
10/1/19

1

1

Exception Processing and
Interrupt

Class 3. IRQ and DMA

2

Basic Concepts of Interrupt Processing

} A variety of unexpected events in a computer system
} I/O events, error conditions, network events etc

} These events are handled by interrupt processing
} Speed disparity of various devices in a computer

} Allow multiple and parallel processing of tasks

} An analogous example: A reading process
} Phone rings--à Recognition of an event
} Answer the phone or not? à Priority

} Book mark the page à store context
} Answer the phone à handler

} Continue the reading process after phone conversation à done

Interrupts

3

} Motivations
} Inform a program of some external events timely

} Polling vs Interrupt

} Implement multi-tasking with priority support

Merriam-Webster:
“to break the uniformity or continuity of”

Polling vs Interrupt

4 Image from http://vecto.rs

Polling:
You pick up the phone
every three seconds to
check whether you are
getting a call.

Interrupt:
Do whatever you should do
and pick up the phone when
it rings.

5

Necessary Procedure of an Interrupt Process

} Interrupt requester ßà CPU
} Recognition of an interrupt request:

} Interrupt requester makes an interrupt request

} CPU recognizes the interrupt request

} Prioritization: Determining whether granting the request or
not
} Requester provides its priority
} CPU compares it with the priority of its current process

} Context saving to be able to come back after interrupt
} Program counter marks where interrupt happened

} Status register and possible other necessary context information

SoC interconnect diagram

} Any module capable of generating an interrupt will depend
on NVIC operation

} NMI can be generated from:
} External pin (must configure the MUX)
} CoreSight Embedded Trace Buffer (ETB)

6

10/1/19

2

Interrupt Service Routine Vector Table
} Start address for the

exception hander for
each exception type is
fixed and pre-defined

} Processor loads PC
with this fixed, pre-
defined address

} Exception Vector Table
starts at memory
address 0

} Program Counter pc =
0x00000004 initially

Address Priority Type of
priority

Acronym Description

0x0000_0000 - - - Stack Pointer

0x0000_0004 -3 fixed Reset Reset Vector

0x0000_0008 -2 fixed NMI_Handler

Non maskable interrupt. The RCC
Clock Security System (CSS) is
linked to the NMI vector.

0x0000_000C -1 fixed HardFault_Handler All class of fault

0x0000_0010 0 settable MemManage_Handler Memory management

0x0000_0014 1 settable BusFault_Handler Pre-fetch fault, memory access fault

0x0000_0018 2 settable UsageFault_Handler Undefined instruction or illegal state

0x0000_001C-
0x0000_002B - - - Reserved

0x0000_002C 3 settable SVC_Handler
System service call via SWI
instruction

0x0000_0030 4 settable DebugMon_Handler Debug Monitor

0x0000_0034 - - - Reserved

0x0000_0038 5 settable PendSV_Handler Pendable request for system service

0x0000_003C 6 settable SysTick_Handler System tick timer

…

7 8

ISR Vector
Table

Top_of_Stack

Reset_Handler

NMI_Handler

HardFault_Handler

MemMange_Handler

BusFault_Handler

UsageFault_Handler

Reserved

Reserved

Reserved

Reserved

SVC_Handler

DebugMon_Handler

PendSV_Handler

SysTick_Handler

WWDG_IRQHandler

PVD_IRQHandler

TAMPER_STAMP_IRQHandler

RTC_WKUP_IRQHandler

FLASH_IRQHandler

RCC_IRQHandler

EXTI0_IRQHandler

EXTI1_IRQHandler

EXTI2_IRQHandler

EXTI3_IRQHandler

EXTI4_IRQHandler

DMA1_Channel1_IRQHandler

DMA1_Channel2_IRQHandler

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000014

0x00000018

0x0000001C

0x00000020

0x00000024

0x00000028

0x0000002C

0x00000040

0x00000044

0x00000048

0x0000004C

0x00000050

0x00000054

0x00000058

0x0000005C

0x00000060

0x00000064

0x00000068

0x0000006C

0x00000070

0x00000074

DMA1_Channel3_IRQHandler

DMA1_Channel4_IRQHandler

……

void Reset_Handler () {
 ...
 main();
 ...
}

Value to initialize the Stack Pointer (SP)

Value to initialize the Program Counter (PC)

void EXTI0_Handler () {
 ...
}

void DMA1_Channel1_IRQHandler () {
 ...
}

void EXTI1_Handler () {
 ...
}

void SysTick_Handler () {
 ...
}

void SVC_Handler () {
 ...
}

…
…

…
…

…

0x00000030

0x00000034

0x00000038

0x0000003C

System
Exceptions

Stacking & Unstacking

9

} Two stack pointers: Main SP (MSP) and Process SP (PSP)

} Determined by operating mode, and bit 0 of the CONTROL register
} Handler mode ⟶	SP = MSP
} Thread mode ⟶		SP = MSP, if CONTROL[0] = 0 (i.e., privileged thread mode);

SP = PSP, if CONTROL[0] = 1 (i.e., unprivileged thread mode)

SP + 0x20 xxxxxxxx
SP + 0x1C xPSP
SP + 0x18 PC (r15)
SP + 0x14 LR (r14)
SP + 0x10 r12
SP + 0x0C r3
SP + 0x08 r2
SP + 0x04 r1
SP + 0x00 r0

• Stacking: The processor
automatically pushes these eight
registers into the main stack
before an interrupt handler starts

• Unstacking: The processor
automatically pops these eight
register out of the main stack
when an interrupt hander exits.

Old SP

New SP

Full
Descending

Stack

Interrupt

10

Stacking & Unstacking

11

Interrupt Handler

Handler Mode Thread ModeThread Mode

Interrupt
Signal

User ProgramUser Program

Stacking

Unstacking

Interrupt
Exit

Time

Registers

12

MSP: Main Stack Pointer
PSP: Process Stack Pointer

10/1/19

3

Processor Mode:
Handler Mode vs Thread Mode

13

} Handler mode and Thread mode
} Handler mode always use MSP (Main Stack Pointer)
} Thread Mode uses either PSP (Process Stack Pointer) or MSP

} Control[1] = 0, SP = MSP (default)

} Control[0] = 1, SP = PSP

} When the processor is reset, the default is the thread
mode.

} The processor enters the handler mode when an
exception occurs.

Sequence of register setups
The steps for enabling an interrupt on NVIC:

} 1. Enable the peripheral to be used

} 2. Set the proper bit on the NVICSERx to enable the interrupt on
the NVIC

} 3. Clear any pending interrupt by writing to the NVICCPRx to avoid
any spurious interrupt

} 4. Configure the interrupt priority by writing to the NVICIPxx
} 5. Write the ISR

} 6. Enable global interrupts

14

Stacking & Unstacking

15

Interrupt Handler

Handler Mode Thread ModeThread Mode

Interrupt
Signal

User ProgramUser Program

Stacking
onto MSP

Unstacking
from MSP

Interrupt
Exit

Time

Control[1] = 0 ⟹		User program uses MSP.

MSP MSP MSP
LR = 0xFFFFFFF9

Stacking & Unstacking

16

Interrupt Handler

Handler Mode Thread ModeThread Mode

Interrupt
Signal

User ProgramUser Program

Stacking
onto PSP

Unstacking
from PSP

Interrupt
Exit

Time

Control[1] = 1 ⟹		User program uses PSP.

PSP MSP PSP

If the interrupt handler calls
push or pop, the MSP is used.

LR = 0xFFFFFFFD

Interrupt Number

17

} Cortex-M supports up to 256 interrupts.

} First 16 are system exceptions
} CMSIS defines their interrupt numbers as negative
} Defined by ARM core

} The rest 240 are peripheral interrupts

} Peripheral interrupt number starts with 0.
} Defined by chip manufacturers.

0

interrupt
number

Peripheral
Interrupts

System
Exceptions

239-1-16
CMSIS Interrupt Number

Interrupt Number
in CMSIS vs in PSR

18

Interrupt Number in PSR = 16 + Interrupt Number for CMSIS

N Z C V Q IT[7:6] T GE[3:0] IT[5:0] 0 or Exception Number

Stick saturation flag for SSAT and USAT

Carry/Borrow flag

Negative or less than flag

Overflow flag

Zero flag

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Thumb state flag

IT[7:0]: If-Then bits

Reserved

GE[3:0]: Greater or equal flags (only available on Cortex-M4 and M7)

Interrupt number in Program Status Register (PSR)

NVIC_DisableIRQ (IRQn); // Disable interrupt
NVIC_EnableIRQ (IRQn); // Enable interrupt
NVIC_ClearingPending (IRQn); // clear pending status
NVIC_SetPriority (IRQn, priority); // set priority level

Interrupt number for CMSIS functions

10/1/19

4

CMSIS Interrupt Number

19

/****** Cortex-M4 System Exceptions **/

NonMaskableInt_IRQn = -14, /* 2 Cortex-M4 Non Maskable Interrupt */

HardFault_IRQn = -13, /* 3 Cortex-M4 Hard Fault Interrupt */

MemoryManagement_IRQn = -12, /* 4 Cortex-M4 Memory Management Interrupt */

BusFault_IRQn = -11, /* 5 Cortex-M4 Bus Fault Interrupt */

UsageFault_IRQn = -10, /* 6 Cortex-M4 Usage Fault Interrupt */

SVCall_IRQn = -5, /* 11 Cortex-M4 SV Call Interrupt */

DebugMonitor_IRQn = -4, /* 12 Cortex-M4 Debug Monitor Interrupt */

PendSV_IRQn = -2, /* 14 Cortex-M4 Pend SV Interrupt */

SysTick_IRQn = -1, /* 15 Cortex-M4 System Tick Interrupt */

/****** Peripheral Interrupt Numbers ***/

WWDG_IRQn = 0, /* Window WatchDog Interrupt */

PVD_PVM_IRQn = 1, /* PVD/PVM1,2,3,4 through EXTI Line detection Interrupts */

TAMP_STAMP_IRQn = 2, /* Tamper and TimeStamp interrupts through the EXTI line */

RTC_WKUP_IRQn = 3, /* RTC Wakeup interrupt through the EXTI line */

FLASH_IRQn = 4, /* FLASH global Interrupt */

RCC_IRQn = 5, /* RCC global Interrupt */

EXTI0_IRQn = 6, /* EXTI Line0 Interrupt */

...

System
Exceptions

Peripheral
Interrupts

stm32l476xx.h

Enable an Interrupt

20

} Enable a system exception
} Some are always enabled (cannot be disabled)
} No centralized registers for enabling/disabling
} Each are control by its corresponding components, such as

SysTick module

} Enable a peripheral interrupt
} Centralized register arrays for enabling/disabling
} ISER registers for enabling

} ICER registers for disabling

Enabling Peripheral Interrupts

21

NVIC->ISER[1] = 1 << 12; // Enable Timer 7 interrupt

TIM7_IRQn = 44

Disabling Peripheral Interrupts

22

NVIC->ICER[1] = 1 << 12; // Diable Timer 7 interrupt

TIM7_IRQn = 44

Disable/Enable Peripheral Interrupts

23

} For all peripheral interrupts: IRQn ≥ 0

} Method 1:
} NVIC_EnableIRQ (IRQn); // Enable interrupt

} NVIC_DisableIRQ (IRQn); // Disable interrupt

} Method 2:
} Enable:

} NVIC->ISER[IRQn / 32] = 1 << (IRQn % 32);

} Better solution:

} NVIC->ISER[IRQn >> 5] = 1 << (IRQn & 0x1F);

} Disable:
} NVIC->ICER[IRQn >> 5] = 1 << (IRQn & 0x1F);

Interrupt Priority

24

} Inverse Relationship:
} Lower priority value means higher urgency.

} Priority of Interrupt A = 5,
} Priority of Interrupt B = 2,
} B has a higher priority/urgency than A.

} Fixed priority for Reset, HardFault, and NMI.

} Adjustable for all the other interrupts

Exception IRQn Priority
Reset N/A -3 (the highest)

Non-maskable Interrupt (NMI) -14 -2 (2nd highest)

Hard Fault -13 -1

10/1/19

5

Interrupt Priority
} Interrupt priority is configured by Interrupt Priority Register (IP)
} Each priority consists of two fields, including preempt priority

number and sub-priority number.
} The preempt priority number defines the priority for preemption.
} The sub-priority number determines the order when multiple interrupts are

pending with the same preempt priority number.

25

default setting

Interrupt Priority Levels

NVIC_SetPriority(7, 6);

26

0 1 1 0 0 0 0 0

NVIC->IP[7] = (6 << 4) & 0xff;

typedef struct {
...
// Interrupt Priority Register
volatile uint8_t IP[240];
...

} NVIC_Type;

core_cm4.h or core_cm3.h

IP = 0x60 = 96

It is equivalent to:

Preemption and Sub-priority
Configuration

27

} NVIC_SetPriorityGrouping(n)
} Perform unlock, and update AIRCR register

n # of bits in
preemption priority

of bits in sub-
priority

0 0 4

1 1 3

2 (default) 2 2

3 3 1

4 4 0

Default
n = 2

Priority of Peripheral Interrupts

28

// Set the priority for EXTI 0 (Interrupt number 6)
NVIC->IP[6] = 0xF0;

Priority of System Interrupts

29

// Set the priority of a system interrupt IRQn
SCB->SHP[(IRQn) & 0xF) - 4] = (priority << 4) & 0xFF;

Masking Priority

30

} Disable all interrupts with less urgency
} For critical code, only certain interrupts are allowed.
} BASEPRI: Disable all interrupts of specific priority level or

higher priority level

// Disable interrupts with priority value same or higher
__set_BASEPRI(5 << 4)

// Critical code
...

// Remove BASEPRI masking
__set_BASEPRI(0);

10/1/19

6

Exception-masking registers (PRIMASK,
FAULTMASK and BASEPRI)
} PRIMASK: Used to disable all exceptions except for Non-maskable

interrupt (NMI) and hard fault.
} Write 1 to PRIMASK to disable all interrupts except NMI

} Write 0 to PRIMASK to enable all interrupts

} FAULTMASK: Like PRIMASK but change the current priority level to
-1, so that even hard fault handler is blocked

} BASEPRI: Disable interrupts only with priority lower than a certain
level
} Example, disable all exceptions with priority level higher than 0x60

31

MOV R0, #1
MSR PRIMASK, R0

MOV R0, #0
MSR PRIMASK, R0

MOV R0, #0x60
MSR BASEPRI, R0

External Interrupt (EXTI) Sources

32

PA.3

PB.3

PC.3

PD.3

PE.3

PF.3

EXTI.3

STM32L4

PA.3 EXTI3

N
V
IC

C
or
te
x-

M
4

Nested-
Vectored
Interrupt

Controller

SYSCFG external
interrupt

configuration register
(SYSCFG_EXTICR)

PG.3

PH.3

source
selection

00
000
1

01
0
01
110
0

10
111
0
11
1

Select pin x from Port y as EXTIx

External Interrupt (EXTI) Sources

33

PA.x

PB.x

PC.x

PD.x

PE.x

PF.x

EXTIx

STM32L4

Pin.x EXTIx

N
V
IC

C
or
te
x-

M
4

Nested-
Vectored
Interrupt

Controller

SYSCFG external
interrupt

configuration register
(SYSCFG_EXTICR)

PG.x

PH.x

source
selection

00
000
1

01
0
01
110
0

10
111
0
11
1

x = 0, 1, 2, …, 15

One mux for each of EXTI0, EXTI1, ..., EXTI15

Interrupt Vector Table

34

PA.3
EXTI3

N
V

IC

C
or

te
x-

M
4

Nested-Vectored
Interrupt

Controller (NVIC)

Interrupt Vector Table
Interrupt
Number
(8 bits)

Memory Address
of ISR

(32 bits)
... ...
EXTI0_IRQn = 6 EXTI0_IRQHandler
EXTI1_IRQn = 7 EXTI1_IRQHandler
EXTI2_IRQn = 8 EXTI2_IRQHandler
EXTI3_IRQn = 9 EXTI3_IRQHandler
EXTI4_IRQn = 10 EXTI4_IRQHandler
... ...
EXTI9_5_IRQn =
23

EXTI9_5_IRQHandl
er

... ...
EXTI15_10_IRQn
= 40

EXTI15_10_IRQHan
dler

... ...

EXTI3_IRQHa
ndlerInterru

pt
Vector
Table

External Interrupt (EXTI) Controller

35

IMRRTSRFTSR EMR0: disabled
1: enabled

SWIER

OR

AND

AND

AND

AND

AND

OR

PR

Configur
able
External
Interrupt
s

Direct External
Interrupts

GPIO,
RTC,
COM
P,
PVD,
PVM

USART/I
2C/OTG/
LPTIM/L
CD
wakeup 36

High Speed and Direct Data Transfer
Between Memory and Peripherals

DMA: Direct Memory Access

10/1/19

7

37

Basic Concepts of DMA

} Limitations of Interrupt Processing
} CPU involvements
} Good for discrete events with small amount of data
} Inefficient for large data transfers

} Needs for High Speed Data Transfer between
} disk and RAM;
} NIC and RAM;
} more

} An analogous example: Program of Study
} Student asks dean for advising and signature à Request
} Dean directs student to the advisor à address, tasks, and go
} Student talks with the advisor à communication/data tranfser
} Advisor signed the program of study after completing advising and send

student back o dean for final signatureà report completion

38

General Procedure of DMA
} DMA Request

} Request from peripheral through hardware
} Explicit software initiation
} Channel to channel linking for continual transfer

} Source/Destination and amount of Data Transfer
} CPU write registers in DMA controller to define

} Source address, destination address, and byte count

} Direct and Continuous Data Transfer
} Data transfer is done directly between memory and peripheral device

without CPU involvement

} Report Completion
} When transfer is done, reporting completion through interrupt

Direct Memory Access (DMA)

39

} DMA releases CPU from moving data
} between peripherals and memory, or

} between one peripheral and another peripheral.

} DMA uses bus matrix to allow concurrent transfers
Peripherals Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7

ADC1 ADC1
SPI SPI1_RX SPI1_TX SPI2_RX SPI2_TX

USART USART3_TX USART3_RX USART1_TX USART1_RX USART2_RX USART2_TX
I2C I2C2_TX I2C2_RX I2C1_TX I2C1_RX

TIM2 TIM2_CH3 TIM2_UP TIM2_CH1
TIM2_CH2
TIM2_CH4

TIM3 TIM3_CH3
TIM3_CH4
TIM3_UP

TIM3_CH1
TIM3_TRIG

TIM4 TIM4_CH1 TIM4_CH2 TIM4_CH3 TIM4_UP
TIM6

DAC_Ch1
TIM6_UP
DAC_Ch1

TIM7
DAC_CH2

TIM7_UP
DAC_CH2

Programmed I/Os

40

Receiving data from USART serial port without using DMA

} Processor executes a lot Loads/Stores to move data
} High overhead and slow

DMA Sets Core Free

41

Receiving data from USART serial port using DMA

} CPU delegates reads/writes to DMA controller
} Low overhead and fast

DMA Controller

42

} Basic Procedures
} DMA device requests bus
} CPU grants bus request
} CPU takes its signals to HiZ

} Key DMA Controller Registers
} DMA memory address register (CMAR)
} DMA peripheral address register (CPAR)

} DMA number of data register (CNDTR)
} DMA configuration register (CCR)

} DMA are often used together with interrupts

10/1/19

8

DMA Mode:
Incremental Mode

43

Peripheral
registers/memory

DMA memory
address register

DMA peripheral
address register

non-incremental mode

DIR: Data transfer direction: 0 = Read from peripheral; 1 = Read from memory

DIR = 0
CNDTR = 2 incremental mode

memory

DATA

DMA Bus Matrix

DMA Mode:
Incremental Mode

44

Peripheral
registers/memory

DMA memory
address register

DMA peripheral
address register DATA

non-incremental mode

DIR: Data transfer direction: 0 = Read from peripheral; 1 = Read from memory

DIR = 0
CNDTR = 1 incremental mode

memory

DATA

1st DMA Transfer

DMA Bus Matrix

DMA Mode:
Incremental Mode

45

Peripheral
registers/memory

DMA memory
address register

DMA peripheral
address register

DATA

DATA

non-incremental mode

DIR: Data transfer direction: 0 = Read from peripheral; 1 = Read from memory

DIR = 0
CNDTR = 0 incremental mode

memory

DATA

2nd DMA Transfer

DMA Bus Matrix

DMA stops since CNDTR is zero now.

DMA Mode:
Circular Mode

46

} Circular Mode
} handle circular buffers and continuous data flows
} The number of data to be transferred (CNDTR) is automatically reloaded and DMA requests

continue to be served

Peripheral
registers/memory

DMA memory
address register

DMA peripheral
address register

non-incremental mode

DIR: Data transfer direction: 0 = Read from peripheral; 1 = Read from memory

DIR = 0

memory

DATA

DMA Bus Matrix

incremental mode

DMA Mode:
Incremental Mode

47

Peripheral
registers/memory

DMA memory
address register

DMA peripheral
address register

non-incremental mode

DIR: Data transfer direction: 0 = Read from peripheral; 1 = Read from memory

DIR = 0
CNDTR = 2
CIR = 1

incremental mode

memory

DATA

DMA Bus Matrix

DMA Mode:
Incremental Mode

48

Peripheral
registers/memory

DMA memory
address register

DMA peripheral
address register DATA

non-incremental mode

DIR: Data transfer direction: 0 = Read from peripheral; 1 = Read from memory

DIR = 0
CNDTR = 1
CIR = 1

incremental mode

memory

DATA

1st DMA Transfer

DMA Bus Matrix

10/1/19

9

DMA Mode:
Incremental Mode

49

Peripheral
registers/memory

DMA memory
address register

DMA peripheral
address register

DATA

DATA

non-incremental mode

DIR: Data transfer direction: 0 = Read from peripheral; 1 = Read from memory

DIR = 0
CNDTR = 0
CIR = 1

incremental mode

memory

DATA

2nd DMA Transfer

DMA Bus Matrix

DMA resets and continues to run!

DMA Interrupts

50

} Programmable and Independent source and destination
transfer data size: Byte, Halfword or Word

} Three event flags: DMA Half Transfer, DMA Transfer
complete and DMA Transfer Error

} Software programmable priorities: Very high, High,
Medium or Low

DMA Request Mapping

D
M

A

SW TRIGGER

DMA REQUEST

OR

ADC1

TIM2_CC3 TIM4_CC1

SW TRIGGER

OR

USART3_TX

SW TRIGGER

OR

SW TRIGGER

OR

SW TRIGGER

OR

SW TRIGGER

OR

SW TRIGGER

OR

High Priority Request Low Priority Request

Channel
1

Channel
2

Channel
3

Channel
4

Channel
5

Channel
6

Channel
7

TIM1_CC1

TIM2_UP TIM3_CC3

SPI1_RX

USART3_RX

TIM1_CC2

SPI1_TX

TIM3_CC4

TIM3_UP

SPI2_RX I2C2_TX

TIM1_CC4

USART1_TX

TIM1_CCU

TIM1_TRIG

TIM4_CC2 USART1_RXTIM1_UP

SPI2_TX

I2C2_RX

TIM2_CC1

TIM4_CC3

USART2_RX

TIM1_CC3TIM3_CC1

I2C1_TX
TIM3_TRIG

USART2_TX

TIM2_CC2 TIM2_CC4

TIM4_UP I2C1_RX

51 From stm

DMA Summary

52

} Without DMA, CPU has to execute many load and store
instructions, leading to slower performance.

} DMA, which makes an automatic data transfer when
received a DMA request without involving CPU,
accelerates the overall performance.

