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Timing control and PWM

Sec 4.  General Purpose Timer
Timer
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} Free-run counter (independent of processor)

} Functions
} Input capture
} Output compare
} Pulse-width modulation (PWM) generation
} One-pulse mode output

Timer: Clock
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Output Compare
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Output Compare Mode (OCM) Timer Output (OCREF)
000 Frozen
001 High if CNT == CCR
010 Low if CNT == CCR
011 Toggle if CNT == CCR
100 Forced low (always low)
101 Forced high (always high)

PWM Mode
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Mode Counter < Reference Counter ≥ Reference
PWM mode 1

(Low True) Active Inactive

PWM mode 2
(High True) Inactive Active

Edge-aligned Mode (Up-counting)
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Edge-aligned Mode (down-counting)
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Center-aligned Mode
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Upcounting mode,  ARR = 6, CCR = 3, RCR = 0
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Period = (1 + ARR) * Clock Period
= 7 * Clock Period

Duty Cycle = 
CCR

ARR + 1

=
3

7

OCREF

Timer Output =
High if counter < CCR

Low if counter ≥ CCR

Mode 1



10/1/19

3

PWM Mode 2 
(High-True)
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Upcounting mode,  ARR = 6, CCR = 3, RCR = 0
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OCREF

Timer Output =
Low if counter < CCR

High if counter ≥ CCR

Mode 2
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Upcounting mode,  ARR = 6, CCR = 3, RCR = 0
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Period = (1 + ARR) * Clock Period
= 7 * Clock Period
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PWM Mode 2 
(High-True)
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Mode 2
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Period = 2 * ARR * Clock Period
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OCREF

PWM Mode 2 
(High-True)

Timer Output =
Low if counter < CCR

High if counter ≥ CCR

Mode 2

Auto-Reload Register (ARR)
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} Auto-Reload Preload Enable (ARPE) bit in TIMx_CR1

Preload 
Register

Auto-reload 
Register (ARR)

Write to ARR

Read from ARR

Triggered by Update Event (UEV)

ARPE = 1 (Syn Update)

ARPE = 0 (Asyn Update)

Auto-reload 
Register (ARR)

Write to ARR

Read from ARR

If UDIS bit in TIMx_CR1 is 1, 
UEV event is disabled.

PWM Output Polarity
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Mode Counter < CCR
Counter ≥ 

CCR
PWM mode 1

(Low True) Active Inactive

PWM mode 2
(High True)

Inactive Active

Active Inactive

Active High High Voltage Low Voltage

Active Low Low Voltage High Voltage

Output Polarity: 
• Software can program the CCxP bit in the TIMx_CCER register
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Counting up, down, center
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Up-Counting: Left Edge-aligned
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Upcounting mode,  ARR = 6, CCR = 3, RCR = 0
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PWM Mode 2: Right Edge-aligned
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Upcounting mode,  ARR = 6, CCR = 3, RCR = 0
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PWM Mode 2: Center Aligned
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Center-aligned mode,  ARR = 6, CCR = 3, RCR = 0
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Timer Output =
Low if counter < CCR

High if counter ≥ CCR

The devil is in the detail
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} Timer output control
} Enable Timer Output

} MOE: Main output enable
} OSSI: Off-state selection for 

Idle mode

} OSSR: Off-state selection for 
Run mode

} CCxE: Enable of 
capture/compare output for 
channel x

} CCxNE: Enable of 
capture/compare 
complementary output for 
channel x

Input Capture
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} Monitor both rising and falling edge
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Input Capture
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} Monitor only rising edges or only falling edge

Input Capture
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Input Filtering
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Input Capture Diagram
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Ultrasonic Distance Sensor
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!"#$%&'( = *+,&- ./"0 ."1(×30((- +4 3+,&-2

= *+,&- ./"0 ."1( µ#58

Ultrasonic Distance Sensor
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The echo pulse width corresponds to 
round-trip time.

!"#$%&'( ('*) = -./#(0"1$ℎ (3#)58
or

!"#$%&'( ("&'ℎ) = -./#(0"1$ℎ (3#)148

If pulse width is 38ms, 
no obstacle is detected. 
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Ultrasonic Distance Sensor
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Real-Time Clock (RTC)
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} RTC is a digital clock that provides calendar time and 
date.

} Typical requirements:
} Low power consumption

} Separately powered by a battery
} Accurate

} Run independently from the processor core 

UNIX Epoch Time

33

} Definition:  number of seconds that have elapsed since 
00:00:00 UTC, Thursday, 1 January 1970

} Example:
} Converting 2:07:39am, April 21, 2014 (UTC) to Unix Epoch number

= 16181 days×secondsday +2 hours×secondshour +7minutes×secondsminutes +39
UNIX EpochNumber

= 16181×86400+2×3600+7×60+39
= 1398046059
= 0x53547D6B

Note a day has 86400 seconds (24×60×60 = 86400)

UNIX Epoch Time
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} Use a signed 32-bit integer to hold the UNIX Epoch Time 
} Covers a time span of 136 years.
} Minimum representable time is 1901-12-13
} Maximum representable time is 2038-01-19

} Year 2038 Problem (also called Unix Millennium Bug)
} The second after 03:14:07 UTC 2038-01-19 is an overflow 

(which became 1901-12-13).

} Use a signed 64-bit integer to fix the problem
} A challenge in embedded systems

Crystal Inaccuracy: PPM
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} Parts Per Million (PPM) = 10-6

} Crystal Inaccuracy
} 1 PPM ⟶	±1.1	seconds	per	year	
} A	typical	watch	crystal	has	20	PPM	

} Error	per	day:		86400	seconds	× 20	× 10-6 =	1.728	seconds/day

} Error	per	month:	30	days	× 1.728	seconds/day	=	51	seconds/month

} STM32 RTC
} At 25°C, HSI and MSI have an accuracy of 100 ppm (not 

accurate enough for RTC)

} Need to use external LSE crystal, typically 32.768 kHz (215 

Hz)

Frequency Setting

36

!"#$ =
!&'(

)*+,-ℎ_012*-3421 +1 × 8+,-ℎ_012*-3421 +1



10/1/19

7

Frequency Setting
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If !"#$ is 32.768 kHz, i.e. 215 Hz, then %&'()ℎ_,-.&)/0.- is 27-1, i.e.
127, and 1'()ℎ_,-.&)/0.- is set as 28-1, i.e. 255, in many applications, 
as shown below. 

! = !"#$
%&'()ℎ_,-.&)/0.- +1 × 1'()ℎ_,-.&)/0.- +1

= 278
127+1 × 255+1

= 278
2;×2<

= 1=>

Initial Setup of Raspberry

} Connect SD card directly to Pi that is connected to a 
monitor through HDMI (Don’t use SD card reader to 
format SD card, OS is already preloaded)

} Change PassWD to all up case letters
} RASPBERRY

} WiFi Connection
} UID = Embedded_sytem; Passwd: lab440-picar

} Enable SSH: SSH (secure shell)
} PreferenceàRaspberry Pi ConfigàInterface

} Shut Down the Raspberry Pi
} Take SD card out
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Download Programs to Pi
} Insert the SD card to your Pi Car
} Acquire IP address
} Use Putty to connect and operate PiCar
} Download the Pi car program
} Follow the instructions in Section 3.2 to download 

all the programs of the Pi car (~30 mins)

- Add the RPi Car program to auto-start. Make 
sure Exec path is correct.

} Auto-start Pi Car 
} Client Server 
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