
ILP is Dead,
Long Live IPC!

(A position paper.)

Augustus K. Uht
Microarchitecture Research Institute

Dept. of Electrical and Computer Engineering
University of Rhode Island

December 15, 2005

Overview: the State of the Art

We will discuss the current state of
microprocessor architecture, where it is currently
headed, and where it should be headed. Specifically,
until recently processors consisted of one copy of a
CPU, the latter exploiting as much Instruction-Level
Parallelism as possible. This improved performance.

Unfortunately, two trends collided and caused a
rapid shift in processor architecture: 1) The
architecture community's ability to extract ILP from
typical code asymptotically approached zero, so
processor companies kept increasing the CPU clock
rate to compensate and improve performance in a
brute force way. Marketing also played a large role
here: it’s relatively easy to sell processors based on a
single [higher] number. 2) Processor temperatures
were becoming excessive. The newer processors
from Intel (Prescott Pentium 4's) have power
dissipations measurable in light bulb or toaster
equivalents.

The net result was the almost-appearance of the
ill-fated 4.0 GHz Pentium 4. It could not be reliably
sold or used due to its large power dissipation; in
short, it would burn up. The industry 'fix' to this
problem is to put two or more CPU's on a chip or
package ('multi-core' processors) and run them at
lower speeds, thereby reducing power to acceptable
levels while increasing performance. Is there a
fallacy here? Is this the right way to go?

Looking at Figure 1, a chart from a recent Intel
talk given by Benson Inkley [1], the two processors
being compared are a single-core 3.73 GHz Pentium
4 vs. a dual-core Pentium 4 –based 3.2 GHz 840
processor. Both processors use dual-threading
(Hyperthreading). The performance numbers are
based on the execution of the SPEC 2000
benchmarks, both integer and floating point. We will
focus on the left-most comparison: the processors
running the SPECint2000 benchmarks without
tuning.

Figure 1. Intel single vs. multi-core performance.

We see that by doubling the number of cores,
performance increases by only 18%. While the
single-core processor is ‘faster’ than the individual
cores of the 840 processor (3.73 vs. 3.2 GHz), on a
cycle-by-cycle basis one would expect a performance
gain of 72%.

Examining the power requirements of the two
processors, from the datasheets [2, 3] we see that the
total suggested design power (NOT the peak) for the
single-core processor is: 115 W, and 125 W for the
dual-core processor. However, the Intel-supplied fan
runs at 24 W.

Therefore, for about the same power dissipation,
and about twice the cost, we get a slight performance
increase of about 18%.

I have been unable to determine the specifics of
the experiments. For example, were the SPECInt
benchmarks initially recoded to take advantage of the
multithreading and dual core options? This seems
likely. In a more realistic scenario, a shrink-wrapped
program, unable to be recompiled, would likely have
experienced a performance decrease when going to
the dual-core processor, since each core runs at a
lower speed than the 3.73 single-processor.

The conclusion is that for normal, nominally
sequential programs, multi-core processing is a
‘lose.’ (Of course, if a program can be recompiled,
and it contains lots of parallelism, like many media
applications, then there will likely be a performance
benefit from multi-core processors, but not

1 of 2

necessarily proportionally; see the right-hand side of
Figure 1.)

Parallelizing Compilers

In its current state, the hardware community can
not make progress in improving the performance of
the vast majority of existing or future programs. As
currently envisioned, multi-core processors are not
useful. However, industry has thrown the problem
over the wall to the programmers, and said: ‘You fix
it. You MUST learn how to program in parallel.’

While dictating technological progress can
sometimes have a positive effect, it is unlikely in this
case. Look at the supercomputing literature: for the
past thirty to forty years researchers have attempted
to write auto-parallelizing compilers, with only
modest success. The community has turned to such
tools as OpenMP or assertions, both of which are
very hard to use and port. Also, the use of assertions
can easily lead to functionally wrong code.

Being realistic, we all have a hard time writing
sequential programs, much less parallel programs.
This is true for novice and expert programmers alike
[4].

But we still want to improve performance. Is
there a solution? I think so: ‘Long Live IPC.’

Back to the Future

Whatever happened to ILP? Many, many limit
studies have shown large amounts of ILP (potential
parallelism) in typical programs, even gcc [5]. But
architects have been unable to realize the potential
performance in IPC (realized parallelism).

ILP exploitation is hard, no doubt about it. But
computer architects have solved tougher problems.

For many years, the classic superscalar
architecture has become a de facto standard. No
serious deviations from its microarchitecture are
allowed. Little changed, little gained.

We need to wipe the slate clean, and create
dramatically new microarchitectures in order to make
significant gains. This is generally frowned upon by
industry, which doesn’t like big changes. (But recall,
the Intel P6 microarchitecture was a radical change,
and it paid off big. Intel is even returning to it: the
mobile Pentium M processor is based on the P6.) The
results of this industry bias are a slew of incremental
performance improvements.

Some of us are starting fresh, e.g., the TRIPS
machine [6] and the Levo machine [7]. Both have
yielded IPC’s (not ILP) greater than three and five
(resp.) with realistic simulation assumptions. (TRIPS
requires compiler support, Levo does not.)

But this is just the start. Power is still an issue.
We must get away from the frame-of-mind that a
microprocessor must use as many transistors as
possible. On the contrary, it should use as few
transistors as possible. (Sounds obvious, but we seem
to have forgotten this.)

We must also re-examine the multi-core model
in even its most basic sense. Forget about duplicating
entire processors. Remember, we can’t program the
end result. Think of using less complex and less
costly computation units.

Conclusions

Everyone has fallen in behind the
microprocessor manufacturers in the multi-core
futility, even the major operating systems’ and
applications’ programmers. Even the latter say they
won’t be able to do anything for years [4].

‘Those who cannot remember the past are
condemned to repeat it.’

Let’s not waste another 30-40 years. If there was
ever a time to think out-of-the-box, this is it. Let’s do
some real envelope-pushing. Multi-core machines
(the same as multiprocessors) and parallelizing
compilers are well known and are not likely to
produce any meaningful new results.

We need IPC; we don’t need PPC (processors
per cycle).

References

[1] B. Inkley, "Intel Multi-core Architecture and Implementation."
Hillsboro, OR: Intel Corp., 2005. Talk given at GSPx.
[2] Intel Staff, "Intel Pentium Processor Extreme Edition 840,"
Intel Corp., Datasheet 306831-002, October 2005.
[3] Intel Staff, "Thermal Management for Boxed Intel Pentium 4
Processor in the 775-land Package," Intel Corp., 2005. URL:
http://www.intel.com/cd/channel/reseller/asmo-
na/eng/products/box_processors/desktop/proc_dsk_p4/technical_re
ference/99346.htm.
[4] K. Krewell, "Software Grapples With Multicore,"
Microprocessor Report, December 12, 2005.
[5] M. S. Lam and R. P. Wilson, "Limits of Control Flow on
Parallelism," in Proceedings of the 19th Annual International
Symposium on Computer Architecture. Gold Coast, Australia:
IEEE and ACM, May 1992, pp. 46-57.
[6] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D.
Burger, S. W. Keckler, and C. R. Moore, "Exploiting ILP, TLP,
and DLP with the Polymorphous TRIPS Architecture," in
Proceedings of the 30th Annual International Symposium on
Computer Architecture. San Diego, California, USA: ACM and
IEEE, June 9-11 2003.
[7] A. K. Uht, D. Morano, A. Khalafi, and D. R. Kaeli, "Levo - A
Scalable Processor With High IPC," The Journal of Instruction-
Level Parallelism, vol. 5, August 2003. (http://www.jilp.org/vol5),
URL: http://www.ele.uri.edu/~uht/papers/JILP2003FnlLevo.pdf.

2 of 2

