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The Levo high IPC microarchitecture is described and evaluated. Levo employs instruction 
time-tags and Active Stations to ensure correct operation in a rampantly speculative and out-of-
order resource flow execution model. The Tomasulo-algorithm-like broadcast buses are 
segmented; their lengths are constant, that is, do not increase with machine size. This helps to 
make Levo scalable. Known high-ILP techniques such as Disjoint Eager Execution and Minimal 
Control Dependencies are implemented in novel ways. Examples of basic Levo operation are 
given. A chip floorplan of Levo is presented, demonstrating feasibility and little cycle-time 
impact. Levo is simulated, characterizing its basic geometry and its performance. 

 1. Introduction 

 
 
 
 
 

Levo is a highly-novel General-Purpose (GP) processor exhibiting large IPC (Instructions Per 
Cycle) with realistic hardware constraints, scalability and little increase in cycle time. The Levo 
core (not including the Instruction Fetch Unit) exhibits IPC’s greater than 10 on such complex 
SPECInt benchmarks as gcc and go. The basic Levo operation model is resource flow execution: 
instructions execute as soon as their operands (speculative or otherwise) are acquired and a 
Processing Element (PE) is free. 

 
 
 
 
 

Levo approaches the problem of improving CPU performance problem as a whole, keeping 
all necessary constraints satisfied. While Levo does use many transistors, billion transistor chips 
are becoming a reality [4]; further, the trend has always been to use hardware less efficiently as 
chip transistor densities increased, vis-à-vis all common digital systems. Power and energy 
consumption are also issues, but we believe it is first necessary to establish the basic performance 
potential of the microarchitecture; that is the focus of this paper.  

 
 

In this paper we describe Levo and its operation. We provide detailed simulation results 
characterizing Levo over a large range of its possible geometries, and present evidence of Levo’s 
even larger potential performance. This paper builds upon [24, 42] by providing an in-depth 
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description of the microarchitecture, a description of the physical layout (a floorplan), and many 
new simulation results. 

The paper is organized as follows. In Section 2 we review major impediments to high IPC 
realization. Section 3 provides the Levo logical description, and discusses Levo’s solutions to the 
high IPC problems. Other implementation issues are addressed in Section 4. Section 5 describes 
the physical operation of Levo and presents a possible Levo single-chip floorplan. In Section 6 
we discuss other related work. Section 7 gives our experimental methodology, while Section 8 
presents and discusses our simulation results. We conclude in Section 9. 

2. High IPC Problems 

There are three major impediments to high IPC: 1) high and/or unscalable hardware cost; 2) 
degradation of (increase in) cycle time, negating IPC performance gains; and 3) lack of high-IPC 
extraction methods. Prior work has shown that there is much ILP (Instruction Level Parallelism) 
in typical GP code [18]. Large instruction windows and reorder buffers are necessary to realize a 
fraction of this ILP [37]; these structures greatly exacerbate the first two high-IPC impediments. 
We define “cost” as the transistor count or equivalent chip area. Note that this is not the same as 
“complexity,” a measure of the randomness of a system’s design. The prior art tends to use 
complex structures; Levo uses simple ones, easier to lay out, etc. A system is said to be “scalable” 
if its cost grows linearly or less with an increase in the number of Processing Elements or other 
key elements.1

2.1. High Cost 
Typical microarchitectures, such as the Pentium P6 [27] and the Alpha EV8 [31], use a large 
reorder buffer to maintain the logical correctness of the code executing out-of-order (OOO). The 
cost of reorder buffers and other dependency checking/maintaining types of structures [44] is 
large and does not scale with the number of entries; the typical cost is O(k2) where k is the 
number of entries in the reorder buffer and/or instruction window, since elements of each entry 
must be compared to elements of every other entry.  

In particular, for a reorder buffer, as the machine size increases the number of both executing 
and reorder-buffer register results grows. Each executing register result’s address and window 
position must be compared with all of those in the reorder buffer, hence O(k2) cost growth. 

Large pipeline depths also have issues: for a dynamically scheduled high-performance 
pipeline O(p2) forwarding paths are necessary to reduce or eliminate the ill performance effects of 
data dependencies between data in different stages, where p is the number of pipeline stages. In 
general, for each additional pipeline stage, forwarding paths must be added to all preceding 
stages; this is O(p2) cost growth. 

 
1 As many researchers have observed over the years, no system is truly scalable by this definition: as 

the system grows, eventually some element grows visibly faster than O(k), often at O(k*log(k)). Within 
some large values of k, Levo is effectively scalable by our original definition, that is, the multiplier constant 
for the k*log(k) term is much less than that for the k term; the k term dominates. In traditional systems, the 
k2 term(s) dominate. 
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2.2. Unscalable Microarchitecture 
As chip feature sizes shrink, buses become electrically long (high RC time). This leads to longer 
cycle times and hence reduced overall performance, as does the unscalable hardware mentioned 
in Section 2.1. Centralized resources such as architectural register files exacerbate the problem. 
They exhibit longer bus delays and a prohibitively high number of register ports [31]. The latter 
can increase the size of the register file substantially, further slowing the system. 

2.3. Low IPC 
The high ILP promised over the years has not translated into high IPC or overall performance in a 
realistic processor, even in machines that did well, such as [20]. Part of the problem is that high-
ILP methods and combinations of such methods have not been included in realistic designs.  

3. Levo High IPC Solutions and Description 

Levo consists of distributed and scalable hardware. A high-level logical block diagram of Levo is 
shown in Figure 1. The major novel part of Levo is the n X m instruction Execution Window (E-
window).  
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Figure 1: Levo high-level logical block diagram. The Execution Window is the key element. 

Levo operates as follows. Instructions are fetched from the L1 I-Cache into the Instruction 
Window and assembled into a block one E-window column high (n instructions). When the first 
column (0) in the E-window commits, the entire E-window contents are logically shifted left and 
the new instruction block is shifted into the last E-window column (m-1). Column 0 commits 
when all of its instructions have finished executing: the memory store results in Column 0 are 
sent to the L1 D-Cache, and the ISA register results are sent to later columns. Processing 
resources are located uniformly throughout the E-window. All instructions in the E-window, 
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including memory operations, are eligible for execution at any time. Store results, as well as 
register operation and branch operation results (predicates), are broadcast forward (to the right) in 
the E-window and snarfed by instructions with matching operand addresses. Load requests are 
satisfied either from earlier in the E-window or directly from the L1 D-Cache. 

There are two key novel features of the E-window that make it scale and ensure that each 
operand (eventually) gets the right result as its input. First, the broadcast bus is divided into 
segments, each one typically a column long. The bottom, or end, of one segment is coupled to the 
top of the next segment via storage elements having a small delay. Thus, additional columns can 
be added to the E-window without impacting Levo’s cycle time.  

The second novel feature is Levo’s own particular use of time tags. Each instruction in the E-
window has a unique time tag corresponding to its position in the E-window. The time tags 
provide the proper result-operand linkage with scalable hardware, since all comparisons are made 
simultaneously with an amount of hardware directly proportional to the machine size. The time 
tags are used for all dependency checking and for all data operations: memory, register and 
predicate (branch). 

In detail, the E-window holds n*m Active Stations (AS). An Active Station is a more 
intelligent form of Tomasulo’s reservation station [40]. Each AS holds one instruction. Small 
numbers of physically close AS’s form Sharing Groups (SG); see Figure 4. All of the AS’s in an 
SG share a Processing Element (PE). Each AS in the E-window has a corresponding time tag 
indicating its instruction’s nominal temporal execution order. Time tags are formed by the 
concatenation of the AS’s E-window column number and row number. 

Levo’s microarchitecture is alterable to match any ISA, with varying performance benefits. 
So far we have fully realized one GP ISA, the MIPS-1, in our simulator and obtained high 
performance. No compiler support is needed for Levo, thus legacy code can be executed without 
recompilation. Adding Levo-specific compiler optimizations is a subject for future work. 

While Levo cannot be described in detail as a pipeline without obscuring its logical operation, 
we will now attempt some kind of analogy with a classic pipelined machine in order to help the 
reader have some point of reference. (Note that the E-window columns are NOT distinct pipeline 
stages.) The analogy is as follows, classic pipeline-stage to Levo elements/operation.  

1. FETCH : Fetch of instructions by the I-window. 
2. DISPATCH : I-fetch buffer is loaded into the rightmost E-window column, that is, the 

last column’s AS’s are loaded with instructions. 
3. ISSUE : AS contents  (operands) sent to a PE. 
4. EXECUTE : PE performs appropriate operation, e.g., ‘xor’ or address computation. 
5. WRITE-BACK : There is no Re-Order Buffer. 

•  For memory stores : data from E-window column 0 sent to L1 D-cache. 
•  For register results : no action, since the result data has already been sent to 

later columns in the E-window (no explicit architectural register file is used). 
6. END-OF-COMMIT : E-window logically shifted left. 

Note that in Levo multiple ‘ISSUES’ and ‘EXECUTES’ happen concurrently and possibly more 
than once for the same instruction, and potentially without any ‘DISPATCHES’ or ‘FETCHES’ 
occurring for some time. We have ignored the key Levo elements of operand snooping, snarfing, 
and broadcasting. Levo’s detailed operation is described in the following sections. 
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3.1. Time Tags with Active Stations  Low Cost 
Levo uses novel time-tagged Active Stations to realize speculative data-flow execution of code. 
No explicit renaming registers or reorder buffer are used.  

The basic operation of time-tagged instructions is shown in Figure 2. Both classic renaming 
and time-tagging assume the broadcast of instruction result information on a bus, snooped by all 
reservation/Active stations. Figure 2 (a) shows the program code sequence considered and its 
outcome. Instruction 9 (I9) uses the closest previous value of R4 as its input. Figure 2 (b) shows 
the execution of the code assuming the use of renaming registers. I9 has been modified at 
instruction load time to source only the result of I5. I9 snarfs the result value of I5 when I9’s 
operand register address equals the register address (4b) broadcast on the bus; I9 then executes. 

In Figure 2 (c), with time-tagging, no renaming is performed. Instead, each station now has a 
Last Snarfed Time Tag (LSTT) register. When an instruction executes, it additionally broadcasts 
its time tag (in the example, this is the instruction number). Snooping active stations now also 
compare the broadcast result time tag (ResTT) with that held in the LSTT. If either the result is 
later than that last snarfed (LSTT <= ResTT), or the LSTT has not been loaded yet, and the 
register addresses match, then the result value is snarfed, the snarfing instruction is executed, and 
LSTT is loaded with ResTT. This ensures that only the closest previous version of an operand is 
used by an instruction for its own last execution. Thus, in the figure, if I1 executes first, I9 
executes twice: once with R4=1 (from I1) as its input, and the final time with R4=2 (from I5) as 
its input. If I5 executes first, I9 only executes once; it ignores the broadcast result from I1 when 
I1 does execute. 

(a) Program Code (b) With Renaming (c) With Time Tags

Instruction
Number

Instruction,
Result Time Tag

(ResTT)

1.

5.

9.

1

5

9

R4a = 1

R4b = 2

R3 = R4b

Out-of-Order (OOO) Execution.
- I9 only snarfs I5 result
(at end, R3 holds ‘2’)

R4 = 1

R4 = 2

R3 = R4

Sequential
Execution

(at end,
R3 holds ‘2’)

R4 = 1

R4 = 2

R3 = R4

Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
       – R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
       – R3 = 2, LSTT = 5
(at end, R3 holds ‘2’)
(Same result if I5 broadcasts first; 
LSTT is set to and stays at ‘5’;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
(LSTT).

.
–

–

1, then 5

 
Figure 2: Time-tagged execution of code sample, with comparisons to other methods. OOO – 

Out-of-Order; ResTT – Result Time Tag; LSTT – Last Snarfed Time Tag. 
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Time-tagging thus features only linear cost growth, O(k), with the number of instructions held 
in the execution window, and is thus scalable. Further, its execution algorithm is simple. 

With memory operands, the memory address (about 32 bits) is used instead of a register 
address (about 8 bits) to match store results with load operands. The associated PE is used to 
compute the memory address from a load or store’s input operand register values. Otherwise, the 
operation of memory instructions in AS’s is the same as register instructions, and store results are 
linked to dependent load inputs. Therefore, memory data dependencies are also minimized. 

The hardware-generated predicates (described in Section 3.3.1) use the generating-
instruction’s time tag as the predicate register address. Predicates are handled separately from 
memory and register values; they are all independent. 

Figure 3 shows the detailed components of one operand of an Active Station. There are three 
other necessary conditions for operand snarfing and instruction execution or re-execution: first, 
the operand must have changed value [20]; secondly,  the broadcast result must be a member of 
the same path (predicted or not-predicted) as the station’s instruction, in the case of Disjoint 
Eager Execution (DEE) [46]; and lastly, the operand must be from an instruction prior to the AS 
(ASTT > ResTT). 

While using time tags is more complex than the operation of a conventional Tomasulo 
algorithm, the added comparisons should not add a significant time delay since the tags are quite 
small. The likely Levo machine versions examined herein typically use time tags 8-10 bits long. 

 

LD
pathtime-tag

(LSTT) value AS
time-tag

=

address

=<= >!=

LD LD

execute or re-execute

tt addr value path tt

tt addr value

result operand forwarding bus 

 
Figure 3: Levo Active Station (AS) operand logic, showing comparison operations necessary 

for operand snarfing and instruction execution. ASTT – AS time tag. 

Time tags are used in common processors to squash instruction results occurring after a 
mispredicted branch, as well as to maintain instruction order in general [30]. A timestamping 
method was originally proposed for microarchitectures in the Warp Engine [6]. A strict ordering 
of timestamps is maintained at receiving processes (in our case, instructions); Levo does not 
require this.  The Warp Engine relied on the use of either floating point numbers or very large 
integers for the time tags; in Levo, the instructions’ E-window positions are the time tag values, 
and hence are just small binary integers. Further, Warp only tagged memory references, required 
the use of bandwidth-consuming “anti-messages” for mis-speculation rollback, and used the tags 
only for control-flow ordering.  
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3.2. Segmented Result Buses  Scalable Microarchitecture 
In Levo, segmented or spanning buses are used to propagate Active Station results to later Active 
Stations. This is splitting Tomasulo’s Common Data Bus. This avoids a performance penalty 
because a result is likely to be used soon after it has been created [8, 37]. Adjacent segments are 
connected via Register Forwarding Units (RFU), which introduce a small delay, usually one 
cycle, from segment to segment; see Figure 4. The idea is that the later in the E-window a result 
is used, the more likely it is to be used later in time, and the delays introduced by the RFU’s will 
be hidden. Segment length is independent of column height. Since the length of segments need 
not change with the size of the machine, the spanning buses help make Levo scalable. 

 

from prior columnfrom prior columnfrom prior column

to next columnto next columnto next column

Column 1i- Column 1i+Column  i

RFU

AS AS

AS AS
PE
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AS AS

AS AS
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AS AS
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AS AS
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RFU

AS AS

AS AS
PE

SG

SG

SG

 
Figure 4: Spanning buses in a generic Levo E-window.  A bus’s length does not change as 

columns are added to the machine. (Physically, the last column connects to the first 
column, forming a loop of columns. In the floorplan of Figure 8, the loop is 
constructed so that the delay across all bus segments is the same.) Each SG drives its 
spanning bus and RFU through one bus, and snoops the output of the RFU through 
another connection. Each RFU also snoops the other buses at its level in the same 
column (not shown), to maintain RFU consistency for its SG. 

RFU’s hold versions of the Instruction Set Architecture (ISA) register state. Time tags are 
forwarded along with their corresponding register values. RFU’s also provide a filtering function: 
multiple writes to the same ISA register in an RFU are combined, keeping the later time tag, and 
only one result value for that register is forwarded.  
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There is one RFU per sharing group and nominally one spanning bus per RFU. There are also 
Memory Forwarding Units (MFU), Predicate Forwarding Units (PFU), and corresponding 
spanning buses (not shown). The number of ports to/from RFU’s, MFU’s and PFU’s are small 
and are constant with respect to the size of the machine; this helps ensure scalability. 

Other novel features are the elimination of a centralized register file, and the simplification of 
state commitment, both by using RFU’s. To see this, assume in Figure 4 that column i-1 is 
column 0, where instructions are committed. By the time an RFU’s state reaches column 0, it 
contains the equivalent of what would normally be thought of as the ISA register state. Since the 
register values have already been broadcast to RFU’s in later columns, and since a new column’s 
(m-1) RFU’s are initialized with the contents of the prior column’s RFU’s, there is always at least 
one RFU in the E-window that holds the equivalent of the ISA state, no matter the time difference 
between writing and reading an architectural register; therefore it is unnecessary to save the ISA 
register state in a separate register file. The same is true of the predicate state. The memory 
values, however, must be written to the L1 D-cache, since an MFU cannot hold all possible 
memory locations. 

Sometimes instructions must request operands from earlier in the E-window. This is done via 
backwarding buses (not shown), following the same paths as the forwarding buses, just going in 
the opposite direction. (Physically, the two types of busses may share a single bidirectional bus.) 

3.3. ILP Enhancement Methods  High IPC 

3.3.1. Hardware Predication 
Full hardware-based predication is a new implementation of Minimal Control Dependencies 
[44]. With MCD, all branches may execute concurrently, and the instructions after a branch’s 
domain [44] may execute independently of the branch. (A forward branch’s domain consists of 
the static instructions from the branch to its target, exclusive. For a backward branch the domain 
is inclusive.) Former hardware-based methods required O(k2) hardware to realize MCD, k being 
the number of instructions in the E-window, since the control dependency relations of every 
instruction in the window need to be stored and/or determined with every other instruction in the 
window. In Levo the cost is O(k), since the amount of predicate storage and computation logic in 
each AS is constant with respect to the size of the E-window.  

In our method predicates are generated completely at run-time. Every branch in the E-
window generates a predicate. They are predicted and evaluated solely with hardware, allowing 
the use of legacy code. Each branch has a predicate output associated with it, held in the AS. 
Each AS can also hold a branch target address, and holds the station’s instruction program 
address. Lastly, each Active Station has a taken branch table. Each entry of the table consists of a 
valid bit and a branch time tag; a branch’s predicate is implicitly true (taken) if the branch has an 
entry in the table. The size of the table is small and constant with respect to the window size, 
since table overflow is allowed. The table is used to help determine branch domains for the 
predication method. 

A simple example of hardware predication is shown in Figure 5, based on the example of 
Figure 2. The method works as follows. When a branch (I3) in the execution window executes, it 
broadcasts its target address (7), predicate value and time tag (3). Non-branch Active Stations 
following the branch, whose instruction addresses do not match the target address (I5, I9), snarf 
the predicate and its time tag. The branch is initially (and incorrectly) predicted not-taken, so no 
entries are made in the following instructions’ taken-branch tables. Since the tables are empty, 
and the snarfed predicate is false, the instructions execute and broadcast their results normally. 
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After the misprediction is detected the branch is taken and the time tag (3) is entered in the 
stations’ (I5, I9) taken branch tables, with the corresponding valid bits asserted. With one or more 
entries in each table, the snarfing instructions (I5, I9) are disabled and ‘branched around.’  

 

(a) Program Code (b) With Renaming
and NO MCD

(c) With Time Tags
and Hardware Predication

Instruction
Number

Instruction, Predicate,
Result Time Tag

(ResTT)

1.

5.

9.

1

5

9

R4a = 1

R4b = 2

R3 = R4(b,a)

Out-of-Order (OOO) Execution.
- I3 predicted not taken, 
so I5 loaded into window,
I9 R4 operand renamed to R4b;
- I9 snarfs I5 result;
- I3 mispredicted,
window after I3 is flushed, 
operand of I9 is changed to R4a;
- I9 snarfs I1;
(at end, R3 holds ‘1’)

R4 = 1

R4 = 2

R3 = R4

Sequential
Execution

(at end,
R3 holds ‘1’)

R4 = 1

R4 = 2

R3 = R4

Out-of-Order (OOO) Execution.
- I5 result and ResTT broadcast, – R3 = 2;
- I3 pred. and ResTT broadcast;
- I1 result and ResTT broadcast, – R3 still 2;
- branch resolves ‘taken’, 
I3 pred and ResTT broadcast, 
I5 and I9 T-B Table entries to 3,

- I5 sends nullify transaction,
I9 LSTT matches nullify time tag,
I9 sends backwarding request for R4,
I5 disabled, so I1 satisfies request, I9 snarfs it;
- (at end, R3 holds ‘1’)

I7 matches broadcast branch target address, 
I7 sends canceling predicate, 
I9 T-B Table entry cleared, hence I9 enabled;

Taken-Branch Table
Entries

In Active Station.

–

none, 3

none, 3, none

3.

7.

IF bc GOTO 7. IF bc GOTO 7. 3

7

IF bc GOTO 7.

– In cases (b) and (c), bc is predicted 
‘not taken’, but is mispredicted.

none

 
Figure 5: Example of Hardware Predication. Compared to both sequential execution and 

traditional superscalar (non-MCD) execution. pred – predicate. 

If there is a match between the broadcast target address (7) and a following station’s 
instruction address (I7), then the instruction is just after the end of the branch’s domain [44] (I4-
I6) and should thus be unaffected by the branch’s execution. This station still snarfs the predicate 
(not taken) and its time tag (3) and then rebroadcasts them with the predicate changed to a 
canceling predicate. Later stations (I9) with a predicate address in their taken branch table 
matching the canceling predicate address (3) invalidate the table entry (3 to ‘none’); thus, the 
corresponding branch (I3) no longer affects the operation of the stations (I7-I9), the desired 
effect.  

Once the misprediction is detected and the branch resolves, the now-disabled instructions 
within the domain that have already executed and broadcast their results must nullify these results 
and cause dependent instructions to re-execute. In order to do this, the mis-executed instruction 
(I5) broadcasts a nullify transaction, containing the instruction’s time tag (5) and the register 
address (R4). Any later instruction (I9) with a matching operand register address (R4) and LSTT 
equal to the broadcast time tag (5) (dependent instruction) sets itself to the unexecuted state, 
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invalidates its LSTT, and sends a request for the nullified operand (R4) on a backwarding bus. A 
prior instruction with a valid result (I1), or an RFU, satisfies the request, and execution (of I9 et 
al) resumes normally. 

Not including the beneficial effects of Disjoint Eager Execution, the misprediction penalty 
due to branches whose domain is entirely contained in the E-window is one cycle or more; but 
this is only for instructions directly or indirectly dependent on the branch. There are usually many 
instructions that are not dependent on the branch whose operation and execution time are 
unaffected by the misprediction, that is, experience no misprediction penalty. The misprediction 
penalty is further reduced with the use of Disjoint Eager Execution, discussed in Section 3.3.2., 
and can actually be zero cycles, depending on the characteristics of the code in the E-window. 

There are other nuances to the correct operation of hardware predication, including overflow 
of the taken-branch table, an unlikely occurrence. See [22] for more information. 

The cost of hardware predication is low, since most of the extra state storage only takes a few 
bits in the AS. More buses are needed, but not many more than already exist, and most are only 1 
to 8 bits wide. This hardware stays the same for all AS’s and columns with respect to machine 
size; thus, hardware predication is scalable. 

3.3.2. Disjoint Eager Execution (DEE) 
DEE is an optimal form of speculative execution; a proof is in [46]. Both MCD and DEE are 
needed for very high ILP [46]. DEE requires the most likely instructions to be executed be given 
priority for execution resources. In Levo likelihoods are not expressly calculated; instead an 
approximation of the “static tree” heuristic of [46] is used. Therefore this is a form of multipath 
execution in which there is the predicted or mainline path (M) as well as several much shorter 
not-predicted or disjoint paths (D) spawning from the mainline path at some conditional branches. 

DEE is realized in Levo by including AS’s solely dedicated to D-path execution in the 
Sharing Groups; see Figure 6. Typically, Levo has as many D-path AS’s as M-path AS’s. In 
effect this means that each Levo E-window column is actually composed of two columns, one for 
part of the M-path and one for (part of) a D-path. The two columns share the execution, bus and 
other resources. Mainline AS’s always have priority for the resources. The cost impact of 
realizing DEE is relatively low: less than 10% greater cost (see Section 5) for a large performance 
improvement, typically 45%. 

Conditional branches are assigned to a free D-path, that is, the not-predicted path is spawned, 
after they enter the E-window. A branch spawns a D-path when the branch has not been 
committed and the branch is the earliest (leftmost) branch that has not already spawned a D-path; 
see Figure 6. Spawning can take place anywhere in the E-window. The spawned D-path column 
is loaded broadside with instructions typically already resident in an I-Fetch buffer. Referring to 
Figure 8, the buffer is replicated between each vertical column pair across the chip. Thus, each 
replicate (there would be four on the sample chip) resides in the center of the chip, with fast and 
broad access to potential D-paths in both columns of the column pair. 

After spawning, D-paths and M-paths execute concurrently, greatly reducing branch 
misprediction penalties. While DEE operation is somewhat detailed, the example given in Figure 
6, based on that in Figure 5, illustrates the basic concepts. It takes one cycle to switch paths on a 
branch misprediction, and this is overlapped with instructions’ execution. The combination of 
DEE with MCD provides a system with a very low effective branch misprediction penalty. 

Note that D-paths need not occupy the same E-window column as their corresponding M-
path column. D-paths can also be multi-column. A D-path can be in any E-window column(s). M-
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path columns are usually, but not always, in order from left-to-right, holding adjacent code 
sections in adjacently numbered M-path columns. 
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(bc set true; branch
is taken)

5. R4 =2 5. R4 =2

7. 7.

9. R3 = R4 9. R3 = R42 1  
Figure 6: Sample arrangement and DEE operation of Mainline (M) path columns and DEE (D) 

path columns. The code example is from Figure 5. D-path spawning: D-path 5 is 
available and is spawned from the branch (I3) in M-path 0 by broadside loading it 
with the same instructions as in M-path 0, from an I-Fetch buffer (not re-fetched from 
memory); the D-path branch is set to the opposite state of the spawned branch in M-
path 0. Then both paths execute: respective I9’s hold different values of R3. After the 
spawned branch resolves (it was mispredicted), D-path 5 becomes M-path 0: I9 now 
has the correct result for R3 (1); the old D-path 5 results are rebroadcast to other M-
paths (1 to m-1); the old M-path 0 state is thrown out. 

4. Other Issues and Levo Solutions 

4.1. Instruction Window and I-Fetch 
The I-Fetch unit fetches whole column(s) of instructions from the I-cache and loads them into the 
E-window once early column(s) there commit. The key here is that instructions are normally 
fetched in the static or memory order, keeping branches not-taken for loading purposes, unless the 
branch is predicted taken and has a large domain (greater than two-thirds the size of the E-
window, in instructions). In that case the fetch becomes dynamic, resuming from the branch 
target. Initial predicate values for the branches in the new column(s) are predicted concurrently 
with multiple branch predictors. This all realizes a simple I-Fetch and high I-fetch bandwidth. It 
also helps keep branch domains with their branches, so that MCD and DEE can be fully 
exploited. 
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The operand data of the loaded instructions is initialized to whatever values the last RFU 
holds. Thus, the instructions execute as soon as they are loaded into the E-window. While this can 
lead to wasted computations in instructions in columns loaded later, we have observed little 
negative effect on performance from this part of the rampant speculation. This is likely due to the 
later instructions’ executions’ inherent speculative nature. A key benefit of this approach is the 
execution algorithm’s simplicity. 

As discussed in Section 3.2, results are always propagated forward to later RFU's and 
intervening instructions will re-execute as necessary; therefore either the RFU for the new 
column has the correct data, or the correct data is on its way. Thus, a result of a register write by 
an instruction that is later committed is kept in the E-window for use by later, even unloaded, 
instructions. The current value of such a register is maintained even without intervening writes to 
the same register. 

Backwards branches are unrolled [44, 46] in the I-Fetch unit, with all but the last instance of 
the backwards branch converted to a forwards branch to enable or disable loop iterations. The 
overall loop body is wrapped around the E-window and continues to execute as long as the last 
instance of the backwards branch commits taken. When it commits not taken, the loop exits. 
Unrolling gives good utilization of the E-window for small loops and improves performance. 

Subroutine calls are conditionally inlined in hardware by the I-Fetch unit: when a call is 
encountered fetching is retargeted to the start of the subroutine, if the call is not in the domain of 
a predicted-taken branch. Subroutine returns are unconditionally inlined: when a return is 
encountered, fetching is retargeted to the return address. Return stack(s) aid the process. 

Handling exceptions is straightforward in Levo; we follow the approach in [43]. In the case 
of, say, a page fault, all instructions prior to the faulting instruction (earlier in the E-window) are 
executed and committed before the fault is handled; no later instructions are allowed to commit. 
For interrupt-handling a range of possible precise-interrupt points (anywhere in the E-window) is 
possible, with a corresponding response-time/wasted-computation tradeoff. 

4.2. Large Memory Latencies – Modified Memory System 
The deep E-window in Levo provides a large tolerance to main memory latency, up to 800 cycles 
or more [14] with assumptions similar to those in Section 7. Similar observations have been made 
by Karkhanis and Smith [13]. These latencies are typical of what is expected in the next few 
years. 

Store data is buffered in the E-window; see Figure 7. Each MFU is chained to the next 
column’s MFU, as with the RFUs. However, an MFU’s internal structure is different. There is an 
L0 cache and a Previous Column Buffer (PCB). The PCB has n entries, exactly one for each AS 
in the previous column; therefore, PCB overflow is impossible. The PCB holds the accumulated 
stores from the previous column, holding only the latest value for a given memory store address. 
PCB’s are used to distribute the store buffering throughout the machine and reduce the amount of 
buffered information. Once committed, and thus in column 0, one PCB’s worth of stores (from 
column 0) are sent to the L1 D-cache to update the memory state. Since not all AS’s in a column 
are necessarily stores, the amount of data sent to the L1 D-cache is likely to be much less than n 
data words. 

Load requests are handled with memory backwarding buses, and are satisfied by earlier 
Active Stations, earlier MFUs, the L1 D-cache or higher up in the hierarchy. The result is 
forwarded as a store. Each entry in the L0 cache includes circuitry similar to that for an AS (see 
Figure 3) to ensure that only the latest data is kept. In the current model, the L0 cache has 32 
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entries. The L0 caches reduce the pressure on the rest of the memory hierarchy. We have found 
that 33% of the loads are satisfied by the L0 caches [23]. 

The MFUs logically shift left with their associated columns whenever the first column 
commits. (This is true for all of the Forwarding Units, and any other structures associated with a 
single column.) As will be discussed in Section 5, no actual physical shifting takes place. 

As will also be seen in Section 5, the physical realization of the Levo memory system 
employs multiple copies of the L1 D-cache to keep the access time to the cache low (1 cycle) and 
to keep cache access bandwidth high. The cache copies hold the same data, within a few cycles, 
with all of them replacing the same lines at the same time. While the loads from the different 
cache copies are likely to be different, the stores are always the same to all of the copies.  

 

PCB

n

L1 D-cache L1 D-cache

Memory Bus
Column  i

Column  iColumn  i-1

LO D-cache
(address, data, time tag)

 
Figure 7: Memory Forwarding Unit (MFU). The Previous Column Buffer (PCB) only holds 

store data from the prior, i-1, column. The PCB’s data is only read when its column (i) 
is committed; its contents are sent to the L1 D-cache. There are exactly n entries in the 
PCB, one per AS in the previous column. Load requests from column i go to both the 
L0- and the L1-data caches; if there is no hit in the L0 cache, the requests are sent to 
the previous column (i-1). 

5. Physical Considerations: Column Renaming and Chip Floorplan 

Levo avoids physically shifting the E-window by renaming the columns. Each physical column 
has one or more registers associated with it that hold its logical column number. This includes 
part of the LSTT register in the AS’s. When a logical left shift occurs, the logical column 
numbers of all of the columns are decremented. The column numbers are only a few bits long 
(about 3 bits for machines considered herein). Recall that time tags throughout the machine are 
formed from the concatenation of the logical column number and the fixed row number of the 
corresponding Active Station; therefore, as left shifts occur the time tags are automatically 
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corrected and their values re-used. Therefore the column renaming greatly simplifies the machine 
wiring, and largely eliminates the power consumption associated with a physical shift. 

A Levo chip floorplan is shown in Figure 8. The goal was to demonstrate Levo realizability 
on a single chip within the next few years; the goal was not area optimization or exactness per se. 
The Compaq/Intel EV8 chip floorplan and dimensions [31] were used to size similar Levo 
structures, and to ensure that Levo’s critical path is not substantially increased. 

The geometry used is 8-4-8, that is, 8 sharing groups per column, 4 M-path and 4 D-path 
Active Stations per sharing group, 8 M-path columns and 8 D-path columns (8 E-window 
columns, total). One FPU (Floating Point Unit) and one IEU (Integer Execution Unit) form the 
PE of each sharing group. 64-bit data paths and machine architecture are also assumed. 

In the floorplan the columns’ spanning buses are physically oriented end-to-end and in a loop 
to keep the critical path length low. Thus, spanning bus length is not a substantive issue for Levo, 
and hence the number or construction of the spanning busses in general are not issues. Every 
Active Station within a column is accessible from every other Active Station in the same column 
within one clock cycle. The delay from one forwarding unit to the next is one cycle or less. 
Assuming a target clock frequency of 10 GHz, possible within a few years, the realized clock 
frequency should be about 87% of this, that is, a performance loss of about 13%. This is offset 
much more by the IPC speedup of Levo for the geometry considered, at least a factor of 2. 

The Levo chip as described above is estimated to use about 600 million transistors; this is 
derived from both actual VHDL synthesis of key components [48] as well as rough estimates 
from the EV8 work. The current cost of the branch predictors is included in the above estimates, 
but the predictors are not included in the floorplan since they have not yet been tuned for the 
microarchitecture. The data value predictors are not included in either the cost or the floorplan 
since they currently add little to the performance, and thus are not needed.  

Also note that Levo is easily scalable. For example, in order to increase the machine size only 
pairs of columns need to be added to either end of the center channel and inserted in the physical 
loop; the cycle time is unaffected. 

In order to reduce cost, the number of FPU’s could be reduced if the applications are mainly 
General Purpose code; that is, some reduction and sharing of FPU’s is possible. IEU’s could also 
be constructed of separate Functional Units and shared, as is commonly done in current 
microprocessors. Also, using a 32-bit data path instead of 64-bits would approximately halve the 
required hardware. These methods also reduce power consumption. 

6. Other Approaches and Related Work 

Multithreading originally appeared in the Denelcor HEP machine [36]. In recent years 
multithreading has become very popular [41], being an attractive method of achieving higher 
resource utilization and hiding memory latency; it is used in  the Intel Pentium 4 Xeon and HT 
(Hyper-Threaded) processors. Normally threads are from different processes, but can be extracted 
from a single process with a compiler or, in some cases, the hardware itself [9]. However, while 
multithreading can exploit some ILP, including that from the use of multipath methods [47], it 
has not realized much IPC for a single process. Levo is able to achieve the latency hiding of 
multithreading, but on a single thread. Realizing multithreading on Levo is straightforward. 
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Figure 8: Levo chip floorplan for an 8-4-8 geometry. The elements are drawn to scale. Sharing 

Groups (SG) communicate via the centrally located spanning buses in the ‘Forwarding 
Unit’ sections. The L1 caches, I-fetch units and predictors are replicated once per 
vertical column pair. 
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Dataflow machines have been extensively studied [1]; they did not achieve expectations. 
While Levo shares some characteristics with dataflow machines, on the whole it is much 
different: Levo uses time tags throughout, has rampant speculation, full predication, and requires 
no compiler support, none of which are true for classic dataflow CPU’s. Limited data flow such 
as the Tomasulo algorithm [40] used in current superscalar microarchitectures is more successful, 
but is not current for our goals: predication is not handled, and it does not scale. 

Other approaches for dependency enforcement and code ordering use relational matrices to 
hold both explicit data and control dependency information [43-45] or ordering information [39]; 
these have quadratically-increasing costs with instruction window size. A compiler-assisted form 
of run-time predication appears in [16]; only simple hammocks are considered. 

While methods have been proposed to keep time-ordering information of memory accesses 
within the memory system, e.g., [11], we believe Levo’s distributed solution based on a standard 
memory system (from L1 on up) is preferable. As previously stated, Levo is well able to tolerate 
main memory latency, and allows for speculative memory accesses within the E-window. 

Lam and Wilson [18] conducted an extensive set of revealing simulations on some of the 
SPEC89 benchmarks assuming different control dependency resolution techniques. Their most 
advanced non-Oracle model was the equivalent of simple single-path control speculation with 
MCD. For this model, an average speedup of 40X was achieved on the integer benchmarks; 
unlimited execution resources were assumed.  For an Oracle predictor (a branch predictor that 
obtains 100% prediction accuracy), a speedup of 158X was obtained.   

Data address and value speculation [21] are promising areas to enhance Levo’s performance. 
Gonzalez and Gonzalez [10] performed a study on the potential impact of these on ILP, using the 
SPEC95 benchmark suite. When infinite execution resources were assumed a speedup of 42 was 
obtained. With a restricted window, and including branch prediction, the addition of data 
speculation provided a 2-3x speedup. In future work, Levo should be able to tap into this ILP 
resource and produce even larger IPC’s. 

Levo also achieves dynamic vectorization on legacy code, as is considered in [26] and done 
in [45]. The latter approach, however, proved to be unattractive to realize in hardware. 

Studies of multipath execution began with Riseman and Foster [33] and assumed infinite 
resources. It has also been studied with restricted resources, e.g., [5, 46].  

In recent work [19, 32] larger instruction windows have been examined to improve 
performance. However, the realized IPC is small (less than 2.5, for the SPECInt 2000 
benchmarks). [2] also presents the equivalent of a large instruction window, but with less 
hardware. While it is cheaper, and tolerates wire latency well, no IPC gains result. 

The Ultrascalar machine [12] achieves asymptotic scalability, but only realizes a small 
amount of IPC, due to its conservative execution model.  

VLIW [7] or EPIC [17] architectures were promising, but their promise has not been realized; 
it has become apparent that it is very hard for compiler ILP techniques alone to realize a high IPC 
(or operations per cycle) on general-purpose code. 

In [15] a very novel distributed microarchitecture is proposed for high clock-rates and 
simplicity. However, there is no improvement in IPC over a conventional superscalar processor, 
although certainly overall performance would likely increase (the latter is not explicitly measured 
in the paper). Another non-legacy processor is the RAW machine [38], prototyped in silicon. 
Tasks must be partitioned either with the limited compiler or by hand. RAW does not appear to 
be applicable towards general-purpose applications: SPECfp was evaluated, but SPECInt was not. 
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Grid architectures such as that in [25] are becoming popular in the research community. 
Levo, on the surface, is similar to such machines but differs widely in its abilities and 
implementation. In the case of [25], compiler support is necessary for its operation (legacy code 
cannot be used), some of the resources are still centralized, and the IPC realized is not yet 
substantial when realistic assumptions are used. In more recent work [34], the arithmetic mean 
IPC for a TRIPS grid processor on some subset of SPECInt codes (not including gcc or go), 
with several ideal assumptions, and requiring compiler support, is about 2.0. 

Caches below the L1 level have been proposed; they are similar to our L0 caches, but ours 
are distributed. In [49] a compiler-assisted microcache-management algorithm for EPIC 
applications is proposed. It obtained similar results as the Levo L0 caches in terms of the 
percentage of the loads bypassed, but Levo requires no compiler-assist.  

It is difficult to reduce the effects of a large number of ports on the ISA register file [29]. We 
find it best to eliminate the issue; our approach is supported in [35]. Concerning register-
clustering, while it has been suggested that point-to-point networks are preferable to bus 
interconnects [28], and while they may be for traditional microarchitectures, the assumptions in 
the latter paper do not apply to Levo in general.  

7. Experimental Methodology 

A cycle-accurate combined trace- and execution-driven simulator (FastLevo) was written to 
model Levo’s key structures and measure its performance; it accurately models wrong-path 
behavior. FastLevo uses traces of MIPS-1 machine code (32-bit machine). The latter is generated 
from the benchmarks with a native SGI compiler using the ‘-O’ optimization and ‘-o32’ MIPS-1 
switch. (FastLevo also simulates the few MIPS-2 instructions occurring in the SGI compiler 
libraries.)  

Ten SPECInt benchmarks were simulated: 
 SPECInt95: compress, go, ijpeg 
 SPECInt2000: bzip2, crafty, gcc, gzip, mcf, parser, vortex 
Each benchmark was simulated for 100 million instructions with data gathering turned off, to 
warm up the predictors and caches and ignore program initialization. Data was gathered during 
the simulation of the next 500 million instructions. The benchmarks’ reference inputs were used, 
except for compress, for which the buffer size was reduced so that compress completed its 
initialization section within the first 100 million instructions. 

The common machine assumptions are shown in Table 1. 

8. Experimental Evaluation and Characterization 

The major sets of experiments were: microarchitecture assumptions’ verification, performance 
sensitivity to machine geometry, and performance effect of ideal/real I-Fetch and memory 
systems. Our baseline point of comparison is the SimpleScalar/PISA [3] machine model (similar 
to MIPS-1 with a conventional superscalar processor’s construction). We ran the PISA model 
assuming an unrealizable 32-way issue unit and with other resources unlimited. It exhibited a 
harmonic mean IPC of 1.96, with the same benchmark assumptions.  
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Parameter Value 

Branch predictor 2-level gshare w/ 1024 BHT and 4096 GPHT, 2-bit 
saturating counter, one per E-window row. 

Data value predictor 
Computational-stride predictor w/ 4096 entries, 2 source 
operands per entry, 2-bit saturating counter per operand, 
one per E-window row. 

Word size 32 bits 
Processing Element  
    latencies/pipelining Same as MIPS R4000. 

L0 hit latency 1 cycle 
L0 size 32 one-word entries 
L0 configuration Fully-associative 
L0 block size 1 word 

L1-I,D hit latency 1 cycle (cache access time itself; additional 1 cycle bus 
delay is included in the simulations) 

L1-I,D size (each) 64 KBytes 
L1-I,D configuration 2-way set associative 
L1-I,D block size 32 bytes 
L2 (unified I/D) hit latency 10 cycles 
L2 size 2 MBytes 
L2 configuration Direct-mapped 
L2 block size 32 bytes 
Main memory latency (no 
     misses) 100 cycles 

Main memory interleave factor 4 
Return stacks 2, 16 entries each. (in I-Fetch unit) 
Spanning bus delay  
    (no contention) 1 cycle 

Forwarding Unit delay  
    (no bus contention) 1 cycle 

Buses per RFU and per MFU 2 input and 2 output buses 
Buses per PFU 1 input and 1 output bus 

M-path to D-path column switch Switch itself: 1 cycle. D-path results broadcast as bus 
resources permit. 

Columns per D-path 1 column; same number of columns as for M-paths 

Table 1: Levo default parameter values. 

8.1. Microarchitecture Assumptions’ Verification 
We first hypothesized that buses can be segmented with non-zero delay forwarding units inserted 
between the segments. Figure 9 presents the performance degradation experienced when the 
forwarding unit delay is increased from 0 to 3 cycles. It is seen that the typical delay, 1 cycle, is 
easily tolerated, having a performance loss of 6%, confirming the hypothesis. 
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Figure 9: Performance versus Forwarding Unit delay. The baseline is the performance with 0 

cycle FU delay. Performance is relatively insensitive to FU delay. 8-8-8 Levo 
geometry used with spanning bus length of 8 SGs. 

We also hypothesized that buses need only be some fixed length (as a machine design 
increases) to capture most of the performance. Figure 10 shows the performance improvement 
with increasing bus length, conservatively assuming a constant spanning bus delay of 1 cycle. It 
is seen that there is only an 11% performance increase when doubling the spanning bus length 
from 8 to 16 SGs, with a much larger improvement of 29% going from 4 SGs to 8 SGs; therefore, 
a spanning bus length of 8 is necessary and adequate, and the hypothesis is confirmed. 

8.2. Levo Geometry Effects on Performance 
In this set of experiments each machine geometry dimension was varied with the other two 
dimensions held constant. See Figure 11 for the results.  

Most often, increasing any dimension increased the performance, frequently dramatically. 
The smallest changes occurred with an increased number of columns, with a 10% increase on 
average when going from 4 to 16 columns. The largest changes were seen with increased Sharing 
Groups per column, with a 55% increase in performance going from 4 to 12 SG/col. 

While increasing columns and SG/col gave monotonically increasing trends, increasing the 
AS/SG gave varying trends. This is to be expected: the former changes increase the number of 
PE’s, while the latter only determines PE utilization, which varies across benchmarks due to code 
variations. On average, there was no need to go above 12 AS/SG, which gave a 19% 
improvement over 4 AS/SG. Part of the reason(s) why the gain in performance for increased 
SG/col is greater than that for an increased number of columns, but only part of the reason, is the 
short spanning bus length (4) of the baseline (4-4-8) for SG/col; see Figure 10. 
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Figure 10: Performance versus spanning bus length. The baseline is the performance with 16 

SGs. Most of the performance, 89%, is realized with a spanning bus length of only 8 
SGs. 16-8-8 Levo geometry used. 

8.3. Ideal/Real IPC Performance 
The effects of ideal/real I-Fetch and an ideal/real memory system were examined for several 
different machine geometries. Ideal I-Fetch is realized by using oracles for the branch predictors 
at instruction load time. Note that the branch direction can change within the E-window during 
program execution; thus, the oracle only applies to I-Fetch, not execution. An ideal memory 
system is realized by assuming 100% L1 data and instruction cache hit rates. The results are 
presented in Figure 12; all four combinations of ideal/real – I-Fetch/memory system are shown, 
each for four machine geometries. IPC ranges from a low of about 4 to a high of about 31. We 
have also seen IPC’s of up to 80 with a 64-16-16 geometry, ideal instruction fetch, and 4 buses 
per forwarding unit (not shown in the figure). 

Overall, we have three major conclusions from these results. First, with realistic assumptions 
and a current-sized geometry (8-4-8), we are not yet able to realize high IPC (the harmonic mean 
is about 4 IPC). Second, good news, there is still more IPC to get, given the high ideal numbers 
(about 10 IPC for the 8-4-8 geometry). Lastly, the memory system functions well with or without 
Ideal I-Fetch, primarily leaving the I-Fetch system to be improved. We are currently studying 
many possible solutions to the I-Fetch issues. 
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Figure 11: Performance effects of Levo geometry changes. (Legend: in lower right-hand corner.) 

Each geometry variable is varied in turn, holding the other variables constant. Each 
baseline is the performance of the geometry having quantity 4 elements of the 
corresponding independent variable. All geometries used 8 SGs for the spanning bus 
length, except for 4-4-8, which used 4 SGs. (Recall that the geometry notation is: 
SG’s per column – AS’s per SG – M and D paths, each, per column.) 
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Figure 12: Performance in IPC of Levo with Ideal Fetch/Ideal Memory, Ideal Fetch/Real 

Memory, Real Fetch/Ideal Memory, and Real Fetch/Real Memory (see legend, lower 
right corner). (Again, the geometry notation is: SG’s per column – AS’s per SG – M 
and D paths, each, per column.) 
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8.4. Other Levo Characteristics’ Results 
Five other additional experiments were performed, again over all benchmarks, to investigate 
certain other performance characteristics of Levo. The experiments, their results and conclusions 
are presented in Table 2. A Levo 8-4-8 geometry was used throughout. 

 
Experiment Result(s) Conclusions 
Varying number of buses per 
Forwarding Unit. Baseline: 2 
buses per Register FU and 
Memory FU, and 1 bus per 
Predicate FU. 

To 1 bus/FU: 14% IPC loss 
To 4 buses/FU: 3% IPC gain 

For current or near in 
geometries, the baseline is a 
good design point. Little is 
gained by going to more 
buses. 

Removal of value prediction. IPC loss of less than 0.8% 
Don’t use a traditional value 
predictor with current Levo 
design.2

Going from 1 to 2 columns 
per D-path, total D-path 
columns held constant. 

IPC loss of about 8% 
Single column D-paths are 
preferred, at least for smaller 
machines. 

Use of D-paths. IPC gain of about 45% Keep D-paths in Levo. 
Use of per-row branch 
predictors, a necessity, vs. 
baseline of a single branch 
predictor of the same size 
using all branch outcomes. 

IPC loss of about 0.4% 

Using per-row predictors, 
even with their limited view, 
does not significantly reduce 
performance. 

Table 2:  Other Levo experiments. 

9. Summary 

One billion transistor microarchitectures have many daunting requirements: high IPC, high main 
memory latency tolerance, high clock rates, and ability to execute legacy codes. Further, such 
machines must honor hard chip realization constraints such as scalable structures and short buses. 
This paper has proposed the Levo microarchitecture, targeted to satisfy all of these requirements. 
The reorder buffer and scalable bussing structure issues have been thoroughly addressed and 
resolved in Levo. The performance simulation results are very encouraging, both verifying the 
basic tenets of the resource flow model and demonstrating IPC’s in the 10’s for the Levo core E-
window and memory system. We are currently pursuing improvements including more accurate 
I-Fetch and data value prediction. 

                                                      
2 The problem is that while the initial data value predictions have typical accuracies at instruction load 

time, the AS operands are overwritten with incorrect values when initially in the E-window, almost 
completely negating the benefits of the predictions. This is due to the rampant speculation of the resource-
flow execution model. Having AS’s ignore some operand updates may help. We are also exploring other 
value prediction approaches. 
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