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C O V E R  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

Going Beyond
Worst-Case Specs
with TEAtime

V irtually all engineers use worst-case com-
ponent specifications for new system
designs, thereby ensuring that the result-
ing product will operate under the worst
conditions they can envision. However,

given that most systems operate under typical oper-
ating conditions that rarely approach the demands
of worst-case conditions, building such robust sys-
tems incurs a significant performance cost. Further,
classic worst-case designs do not adapt to previous
manufacturing conditions or current environmen-
tal conditions, such as increased temperature.

The timing-error-avoidance prototype provides
a circuit and system solution to these problems for
synchronous digital systems. TEAtime has demon-
strated much better performance than classically
designed systems and also adapts well to varying
temperature and supply-voltage conditions.
TEAtime works by increasing the operating fre-
quency of the system clock until just before a tim-
ing error would occur, then slightly decreasing the
clock frequency. These changes in clock frequency
happen continuously. Low cost, TEAtime involves
no software actions.

DIGITAL SYSTEM DESIGN
Most current digital systems are synchronous in

that their state changes only in response to transi-
tions of a systemwide clock signal, typically chang-
ing on the clock’s rising edges, that is, from a logical
0 to a logical 1. Such systems work correctly only
when the delay from a clocked part’s output—the
flip-flop—to the input of the same or other flip-flops

is less than the clock period, the time between the
clock’s adjacent rising edges. All synchronous sys-
tems designed today use delays that assume worst-
case environmental, operating, and manufacturing
conditions. 

Student engineers are often surprised when their
first synchronous systems fail to operate as expected.
This usually happens because they used typical part
specifications during the system design. Thus, on a
hot summer day, for example, before the due date at
the end of the semester, the gates will have a greater
than typical delay, the system clock period originally
specified will be too short, and the system will fail.

The solution, as all practicing engineers know,
requires using worst-case part specifications for sys-
tem design. For example, the delay used for a gate
will be its delay at the highest specified temperature
and lowest supply voltage. Further, engineers build
in even more latitude to allow for manufacturing
variations. The resulting worst-case design provides
a system that will operate under a wide range of
operating and manufacturing conditions. 

Unfortunately, given that the system usually oper-
ates under typical conditions, the worst-case ap-
proach incurs a severe performance cost: The system
usually runs at a clock frequency much lower than
necessary.

PC game enthusiasts frequently compensate for
this decrease in performance by increasing the oper-
ating frequency of their systems far above what the
manufacturers specify. This practice is dangerous,
however, because the only way overclockers can
know they have pushed their CPUs too far is when

The timing-error-avoidance method continuously modulates a computer-
system clock’s operating frequency to avoid timing errors even when
presented with worst-case scenarios.
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their systems experience a potentially catastrophic
failure. For the casual user, constantly tuning the
clock frequency while destroying data and even
hardware offers an unsatisfactory tradeoff to
enhancing performance beyond stock specifica-
tions. The situation becomes much worse when
applications more critical to society than the latest
shoot-em-up computer game are involved.

ALTERNATIVE APPROACHES
Researchers have sought ways to dynamically

increase the clock frequency either without caus-
ing timing errors or, if errors do occur, by provid-
ing built-in methods for recovering from them. If
the resulting solution is always active and always
seeks the highest clock frequency possible, the sys-
tem will also adapt to varying environmental and
manufacturing conditions.

In one alternative to TEAtime, a system uses a
microcontroller to periodically check the operation
of the controller’s adder1 because this component
causes the greatest delay in the system. The micro-
controller performs the checking by propagating a
signal through the adder’s entire carry chain by, for
example, adding a 1 to all 1s. If this operation pro-
vides an incorrect result, the system decreases the
clock frequency. Unfortunately, the worst-case path
through a system may not be through the adder and
thus not be as easy to check. Another disadvantage
of this approach is the need to modify the system
software for the scheme to work.

A previous technique checked systems by letting
errors occur.2 The system then backed up the state to
a known good state, decreased the clock frequency,
and continued. This technique more than doubled
the hardware needed in the system and was much
harder to add to existing designs than anticipated.
The recent Razor system3 also allows errors to occur,
then recovers from them. While the additional quan-
tity of hardware needed is small, it is not simple.
Also, extra pipeline bubbles and flushes occur, unlike

in TEAtime. Large power savings are predicted;
improved performance is not a goal.

Some techniques modify the clock frequency
based on varying constraints,4 but these systems
are open-loop: They either do not have a feedback
system or do not include the operating frequency or
clock period as part of the regulating system. Some
systems throttle the clock based on power or tem-
perature,5,6 but the clock frequency does not
increase above the usual worst-case design value.

Self-timed7 and some other systems8 use a ring
oscillator to mimic the worst-case path delay
through the system. Although this method resem-
bles TEAtime, it does not use true tracking logic to
mimic the actual circuitry along the worst-case
path, thus it does not truly adapt to existing sys-
tem conditions. This can either produce system fail-
ure in the worst scenario or lead to an overly
conservative design that does not achieve the high
performance that might be possible otherwise.

Asynchronous systems9 sidestep the problem
completely because they do not use a clock. Such
systems operate as fast as the gate delays allow.
Although this might seem to be an ideal approach,
designing robust and error-free asynchronous sys-
tems is difficult, and few if any current computer-
aided-design tools can generate them.

TEATIME
Figure 1 shows how TEAtime uses tracking logic

to mimic the worst-case delay in a synchronous sys-
tem. Normally, the tracking logic is a one-bit-wide
replica of the worst-case path in the system, with a
slight delay added to it that provides a safety mar-
gin for the system. The flip-flop at the input to the
tracking logic is wired as a toggle flip-flop and
clocked by the system clock, changing from 0 to 1
and 1 to 0 on alternate cycles. This provides a test
signal for the tracking logic during every cycle of
operation and ensures that the signal tests both
types of transitions. The latter is necessary since
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delays for the two transitions can differ.
The tracking logic output then goes through the

safety margin delay. Next, the exclusive-OR gate
normalizes the test signal for the timing checker
flip-flip at the end of the chain—the final version
of the test signal, D1, will always change from a 1
to a 0 at the end of the cycle. The timing checker
flip-flop also operates with the system clock.

If the timing checker flip-flop latches a 1, this sig-
nifies that the system clock period is close to being
less than the worst-case path delay, and the system
decreases the clock frequency. Conversely, if the
flip-flop latches a 0, the clock period is greater than
the delay through the worst-case path of the real
logic, and the system increases the clock frequency,
improving performance.

The timing checker flip-flop output therefore pro-
vides the command signal for the system clock gen-
erator to increase or decrease the clock frequency.
This signal controls the counting direction of the
up-down counter. The digital-to-analog converter
(DAC) converts the counter output to an analog
voltage signal. This signal sets the clock frequency
by controlling the voltage-controlled oscillator, and
the VCO output becomes the system clock, com-
pleting the feedback loop.

Thus, the clock period will never be less than the
delay through the tracking logic plus the safety
margin delay. Since the system’s real logic is as slow
or slower than the tracking logic, no timing error
will occur in the real logic, which ensures correct
system operation.

THE PROTOTYPE
Figure 2 shows the Xilinx field-programmable

gate array-based prototype of the TEAtime system.
The FPGA contains the TEAtime logic and a test
computer. This computer contains a simple 32-bit,
five-stage pipelined CPU with forwarding, and the
equivalent of a small single-cycle-access cache
memory.

The test computer executed a small program con-
tinuously during the experiments. This included all
typical program constructs such as assignment
statements, forward- and backward-conditional
branches, and subroutine calls and returns. The
program also exercised the pipeline’s forwarding
paths. The test processor stores the program’s
results in the cache memory. After every program
execution, the PC host controller checks the results
for correctness, then resets the results to bogus val-
ues before the next execution.

The test computer system clock’s nominal worst-
case specified operating frequency is about 30 MHz.
The unit could be expected to operate at this fre-
quency under even worst-case conditions. This base-
line clock frequency was determined by using CAD
tools performing worst-case-condition simulations
of the test computer executing the test program.

Basic operation and stabilization
The first experiment established TEAtime’s basic

operational soundness and stabilization properties.
With the FPGA’s supply voltage held constant, and
the test computer operating at room temperature,
power was applied to the system. The system clock
frequency rose from 25 MHz, the VCO’s lowest
frequency, then stabilized at about 45 MHz, as
Figure 3 shows.

The horizontal line at 30 MHz indicates the
approximate baseline worst-case operating fre-
quency. The top subplot shows the value of the con-
trol line to the counter driving the DAC. The
control is set for constant increases until stabiliza-
tion, when the control value oscillates between
increasing and decreasing frequency. The clock
period varies only slightly above and below the
delay through the tracking and safety margin logic.
From a throughput perspective, TEAtime increases
performance by about 50 percent compared with
the baseline system under typical operating condi-
tions—exactly the desired results.

Figure 2. TEAtime
prototype with
experimental and
demonstration
setup. The test 
computer’s system
clock has stabilized
at about 44 MHz.
The normal worst-
case specified 
frequency is about
30 MHz. The system
clock frequency
meter (9) consists 
of four regions:
White is part of 
the classical non-
TEAtime operating
region, green shows
better-than-worst-
case operating 
frequency, yellow
shows the safety
margin, and red
shows system 
failure.
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TEAtime’s adaptability
To examine TEAtime’s adaptability to both FPGA

temperature and supply-voltage (VCCint) changes,
a thermocouple embedded in the center of the alu-
minum block, which is in turn thermally bonded to
the top of the FPGA, measured the FPGA’s case tem-
perature—and hence the test computer’s.

The FPGA has two supply voltages: one at 3.3 V
for its I/O circuitry and one for the FPGA’s inter-
nal logic, and hence for the test computer’s logic as
well. For correct operation, Xilinx specifies 2.5 V
for VCCint, with an allowed variance from plus 5
percent to minus 10 percent. The green-colored
region on the PC host’s VCCint meter indicates this
range. Only VCCint varied, with the test computer
having no direct I/O connections to or from the
FPGA chip. The FPGA never operated at above 3 V,
which would have been a physically damaging
VCCint value.

Figure 4 shows the detailed data for the combined
temperature and supply-voltage variations. The sup-
ply voltage varied from 2.2 to 2.8 V, while the test
computer’s case temperature remained constant for
each set of voltage data. Even though the operating
frequencies varied widely—from 38 MHz to 49
MHz—TEAtime adapted to the existing operating
and environmental conditions and always maxi-
mized the system clock frequency, within the safety
margin delay. The test program executed correctly
in all cases. In a perhaps extreme example of this

adaptation to environmental conditions, a plastic-
wrapped ice cube was placed directly on the FPGA’s
aluminum block, reducing the case temperature to
3˚ C. The system still adapted to the existing envi-
ronmental conditions, functioning correctly and at
a high clock frequency.

Tuning the system
The prior experiments used a large safety margin

delay, but in this experiment, decreasing the delay
and running the system to stabilization with typi-
cal conditions dramatically improved the operating
frequency to 53 MHz. Time-related performance
increased to 43 percent over the baseline, while
throughput almost doubled.

Power reduction
To indirectly measure FPGA power use in the

original untuned system, a current meter was added
to the VCCint supply line, first testing VCCint set
at the nominal 2.5 V, then with VCCint reduced to
2.2 V. Not unexpectedly, the power usage
decreased by about 30 percent, but with only a 7.7
percent drop in time-related performance. This sug-
gests a future application in which the operating
system or application program could dynamically
set a power budget. The hardware would then
adjust VCC to use that power, and the TEAtime
hardware would adapt the system to obtain the
best performance under those conditions.
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DESIGN CONSIDERATIONS
When implementing a TEAtime system, devel-

opers must consider several common digital system
factors having unique TEAtime solutions. These
factors include multiple worst-case paths and
metastability—the unlikely state in which flip-flop
output is unpredictable. There are also other fac-
tors that could be areas of concern but do not turn
out to be, including the inductance-caused power-
supply voltage-droop problem, created by large and
rapid changes in power supply current—recall from
physics: V = L × di/dt. 

Multiple worst-case paths
To design a target system for TEAtime use, and

particularly to construct the tracking logic, the
designer must determine the worst-case path in the
system, then construct a one-bit-wide version of this
logic and its wiring to mimic the worst-case delay.
Next, the design must place the tracking logic as close
to its corresponding real logic as possible—if not right
in the middle of it—so that both components expe-
rience the same manufacturing, environmental, and
operating conditions the real logic encounters.

This approach worked fine for the prototype, a very
simple computer. However, complex microprocessor
chips can have hundreds of worst-case paths, or
worst-case paths within some small delta delay. These
can all be different and exist in different operating
environments because hot spots with varying tem-
peratures and placements can occur on large chips.

To solve this problem, designers must construct
the tracking logic for each possible worst-case path.
Then, if any path indicates the clock frequency
should be decreased, the DAC decrements. The
DAC increments only if all tracking logic circuits
indicate an increase.

This scenario raises yet another issue. The worst-
case paths will likely be distributed throughout the
chip. Given that it takes multiple clock cycles for sig-
nals to cross a chip, and more cycles are likely in the
future with higher-speed clocks, the overall TEAtime
control must be insensitive to such long delays.

The prototype only changed the operating fre-
quency after every complete program execution,
that is, after hundreds of cycles. The ideal TEAtime
logic shown in Figure 1 actually had another flip-
flop between the timing checker and the counter.
This flip-flop was initially set, then cleared when-
ever the timing checker indicated a down signal.
Over hundreds of cycles, if only one of the timing-
checker samples indicated the clock frequency
should be decreased, it was. This modification actu-
ally solves both the cross-chip delay problem—in
which signals from the individual tracking logic cir-
cuits can use very low-speed paths—and the
metastability issue. 

Metastability
Flip-flop unpredictability occurs when both the

data and clock inputs to a flip-flop change at or very
close to the same time. In this case, the flip-flop can
go into a metastable state in which its output is nei-
ther 0 nor 1: The output voltage level lies between
the 0 and 1 thresholds. This means that circuits with
inputs connected to the flip-flop will not only see a
possibly incorrect value, but two different circuits
could interpret this bogus value two different
ways—one as 0, the other as 1—causing the system
to malfunction.

Barring other stimulation, a metastable condi-
tion can last indefinitely. However, this is unlikely.
Further, synchronous systems cannot avoid
metastability completely—the best that developers
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can do is minimize the likelihood it will occur and,
if it does, minimize its duration.

In TEAtime, the timing checker and the feedback
loop’s basic construction increase the likelihood of a
metastable condition. When the system is stable, the
input to the timing checker always changes right
about the time the system clock’s rising edge occurs.
This is not a problem with the modified circuit, which
examines the timing checker’s output over hundreds
of cycles, because of the very low probability that
conditions will exist long enough to create a lasting
metastable condition. The TEAtime control loop’s
integral changes in clock frequency and the slight
changes in clock timing—known as clock jitter, which
is inherent in all synchronous systems—further
reduce the likelihood of metastability.

di/dt and other adverse conditions
On large microprocessors, such as Intel’s

Itanium, millions of transistors can switch state
simultaneously, leading to a big change in the
power-supply current in a short time, also known
as a large di/dt, or change (delta) in current per unit
change in time. When combined with the inherent
inductance of the power supply network both on
and off chip, this results in large voltage spikes on
the chip’s power buses. These spikes are already as
large as plus or minus 5 percent of the power sup-
ply voltage and could increase in future chip gen-
erations.10 The tuned TEAtime prototype’s current
safety margin can handle the effects of even plus or
minus 9 percent supply voltage spikes. Such spikes
are an issue with any large synchronous system, not
just TEAtime. TEAtime designers can handle this
and other system reliability constraints by increas-
ing the tracking logic’s safety margin delay. This
can be done either at design time or at runtime, the
latter with or without software assistance.

M any synchronous systems today have multi-
ple clock domains with different unsynchro-
nized frequencies, such as Intel-style PCs with

unsynchronized CPU and PCI clocks. Therefore,
TEAtime’s varying clock should not be an issue in
production systems; it can be handled by existing
design techniques. 

Developers can now take advantage of typical
operating conditions and improve synchronous-
digital-system performance dramatically. Such
adaptable systems are also excellent candidates for
mobile and military applications, in which digital
systems undergo exposure to extreme environ-
mental conditions. �
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