
Adaptive Computing
Augustus K. Uht

Microarchitecture Research Institute
University of Rhode Island

December 15, 2004

Abstract
Recently, Adaptive Systems have been proposed

to realize better-than-worst-case performance or
power consumption. At the same time, such systems
adapt to dynamically-changing environmental and
operating conditions, as well as statically-varying
manufacturing conditions. Adaptive systems take
advantage of whatever conditions exist and optimize
for the best performance, power, etc.

Overview of Presentation

Many systems must operate under trying
conditions, ideally with good performance. However,
classical design requires that worst-case scenarios be
assumed when setting final system operating
specifications. This eliminates higher performance or
lower power consumption that could be obtained
under typical conditions if one could ensure correct
operation in all cases, e.g., stressful conditions.

In the past several years two approaches have
been proposed to realize such systems: Timing Error
Avoidance (TEA)[3, 4] and Timing Error
Toleration[1, 2]. Using performance-enhancement as
an example, in the latter approaches the clock
frequency is increased until a timing error occurs; the
system then corrects or recovers from the error, slows
down the clock, and the process repeats.

In the TEA approach, timing errors never occur
in the regular system logic. Instead, a one-bit wide
copy of the worst-case path through the system (plus
a safety margin) is monitored. When an error occurs
in the copy, we know that an error might occur in the
regular logic if the frequency is further increased;
therefore, the frequency is reduced, and the process
repeats.

At the University of Rhode Island we have
investigated both approaches, but have mainly
focused on the TEA approach. We have built two
prototypes to investigate different aspects of adaptive
systems.

The TEAtime prototype (see Figure 1)
demonstrated the basic feasibility of the TEA
approach. Performance could almost be doubled (on

a simple 32-bit 5-stage pipelined CPU), while the
system readily adapted to changes in temperature and
operating voltage, executing almost as fast as
possible under the existing conditions; see Figure 3.

We have also investigated an approximation of
the TEA approach on a real PC. The prototype is
called: TEAPC; see Figure 2; [5]. In this situation the
key problem was not enhancement of performance
per se, but rather devising a suitable control system to
change its operating voltage and frequency so as to
adjust to varying loads and conditions. In the work
cited above, with Prof. Rick Vaccaro, a formally-
designed feedback control system was designed and
realized completely in software. The complete
program runs as a regular application program on a
Windows 2000 –based PC. It uses less than 1% of the
CPU time. With this system, we are able to maintain
a constant CPU core temperature, adapting to varying
conditions. In an extreme case, we have also
demonstrated disaster tolerance: on a 3.0 GHz
Pentium 4 under full load, we turned off the CPU’s
fan. The control system kicked in, and reduced the
core frequency and voltage to a point where the CPU
could continue to operate safely: its temperature
stabilized at a safe value. See Figure 4.

The TEAPC approach is applicable to a wide
range of systems, e.g., embedded systems and server
farms. It is also applicable to power control, etc.

In this presentation we will review the TEA
approach, data, and ongoing work. Time and
resources permitting, we will also give a live demo of
TEAtime and/or TEAPC.

References

[1] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C.
Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge, "Razor:
A Low-Power Pipeline Based on Circuit-Level Timing
Speculation," in Proceedings of the 2003 International Symposium
on Microarchitecture. San Diego, Calif., USA: IEEE, ACM,
December 2003.

[2] A. K. Uht, "Achieving Typical Delays in Synchronous
Systems via Timing Error Toleration," Department of Electrical
and Computer Engineering, University of Rhode Island, Kingston,
RI, Technical Report 032000-0100, March 10, 2000.

 [3] A. K. Uht, "Uniprocessor Performance Enhancement
Through Adaptive Clock Frequency Control," in Proceedings of
the SSGRR-2003w International Conference on Advances in
Infrastructure for e-Business, e-Education, e-Science, e-Medicine,
and Mobile Technologies on the Internet. L'Aquila, Italy: Telecom
Italia, January 6-12, 2003.

[4] A. K. Uht, "Going Beyond Worst-Case Specs with
TEAtime," Computer, vol. 37, no. 3, pp. 51-56, March 2004.

[5] A. K. Uht and R. J. Vaccaro, "TEAPC: Adaptive
Computing and Underclocking in a Real PC," in Proceedings of
the First IBM P=ac2 Conference. Yorktown Heights, NY, USA:
IBM T.J. Watson Research Center, October 6-8, 2004, pp. 45-54.
URL: http://www.ele.uri.edu/~uht/papers/IBM-PAC2-F2004-44-
Uht-Fnl-PostPrint.pdf.

1 of 2

Figure 1. TEAtime prototype with experimental

and demonstration setup. See [4] for details.

Figure 2. TEAPC prototype, with experiment

44

46

48

50

52

54

56

58

2.2 2.3 2.4 2.5 2.6 2.7 2.8

VCCInt (V.)

Fr
eq

ue
nc

y
(M

Hz
)

5
10
15
20
25
30
35
40
45
50
55
60
65
70

Case Temp. (degrees C.) --||

44

46

48

50

52

54

56

58

2.2 2.3 2.4 2.5 2.6 2.7 2.8

VCCInt (V.)

Fr
eq

ue
nc

y
(M

Hz
)

5
10
15
20
25
30
35
40
45
50
55
60
65
70

Case Temp. (degrees C.) --||

Figure 3. TEAtime frequency as a function of
case temperature and chip VDD. The baseline

frequency is 30 MHz.

Figure 4. Example of
disaster tolerance and
recovery: CPU fan turned off
then back on; system under
full load. TEAPC remains
functional at the low
frequency and core voltage,
even with the fan off.
TEAPC continuously adapts
to take the best advantage of
existing conditions.

instrumentation shown on the display.

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

52

53

54

55

56

57

58

59

60

0 50 100 150 200 250
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
PU

 F
an

 S
pe

ed

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)
CPU Fan Speed (KRPM)

CPU Fan turned OFF CPU Fan turned ON

A

2 of 2

