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Abstract 
Recently, Adaptive Systems have been proposed 

to realize better-than-worst-case performance or 
power consumption. At the same time, such systems 
adapt to dynamically-changing environmental and 
operating conditions, as well as statically-varying 
manufacturing conditions. Adaptive systems take 
advantage of whatever conditions exist and optimize 
for the best performance, power, etc. 

Overview of Presentation 

Many systems must operate under trying 
conditions, ideally with good performance. However, 
classical design requires that worst-case scenarios be 
assumed when setting final system operating 
specifications. This eliminates higher performance or 
lower power consumption that could be obtained 
under typical conditions if one could ensure correct 
operation in all cases, e.g., stressful conditions. 

In the past several years two approaches have 
been proposed to realize such systems: Timing Error 
Avoidance (TEA)[3, 4] and Timing Error 
Toleration[1, 2]. Using performance-enhancement as 
an example, in the latter approaches the clock 
frequency is increased until a timing error occurs; the 
system then corrects or recovers from the error, slows 
down the clock, and the process repeats. 

In the TEA approach, timing errors never occur 
in the regular system logic. Instead, a one-bit wide 
copy of the worst-case path through the system (plus 
a safety margin) is monitored. When an error occurs 
in the copy, we know that an error might occur in the 
regular logic if the frequency is further increased; 
therefore, the frequency is reduced, and the process 
repeats. 

At the University of Rhode Island we have 
investigated both approaches, but have mainly 
focused on the TEA approach. We have built two 
prototypes to investigate different aspects of adaptive 
systems. 

The TEAtime prototype (see Figure 1) 
demonstrated the basic feasibility of the TEA 
approach. Performance could almost be doubled (on 

a simple 32-bit 5-stage pipelined CPU), while the 
system readily adapted to changes in temperature and 
operating voltage, executing almost as fast as 
possible under the existing conditions; see Figure 3. 

We have also investigated an approximation of 
the TEA approach on a real PC. The prototype is 
called: TEAPC; see Figure 2; [5]. In this situation the 
key problem was not enhancement of performance 
per se, but rather devising a suitable control system to 
change its operating voltage and frequency so as to 
adjust to varying loads and conditions. In the work 
cited above, with Prof. Rick Vaccaro, a formally-
designed feedback control system was designed and 
realized completely in software. The complete 
program runs as a regular application program on a 
Windows 2000 –based PC. It uses less than 1% of the 
CPU time. With this system, we are able to maintain 
a constant CPU core temperature, adapting to varying 
conditions. In an extreme case, we have also 
demonstrated disaster tolerance: on a 3.0 GHz 
Pentium 4 under full load, we turned off the CPU’s 
fan. The control system kicked in, and reduced the 
core frequency and voltage to a point where the CPU 
could continue to operate safely: its temperature 
stabilized at a safe value. See Figure 4. 

The TEAPC approach is applicable to a wide 
range of systems, e.g., embedded systems and server 
farms. It is also applicable to power control, etc. 

In this presentation we will review the TEA 
approach, data, and ongoing work. Time and 
resources permitting, we will also give a live demo of 
TEAtime and/or TEAPC. 
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Figure 1. TEAtime prototype with experimental 

and demonstration setup. See [4] for details. 

   

 

Figure 2.  TEAPC prototype, with experiment 
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Figure 3.  TEAtime frequency as a function of 
case temperature and chip VDD. The baseline 

frequency is 30 MHz. 

 

 

 

 

 

 

 

Figure 4.  Example of 
disaster tolerance and 
recovery: CPU fan turned off 
then back on; system under 
full load. TEAPC remains 
functional at the low 
frequency and core voltage, 
even with the fan off. 
TEAPC continuously adapts 
to take the best advantage of 
existing conditions. 

instrumentation shown on the display.  
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