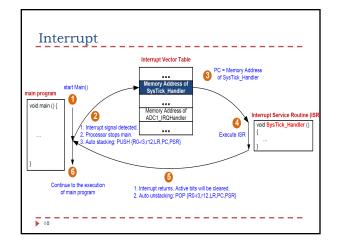
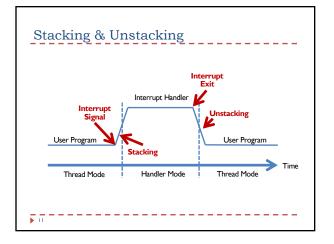
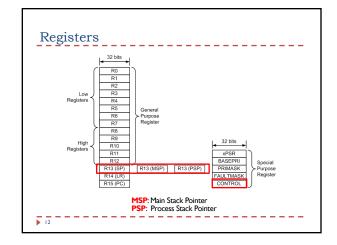
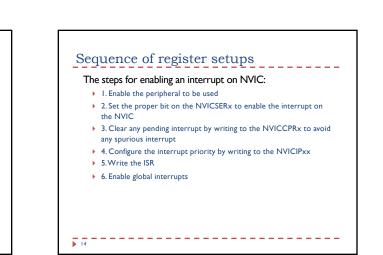
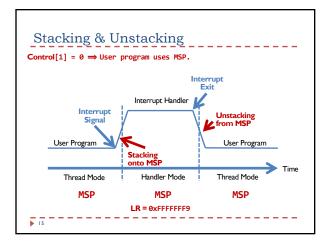

Polling: You pick up the phone every three seconds to check whether you are getting a call. Interrupt: Do whatever you should do and pick up the phone when it rings.



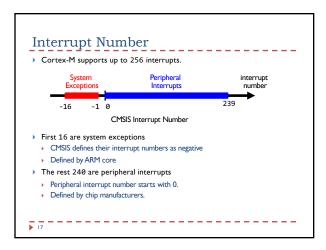


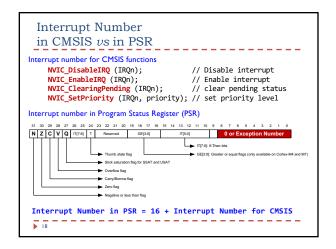

 Start address for the exception hander for each exception type is fixed and pre-defined Processor loads PC 	Address	Priority	Type of	Acronym	Description		
			priority	Action			
	0x0000_0000	-	•	-	Stack Pointer		
	0x0000_0004	-3	fixed	Reset	Reset Vector		
	0×0000_0008	-2	fixed	NMI_Handler	Non maskable interrupt. The RCC Clock Security System (CSS) is linked to the NMI vector.		
	0x0000_000C	-1	fixed	HardFault_Handler	All class of fault		
with this fixed, pre-	0x0000_0010	0	settable	MemManage_Handler	Memory management		
defined address	0x0000_0014	1	settable	BusFault_Handler	Pre-fetch fault, memory access fault		
Exception Vector Table	0x0000_0018	2	settable	UsageFault_Handler	Undefined instruction or illegal state		
starts at memory address 0	0x0000_001C- 0x0000_002B				Reserved		
	0x0000_002C	3	settable	SVC_Handler	System service call via SWI instruction		
Program Counter pc =	0x0000_0030	4	settable	DebugMon_Handler	Debug Monitor		
0x00000004 initially	0x0000_0034	-			Reserved		
	0x0000_0038	5	settable	PendSV_Handler	Pendable request for system service		
	0x0000_003C	6	settable	SysTick_Handler	System tick timer		
	· _ · _ · _ · _ · _ · _ · _ · _						

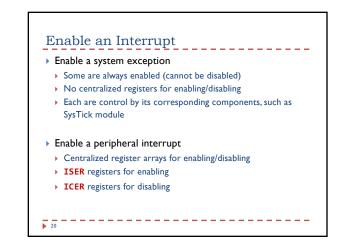


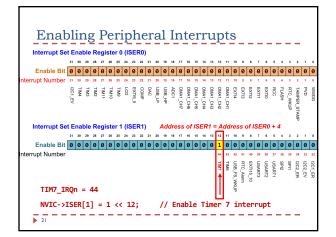

Processor Mode:

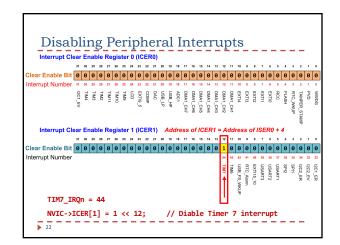

Handler Mode *v*s Thread Mode

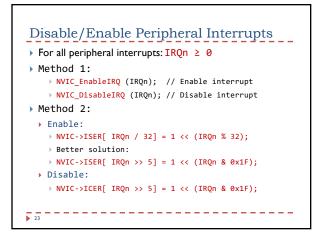

- Handler mode and Thread mode
- Handler mode always use MSP (Main Stack Pointer)
- Thread Mode uses either PSP (Process Stack Pointer) or MSP
 Control[1] = 0, SP = MSP (default)
 - Control[0] = 1, SP = PSP
- > When the processor is reset, the default is the thread mode.
- The processor enters the handler mode when an exception occurs.

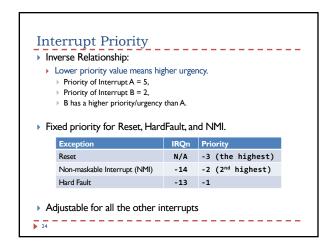

13

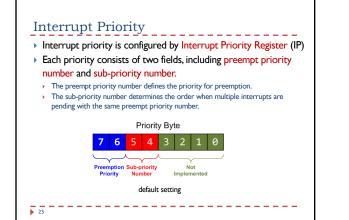


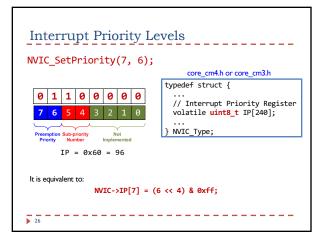


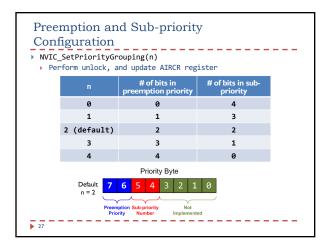


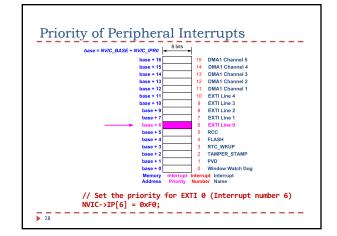


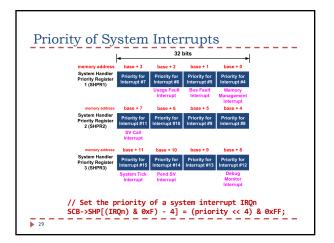

CMSIS In	torm	ıpt Number					
		<u> </u>					
/****** Cortex-M4 Syste	m Exceptio	ns ************************************	***************	**/			
NonMaskableInt_IRQn	= -14,	/* 2 Cortex-M4 Non Maskable Interrupt		*/			
HardFault_IRQn	= -13,	/* 3 Cortex-M4 Hard Fault Interrupt					
MemoryManagement_IRQn	= -12,	/* 4 Cortex-M4 Memory Management Interrupt					
BusFault_IRQn	= -11,	/* 5 Cortex-M4 Bus Fault Interrupt	System	*/			
UsageFault_IRQn	= -10,	/* 6 Cortex-M4 Usage Fault Interrupt	Interrupt Exceptions				
SVCall_IRQn	= -5,	/* 11 Cortex-M4 SV Call Interrupt					
DebugMonitor_IRQn	= -4,	/* 12 Cortex-M4 Debug Monitor Interrupt					
PendSV_IRQn	= -2,	/* 14 Cortex-M4 Pend SV Interrupt					
SysTick_IRQn	= -1,	/* 15 Cortex-M4 System Tick Interrupt					
/****** Peripheral Interrupt Numbers ************************************							
WWDG_IRQn	= 0,	/* Window WatchDog Interrupt		*/			
<pre>PVD_PVM_IRQn = 1, /* PVD/PVM1,2,3,4 through EXTI Line detection Interrupts */</pre>							
TAMP_STAMP_IRQn	TAMP_STAMP_IRQn = 2, /* Tamper and TimeStamp interrupts through the EXTI line */						
RTC_WKUP_IRQn	= 3,	/* RTC Wakeup interrupt through the E	XTI line	*/			
FLASH_IRQn	= 4,	/* FLASH global Interrupt	eripheral	*/			
RCC_IRQn	= 5,		iterrupts	*/			
EXTI0_IRQn	= 6,	/* EXTI Line0 Interrupt	interrupts				
stm321476xx.h							

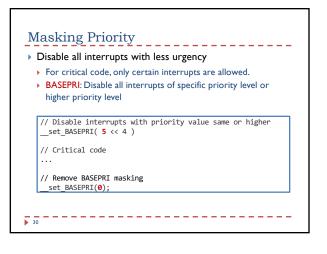


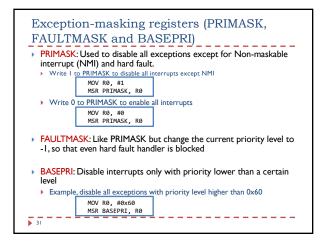


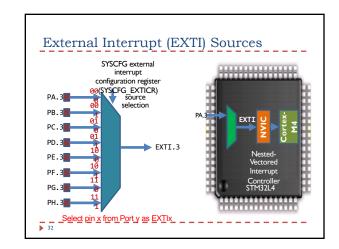


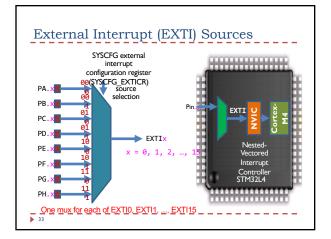


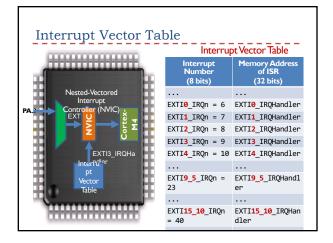


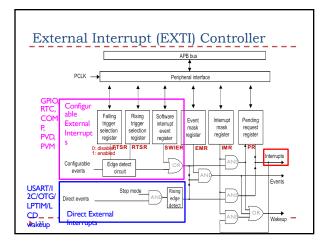


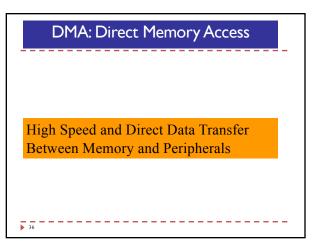


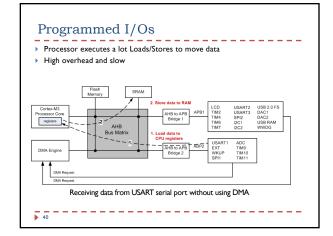


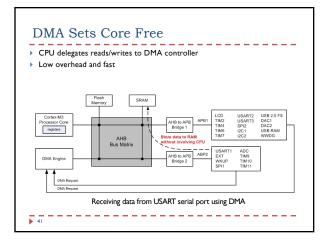


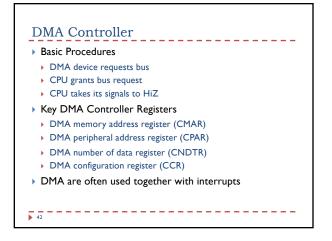


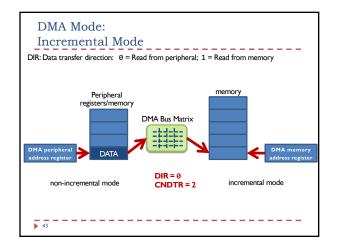


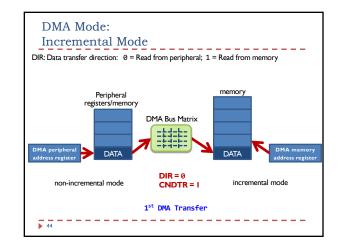



Basic Concepts of DMA


- Limitations of Interrupt Processing
 - CPU involvements
 - Good for discrete events with small amount of data
 Inefficient for large data transfers
- Needs for High Speed Data Transfer between
 - disk and RAM;
 - NIC and RAM;
- more
- An analogous example: Program of Study
 - Student asks dean for advising and signature → Request
 - ▶ Dean directs student to the advisor \rightarrow address, tasks, and go
 - Student talks with the advisor → communication/data transfer
 - Advisor signed the program of study after completing advising and send student back o dean for final signature → report completion


1


General Procedure of DMA DMA Request Request from peripheral through hardware Explicit software initiation Channel to channel linking for continual transfer Source/Destination and amount of Data Transfer CPU write registers in DMA controller to define Source address, destination address, and byte count Direct and Continuous Data Transfer Data transfer is done directly between memory and peripheral device without CPU involvement Report Completion When transfer is done, reporting completion through interrupt


Direct Memory Access (DMA) DMA releases CPU from moving data between peripherals and memory, or between one peripheral and another peripheral.								
			natrix to					
			Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7
	ADCI	ADCI						
	SPI		SPII_RX	SPII_TX		SPI2_TX		
	USART		USART3_TX	USART3_RX	USARTI_TX			
	12C				12C2_TX	I2C2_RX	I2CI_TX	I2CI_RX
	TIM2	TIM2_CH3	TIM2_UP			TIM2_CHI		TIM2_CH2 TIM2_CH4
	тімз		тімз_снз	TIM3_CH4 TIM3_UP			TIM3_CH1 TIM3_TRIG	
	TIM4	TIM4_CHI			TIM4_CH2	TIM4_CH3		TIM4_UP
	TIM6	-	TIM6_UP		_	-		_
	DAC_Chl		DAC_Ch1					
	TIM7			TIM7_UP				
	DAC_CH2			DAC_CH2				
	▶ 39							

