor
Architecture of ARM
Instruction set of ARM Cortex M4
» A&L Instructions
» Memory Instructions
» Flow Control Instructions
» Conditional Instructions
+« C and Assembly Programming
» Format and directives
¢ Structured Programming with examples

®,
<R XS

)
*

.

)
*

Read Chapter 1-7 of Textbook

UNIVERSITY ¢
© Rhode fstand

10

