
10/1/19

1

1

Timing control and PWM

Sec 4. General Purpose Timer
Timer

2

} Free-run counter (independent of processor)

} Functions
} Input capture
} Output compare
} Pulse-width modulation (PWM) generation
} One-pulse mode output

Timer: Clock

3

Reload Value

Timer
Counter

fCL_PSC
ISR

Interrupt

Reload

PSC

ARR

!"#_"%& =
!"(_)*"
+,- +1

Prescaler

fCL_CNT

clock

Timer: Output

4

Reload Value

Timer
Counter

fCL_PSC
ISR

Interrupt

Reload

PSC

ARR

Prescaler

fCL_CNT

clock

Compare &
Capture

Register (CCR)

= Timer Output
(OCREF)

Timer: Input Capture

5

Reload Value

Timer
Counter

fCL_PSC
ISR

Interrupt

Reload

PSC

ARR

Prescaler

fCL_CNT

clock

Compare &
Capture

Register (CCR)

Multi-Channel Outputs

6

10/1/19

2

Output Compare

7

Output Compare Mode (OCM) Timer Output (OCREF)
000 Frozen
001 High if CNT == CCR
010 Low if CNT == CCR
011 Toggle if CNT == CCR
100 Forced low (always low)
101 Forced high (always high)

PWM Mode

8

Mode Counter < Reference Counter ≥ Reference
PWM mode 1

(Low True) Active Inactive

PWM mode 2
(High True) Inactive Active

Edge-aligned Mode (Up-counting)

9

ARR = 6, RCR = 0

clock

counter

Counter overflow
Update event (UEV)

Period = (1 + ARR) * Clock Period
= 7 * Clock Period

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6
Counter
overflow

Counter
overflow

Counter
overflow

Edge-aligned Mode (down-counting)

10

ARR = 6, RCR = 0

Clock

Counter

Period = (1 + ARR) * Clock Period
= 7 * Clock Period

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

Counter
underflow

Counter
underflow

Counter
underflow

Counter underflow
Update event (UEV)

Center-aligned Mode

11

ARR = 6, RCR = 0

Clock

Counter

Update event (UEV)

0
1

2
3

4
5

6

0
1

2
3

4
5

1
2

3
4

5
6

0
1

2
3

4
5

Counter
overflow

Counter
overflow

Counter
underflow

Counter
underflow

Period = 2 * ARR * Clock Period
= 12 * Clock Period

PWM Mode 1
(Low-True)

12

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Clock

Counter
CCR = 3

Period = (1 + ARR) * Clock Period
= 7 * Clock Period

Duty Cycle =
CCR

ARR + 1

=
3

7

OCREF

Timer Output =
High if counter < CCR

Low if counter ≥ CCR

Mode 1

10/1/19

3

PWM Mode 2
(High-True)

13

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Clock

Counter
CCR = 3

Period = (1 + ARR) * Clock Period
= 7 * Clock Period

Duty Cycle = 1 -
CCR

ARR + 1

=
4

7

OCREF

Timer Output =
Low if counter < CCR

High if counter ≥ CCR

Mode 2

14

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Clock

Counter

CCR = 5

Duty Cycle = 1 -
CCR

ARR + 1

=
2

7

Period = (1 + ARR) * Clock Period
= 7 * Clock Period

OCREF

PWM Mode 2
(High-True)

Timer Output =
Low if counter < CCR

High if counter ≥ CCR

Mode 2

15

0
1

2
3

4
5

6

0
1

2
3

4
5

1
2

3
4

5
6

0
1

2
3

4
5

Center-aligned mode, ARR = 6, CCR = 3, RCR = 0

Clock

Counter
CCR = 3

Duty Cycle = 1 -
CCR

ARR Period = 2 * ARR * Clock Period
= 12 * Clock Period

=
1

2

OCREF

PWM Mode 2
(High-True)

Timer Output =
Low if counter < CCR

High if counter ≥ CCR

Mode 2

16

0
1

2
3

4
5

6

0
1

2
3

4
5

1
2

3
4

5
6

0
1

2
3

4
5

Center-aligned mode, ARR = 6, CCR = 3, RCR = 0

Clock

Counter
CCR = 1

Duty Cycle = 1 -
CCR

ARR

=
5

6

Period = 2 * ARR * Clock Period
= 12 * Clock Period

OCREF

PWM Mode 2
(High-True)

Timer Output =
Low if counter < CCR

High if counter ≥ CCR

Mode 2

Auto-Reload Register (ARR)

17

} Auto-Reload Preload Enable (ARPE) bit in TIMx_CR1

Preload
Register

Auto-reload
Register (ARR)

Write to ARR

Read from ARR

Triggered by Update Event (UEV)

ARPE = 1 (Syn Update)

ARPE = 0 (Asyn Update)

Auto-reload
Register (ARR)

Write to ARR

Read from ARR

If UDIS bit in TIMx_CR1 is 1,
UEV event is disabled.

PWM Output Polarity

18

Mode Counter < CCR
Counter ≥

CCR
PWM mode 1

(Low True) Active Inactive

PWM mode 2
(High True)

Inactive Active

Active Inactive

Active High High Voltage Low Voltage

Active Low Low Voltage High Voltage

Output Polarity:
• Software can program the CCxP bit in the TIMx_CCER register

10/1/19

4

Counting up, down, center

19

Up-Counting: Left Edge-aligned

20

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Clock

Counter
CCR = 3

OC1REF

CCR = 6

OC2REF

CCR = 3

CCR = 6

All rising edges occur at the same time! PWM Period

Left-aligned

PWM Mode 2: Right Edge-aligned

21

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
1

2
3

4
5

6

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

CCR = 3

Clock

Counter

OC1REF

OC2REF

All falling edges occur at the same time!

CCR = 5

CCR = 5

CCR = 3

PWM Period

Right-aligned

PWM Mode 2: Center Aligned

22

Center-aligned mode, ARR = 6, CCR = 3, RCR = 0

0
1

2
3

4
5

6

0
1

2
3

4
5

1
2

3
4

5
6

0
1

2
3

4
5

CCR = 3

Clock

Counter

OC1REF

CCR = 1

OC2REF

PWM signals are center aligned!

CCR = 1

CCR = 3

PWM Period

Center-aligned

Timer Output =
Low if counter < CCR

High if counter ≥ CCR

The devil is in the detail

23

} Timer output control
} Enable Timer Output

} MOE: Main output enable
} OSSI: Off-state selection for

Idle mode

} OSSR: Off-state selection for
Run mode

} CCxE: Enable of
capture/compare output for
channel x

} CCxNE: Enable of
capture/compare
complementary output for
channel x

Input Capture

24

} Monitor both rising and falling edge

10/1/19

5

Input Capture

25

} Monitor only rising edges or only falling edge

Input Capture

26

Input Filtering

27

Input Capture Diagram

28

Ultrasonic Distance Sensor

29

!"#$%&'(= *+,&- ./"0 ."1(×30((- +4 3+,&-2

= *+,&- ./"0 ."1(µ#58

Ultrasonic Distance Sensor

30

The echo pulse width corresponds to
round-trip time.

!"#$%&'(('*) = -./#(0"1$ℎ (3#)58
or

!"#$%&'(("&'ℎ) = -./#(0"1$ℎ (3#)148

If pulse width is 38ms,
no obstacle is detected.

10/1/19

6

Ultrasonic Distance Sensor

31

Real-Time Clock (RTC)

32

} RTC is a digital clock that provides calendar time and
date.

} Typical requirements:
} Low power consumption

} Separately powered by a battery
} Accurate

} Run independently from the processor core

UNIX Epoch Time

33

} Definition: number of seconds that have elapsed since
00:00:00 UTC, Thursday, 1 January 1970

} Example:
} Converting 2:07:39am, April 21, 2014 (UTC) to Unix Epoch number

= 16181 days×secondsday +2 hours×secondshour +7minutes×secondsminutes +39
UNIX EpochNumber

= 16181×86400+2×3600+7×60+39
= 1398046059
= 0x53547D6B

Note a day has 86400 seconds (24×60×60 = 86400)

UNIX Epoch Time

34

} Use a signed 32-bit integer to hold the UNIX Epoch Time
} Covers a time span of 136 years.
} Minimum representable time is 1901-12-13
} Maximum representable time is 2038-01-19

} Year 2038 Problem (also called Unix Millennium Bug)
} The second after 03:14:07 UTC 2038-01-19 is an overflow

(which became 1901-12-13).

} Use a signed 64-bit integer to fix the problem
} A challenge in embedded systems

Crystal Inaccuracy: PPM

35

} Parts Per Million (PPM) = 10-6

} Crystal Inaccuracy
} 1 PPM ⟶	±1.1	seconds	per	year	
} A	typical	watch	crystal	has	20	PPM	

} Error	per	day:		86400	seconds	× 20	× 10-6 =	1.728	seconds/day

} Error	per	month:	30	days	× 1.728	seconds/day	=	51	seconds/month

} STM32 RTC
} At 25°C, HSI and MSI have an accuracy of 100 ppm (not

accurate enough for RTC)

} Need to use external LSE crystal, typically 32.768 kHz (215

Hz)

Frequency Setting

36

!"#$ =
!&'(

)*+,-ℎ_012*-3421 +1 × 8+,-ℎ_012*-3421 +1

10/1/19

7

Frequency Setting

37

If !"#$ is 32.768 kHz, i.e. 215 Hz, then %&'()ℎ_,-.&)/0.- is 27-1, i.e.
127, and 1'()ℎ_,-.&)/0.- is set as 28-1, i.e. 255, in many applications,
as shown below.

! = !"#$
%&'()ℎ_,-.&)/0.- +1 × 1'()ℎ_,-.&)/0.- +1

= 278
127+1 × 255+1

= 278
2;×2<

= 1=>

Initial Setup of Raspberry

} Connect SD card directly to Pi that is connected to a
monitor through HDMI (Don’t use SD card reader to
format SD card, OS is already preloaded)

} Change PassWD to all up case letters
} RASPBERRY

} WiFi Connection
} UID = Embedded_sytem; Passwd: lab440-picar

} Enable SSH: SSH (secure shell)
} PreferenceàRaspberry Pi ConfigàInterface

} Shut Down the Raspberry Pi
} Take SD card out

38

Download Programs to Pi
} Insert the SD card to your Pi Car
} Acquire IP address
} Use Putty to connect and operate PiCar
} Download the Pi car program
} Follow the instructions in Section 3.2 to download

all the programs of the Pi car (~30 mins)

- Add the RPi Car program to auto-start. Make
sure Exec path is correct.

} Auto-start Pi Car
} Client Server

39

