UNIVERSITY OF RHODE ISLAND

Simultaneous VHDL and Schematic Simulation
with the Mentor Graphics Tools

- A Tutorial -
Version 1.0
February 23, 1997
Gus Uht

1 Introduction

This 18 an overview of the necessary steps to simulate digital designs composed of both compiled VHDL
descriptions, and schematic-based circuits. The main Mentor tool that accomplishes this feat 1s QHPro. It
is assumed herein that the highest level component (root component) of the design is schematic-based.

QHPro invokes both the Quicksim II simulator, for the schematics, and the QuickHDL simulator, for the
VHDL modules. It supplies the necessary communications between the two simulators to simultaneously
simulate all components of a hybrid design.

This document assumes that the reader is familiar both with Mentor schematic entry and simulation,
and Mentor VHDL entry, compilation, and simulation. Two relevant documents are:

Introduction to the ELE UNIX Environment and the Mentor Graphics Design Tools
- (Project 1 of ELE 405, Spring 1997)

Using VHDL on the Mentor Graphics Tools - A Tutorial- Version 1.01, 12/4/96.

The three general steps needed to simultaneously simulate VHDL and schematic-based designs are:
(1) generate a symbol for the VHDL component, using Design Architect; (2) use the symbol in the schematic;
and (3) use QHPro to simulate the complete design. T now go through these steps in detail, after briefly
giving the framework for the example.

2 Setup

My running example will be the design of a one bit register, composed of a 2 to 1 multiplexer and a 741s74a
D-type positive edge triggered flip-flop. The final design is shown in Figure 1. The multiplexer is described
in VHDL; see Figure 2.

I assume that the design data is held in ~user/proji. I'll refer to this as the “proj1” directory. Within
this directory, the VHDL source should be in the src subdirectory, and the compiled VHDL code should be
in the work subdirectory.

3 VHDL Component Preparation

In order to use the VHDL MUX description as a component in a schematic, we have to generate a symbol
for it. Before we actually do this, make sure that you have compiled the VHDL description with a special
flag set (as far as T know, this can only be done via a UNIX command line invocation of the VHDL compiler
gvhcom). The command is:
qvhcom -ghpro_syminfo <path to entity VHDL source file>

In our case the path is: proji/src/mux2tol.vhdl 4, where “4” is the source file’s version number (just look
at the src directory to get this).

Now you can actually generate the symbol. Do this by starting Design Architect (DA) in the proj1
directory, and then selecting “Generate/Symbol...” from the File drop-down menu. As the source, choose
“Entity”. Once the dialog box expands, you have to enter (select) four pieces of information:



VCC

DIn . HL > one | 74LST4A
7ero

Ld HC>——
ClkHES oL

o—=—__>D0ut .H

%24
(-
O

Figure 1: One bit register using a VHDL-modelled multiplexer.

—--one bit wide 2 to 1 MUX

library ieee;
use ieee.std_logic_1164.ALL;
entity mux2tol is
port(
signal s,zero,one: in std_ulogic;
signal y: out std_ulogic);
end mux2tol;

architecture first of mux2tol is
begin

y <= one after 30 ns when (s=’1’) else zero after 45 ns;
end first;

Figure 2: VHDL code for the multiplexer (including delay).

QHDL InitFile: This should already point to the “quickhdl.ini” file in your proj1 directory; if not, select
it with the navigator. If for some reason you can’t find it, select:
/usr/local/packages/MGraphics/1ib/quickhdl.ini

Library Logical Name: Choose “work”, “./work” from the list. This is the work directory in proji.
Entity Name: Choose the entity name of the multiplexer (say “mux2tol”).
Default Architecture: Choose the architecture from the presented (one-entry) list.

Then perform the other usual selections (shape, replace existing symbol, etc.) and click “OK”. If all is well,
a picture of the new symbol should appear on the screen.
The next two tasks are only necessary until Mentor corrects an “issue” :-).

1. Change (manually edit) the MODEL property of the symbol to “qvpro” (from “ghpro”). Yes, that’s
to v from h. (Recall to do this, select the symbol, then press the right mouse button, and select
“Properties/Modify...”; the rest is straightforward.)



2. Perform a Mentor incantation by executing the following command on a UNIX command line when in
the proj1 directory:
reg model <path_to_component> -bp qvhdl -la qvpro
or in our example:
reg model mux2tol -bp qvhdl -la qvpro

4 Uselt

You may now call up the symbol for the VHDL MUX for use in any schematic design. Do so in your design
of the one bit register (“onebitreg”).

5 Simulate

Now, to simulate onebitreg (or similarly for any schematic with VHDL components), invoke QHPro (in-
stead of Quicksim IT directly), by typing on a UNIX command line:
ghpro onebitreg

Both Quicksim II and QuickHDL will be invoked by QHPro. Enter your test traces for the register as
usual in the QHPro(Quicksim IT) window (NOTE: to do many Quicksim operations, you may have to select
“Quicksim IT” from the “Solver” drop down menu; this includes setting it for non-zero delays). If you like,
you can open up a Wave window in QuickHDL, select the MUX’s signals, and you will be able to see the
simulation of the MUX part.

Now “Run” the simulation as usual, and voila! There it is...

6 Summary and Caveats

So to use both schematic and VHDL-based designs, generate a symbol for the VHDL component, use it in
the schematic, and run QHPro.

Note that there may be multiple components in VHDL form. HOWEVER: VHDL components may only
invoke other VHDL components, NOT schematic-based components.

The above procedure is for designs whose top level is schematic-based. It is also possible to handle designs
whose top level is VHDL-based, but the procedure 1s somewhat different and will not be covered here.

Good luck!



