
1

Section 7. Memory System

Memory Organizations and Cache

Halfword and
signed halfword /
byte support

System mode

Thumb
instruction set
(v4T)

Improved
interworking
CLZ
Saturated arithmetic
DSP MAC
instructions

Extensions:

 Jazelle (5TEJ)

SIMD Instructions
Multi-processing
v6 Memory architecture
Unaligned data support

Extensions:

 Thumb-2 (6T2)
 TrustZone® (6Z)
 Multicore (6K)
 Thumb only (6-M)

§  Note that implementations of the same architecture can be different

§  Cortex-A8 - architecture v7-A, with a 13-stage pipeline
§  Cortex-A9 - architecture v7-A, with an 8-stage pipeline

Thumb-2

Architecture Profiles

 7-A - Applications
 7-R - Real-time
 7-M - Microcontroller

v4 v5 v6 v7

Development of the ARM Architecture

Cortex-A15 MPCore
•  1-4 processors per cluster
•  Fixed size L1 caches (32KB)
•  Integrated L2 Cache

–  512KB – 4MB
•  System-wide coherency support

with AMBA 4 ACE
•  Backward-compatible with

AXI3 interconnect
•  Integrated Interrupt Controller

–  0-224 external interrupts for
entire cluster

•  CoreSight debug
•  Advanced Power Management
§  Large Physical Address Extensions (LPAE) to ARMv7-A Architecture
§  Virtualization Extensions to ARMv7-A Architecture

L1 and L2 Caches

•  Typical memory system can have multiple levels of cache
–  Level 1 memory system typically consists of L1-caches,
–  Level 2 memory system (and beyond) depends on the system design

•  Memory attributes determine cache behavior at different levels
–  Controlled by the MMU
–  Inner Cacheable attributes define memory access behavior in the L1 memory

system
–  Outer Cacheable attributes define memory access behavior in the L2 memory

system (if external) and beyond (as signals on the bus)
•  Before caches can be used, software setup must be performed

ARM Core

I-Cache RAM

D-Cache RAM

M
M

U
/M

PU

B
IU

Off-chip
Memory

L2 Cache

L1 L2 L3

On-chip
SRAM

Local Memory Controller	

5

Cortex A53 Architecture
•  L1 Cache, 64B line size

–  2-way set-assoc I-Cache
–  4-way set-Assoc D-Cache

with prefetch engine
•  L2 Cache, 64B line size

–  16-way set-assoc
–  Snoop control unit SCU

2

 Example 32KB ARM cache

31 13 12 5 4 2 1 0

Address

Cache line

3 8

Tag Set (= Index) Word Byte

Data Tag
Line 0
Line 1

Line 30
Line 31

v dData Tag
Line 0
Line 1

Line 30
Line 31

v dData Tag
Line 0
Line 1

Line 30
Line 31

v dData Tag
Line 0
Line 1

Line 254
Line 255

v d

v - valid bit d - dirty bit(s)

0 1 2 3 4 5 6 7 d

19

§  Cache has 8 words of data in each line
§  Each cache line contains Dirty bit(s)

§  Indicates whether a particular cache line
was modified by the ARM core

§  Each cache line can be Valid or invalid
§  An invalid line is not considered when

performing a Cache Lookup

V
ic

tim

C
ou

nt
er

Cortex MPCore Processors

•  Standard Cortex cores, with additional logic to support MPCore
–  Available as 1-4 CPU variants

•  Include integrated
–  Interrupt controller
–  Snoop Control Unit (SCU)
–  Timers and Watchdogs

Snoop Control Unit
•  The Snoop Control Unit (SCU) maintains coherency between L1 data caches

–  Duplicated Tag RAMs keep track of what data is allocated in each CPU’s cache
•  Separate interfaces into L1 data caches for coherency maintenance

–  Arbitrates accesses to L2 AXI master interface(s), for both instructions and data

•  Optionally, can use address filtering
–  Directing accesses to configured memory range to AXI Master port 1

CPU0

D$ I$

CPU1

D$ I$

CPU2

D$ I$

CPU3

D$ I$

Snoop Control Unit

TAG TAG TAG TAG

AXI Master 0 AXI Master 1

10

Memory System Architecture
•  Concepts of memory hierarchy

–  Quantitative principles of computer design
•  Smaller is faster
•  Amdahl’s Law:
If we make an enhancement on a part of a computer, the overall

performance gain is limited by the faction of time when the
enhancement part is used.

•  locality properties:
Spatial locality and temporal locality

–  Speed gap and the principles suggest memory hierarchy
•  Design of cache memories

–  Placements or Mapping
•  Direct-mapped, set-associative mapped, and associative

–  Replacement algorithms and cache consistency

11

Memory System Architecture

CPU

Secondary Storage,
Disk

Level 1 Cache

Level 2 Cache

Main Memory

Speed
Increases

Volume
Increases

12

Design of Memory Hierarchy

•  Memory access time:
Tacc = Thit * hit_ratio + Tmiss * (1-hit_ratio)
•  Increase cache hit ratio
•  Minimize miss penalty
•  Design of cache memories

–  Placements or Mapping
–  Replacement algorithms
–  Write policy and cache consistency

3

13

Data Placement: Cache Mapping
•  Direct mapped cache:

–  Data with address A is mapped to exactly one cache
location

A modulo C, where C is number of lines in the cache

–  Simple logic, quick access: each address has 3 fields:
Tag---Index---Offset

•  Offset gives a byte in a cache line; Index identifies the cache
line corresponding to the data address, and tag compares with
high order bits of the address to see if they match

–  Potential line interferences since many memory blocks
map to a same cache line

14

Direct-Mapped Cache

16 Line Cache

Main memory

0

1

15

0

1

15

16

17

15

Hardware Organization of Direct-Mapped

Index Offset Tag

Tag array Data array

Match?

Multiplexer To CPU

D

E

C

16

Fully Associative Mapped Cache
•  Direct-mapped cache has high conflict

misses
•  Why not place a block at any free location?
à Fully associative cache

– No restriction as to where to place a cache line
–  each address has 2 fields: Tag---Offset

•  Cache is accessed by associative search, matching
tags: content addressable memory

– No line interferences, only capacity misses

17

Data Mapping of Fully Associative Cache

16 Line Cache

Main memory

0

1

15

0

1

15

16

17

18

Hardware Organization of Fully Associative Cache

Offset Tag

Tag array Data array

Assoc
search

Multiplexer
To CPU

4

19

Set-Associative Mapped Cache
– A compromise/hybrid of the above two:

associative map within a set and direct-map
among sets

•  Flexibility with a set to place data
•  Simple indexing logic to identify a set
•  d-way associative means d lines in a set
•  Cache lines are divided into groups à sets

–  Each address has 3 fields: Tag---Index---Offset
•  Index here identify which set a line mapped to

–  Reduce conflict misses and less complicated/faster than
fully associative

20

Data Mapping of Set-Associative Cache

16 Line Cache

Main memory

0

1

7

0

1

7

8

9

8 Sets

21

Hardware Organization of Set-Associative Cache

Index Offset Tag

Match?

Multiplexer To CPU

D

E

C

Tag array

Data array

Bank 0

Bank d

Selected line

22

Replacement Algorithms
•  LFU, LRU, Random, MRU, etc.
•  LRU: Least Recently Used

–  An LRU counter is associated with each line
–  The LRU counters in a set form a logic stack
–  Bottom line is replaced

3

2

1

0

Memory Reference Sequence:

A

A

B

B

C
C

D D B

A is the LR item to be replace
when CPU accesses E

23

LRU Counter Implementation
•  Cache hit

–  The LRU counter of the referenced data is set to
maximum

–  All other counters that are greater than the original
counter of the referenced data are decremented by 1

•  Cache miss
–  The line with counter 0 is replaced if the set is full
–  All the counters of lines in the set are decremented by 1
–  The counter of the new line is set to maximum

24

Write Policy
•  Write-through

–  Every write updates both cached copy and memory
copy

–  Write-through guarantee consistency but suffer from
slow writes

•  Write back
–  Write operations performed in cache only
–  Main memory updated only when changed line is

replaced
–  Write-back: good performance but potential

inconsistency

