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A number of studies into the limits of instruction level parallelism (ILP) have been promising in that they have
shown that there is a significant amount of parallelism within typical sequentially oriented single-threaded
programs (e.g., SpecInt-2000). The work of researchers like Lam and Wilson [13], Uht and Sindagi [20],

Gonzalez and Gonzalez [7] have shown that there exists a great amount of instruction level parallelism
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Abstract

This paper explores a microarchitecture that achieves high execution performance on conventional
single-threaded program codes without compiler assistance. Microarchitectures that can have several
hundreds of instructions simultaneously in execution can provide a means to extract larger amounts of
instruction level parallelism, even from programs that are very sequential in nature. However, several
problems are associated with such microarchitectures, including scalability issued related to control flow
and memory latency.

We present a basic overview of our microarchitecture and discuss how it addresses scalability as we
attempt to execute many instructions in parallel. We also show how we use multipath execution to limit
the impact of conditional branch mispredictions. We provide simulation results for several geometries of
our microarchitecture that illustrate how high IPC can be realized from integer programs. We also explore
algorithms that dynamically reassign speculative paths, reallocating hardware resources to higher priority
paths. Finally, we present data that shows the tolerance of the microarchitecture to high memory latency.
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(ILP) that is not being exploited by any existing computer designs. Unfortunately, most of the fine-grained
instruction level parallelism inherent in integer sequential programs spans several basic blocks. Data and
control independent instructions, that may exist far ahead in the program instruction stream, need to be
speculatively executed to exploit all possible inherent ILP. A large number of instructions need to be fetched
each cycle and executed concurrently in order to achieve this. We need to find the available program ILP
at runtime; we need to provide sufficient hardware to find, schedule, and otherwise manage the out-of-order
speculative execution of control and data independent instructions.

The relatively small instruction fetch windows present on existing processor designs cannot span the pro-
gram instruction space necessary to effectively exploit the available instruction-level parallelism. A microar-
chitecture with a large instruction fetch window and execution window offers the possibility to both expose
(fetch) and exploit (execute) the available ILP. For those computer applications that demand the highest IPC
possible on integer codes, a microarchitecture that is able to execute possibly several hundreds of instructions
speculatively is needed in order to maximize execution performance.

A fundamental challenge is how to find program parallelism and then allow execution to occur speculatively
and out of order over a very large number of instructions. Of course, the microarchitecture has to also provide
a means to maintain the architectural program order that is required for proper program execution. It is also
usually very desirable to support legacy instruction set architectures (ISAs) when pursuing high IPC. For this
reason, we want to explore a microarchitecture that does not impact the ISA.

We present a novel microarchitecture in this paper that can be applied to any existing ISA. Our microar-
chitecture is targeted at obtaining substantial program speedups on integer codes. The microarchitecture can
speculatively execute hundreds of instructions ahead in the program instruction stream and thus expose large
amounts of inherent ILP. We use multipath execution to cover latencies associated with branch mispredic-
tions. We also take advantage of control and data independent instructions through our use of execution-time
predication. Finally, the microarchitecture is also substantially insensitive to memory component latencies
even though it requires higher memory bandwidth than more conventional machines.

The rest of this paper is organized as follows. Section 2 presents related work on high-IPC machines and on
multipath execution. Section 3 presents our proposed microarchitecture. Section 4 presents simulation results
for a range of machine configurations, and shows the potential impact of multipath execution when applied.
We also discuss how our microarchitecture reduces our dependence on the memory system by providing a large
amount of local caching on our datapath. Finally, we summarize and conclude in section 5.

2 Background

There have been several attempts at substantially increasing program IPC through the exploitation of ILP.
The Multiscalar processor architecture [18] is another attempt at realizing substantial IPC speedups over
convention superscalar processors. However, our approach is quite different than theirs and their approach
relies on compiler participation where we do not. A notable attempt at realizing high TPC was done by
Lipasti and Shen on their Superspeculative architecture [14]. They achieved an IPC of about 7 with realistic
hardware assumptions. The Ultrascalar machine [10] achieves asymptotic scalability, but only realizes a small
amount of IPC due to its conservative execution model. Nagarajan et al proposed a Grid Architecture of ALUs
connected by an operand network [1]. This has some similarities to our work. However, unlike our work, their
microarchitecture relies on the coordinated use of the compiler along with a new ISA to obtain higher TPCs.

Early work on multipath execution was dominated by IBM in the late 1970s and 1980s [5]. The earliest
attempts at multipath execution started with the ability to prefetch down both outcomes of a conditional
branch. This became more aggressive to the point of actually executing down both outcomes of a conditional
branch. This has been explored in work such as that by Wang [23]. More aggressive research by Uht and
Sindagi [20] explored the intersection of both multipath execution and future large-scale microarchitectures
capable of possibly hundreds of instructions being executed simultaneously. They also addressed the general
question of speculatively executing more than two paths simultaneously. Work on dual path execution (only
two speculative paths) has been done by Heil and Smith [9]. Klauser et al explored multipath execution
(including more than two speculative paths) on the PolyPath microarchitecture [12].

Exploring multipath execution in the context of simultaneous multithreading (SMT) has been done by
Wallace et al [22]. Ahuja et al [2] explore some limits for speedups from multipath execution but their work
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Figure 1: High-level View of the Distributed Microarchitecture. Shown are the major hardware components of
the microarchitecture. With the exception of the execution window block, this is similar to most conventional
microarchitectures

is still largely restricted to more conventional (modest sized) microarchitectures. Our present work explores
the use of multipath execution on a significantly larger scale than that of Ahuja or most previous work.

3 Microarchitecture Description

The microarchitecture is very aggressive in terms of the amount of speculative execution it performs. This is
realized through a large amount of scalable execution resources. Resource scalability of the microarchitecture
is achieved through its distributed nature along with repeater-like components that limit the maximum bus
spans. Contention for major centralized structures is avoided. Conventional centralized resources like a register
file, reorder buffer, and centralized execution units, are eliminated.

The microarchitecture also addresses several issues associated with conditional branches. Spawning al-
ternative speculative paths when encountering conditional branches is done to avoid branch misprediction
penalties. Exploitation of control and data independent instructions beyond the join of a hammock branch
[6] is also capitalized upon where possible. Choosing which paths in multipath execution should be given
priority for machine resources is also addressed by the machine. As shown by Uht and Sindagi [20], equal
priority to all simultaneous paths of a program is not the most efficient use of hardware resources. The pre-
dicted program path is referred to as the mainline path. We give execution resource priority to this mainline
path with respect to any possible alternative speculative paths. Since additional speculative paths have lower
priority with respect to the mainline path, they are referred to as disjoint paths. The term disjoint refers to
that fact that the assignment of execution resources for that path is likely (and should likely) be deferred in
time as compared with when execution resources are assigned to the mainline path. This sort of strategy for
the spawning of alternative speculative paths results in what is termed disjoint eager execution (DEE). This
is in contrast to singlepath speculative execution (widely used at the present) or eager ezecution. We therefore
refer to disjoint paths as simply DEF paths. These terms are taken from Uht’s 1995 work [20]. More detailed
information about this microarchitecture can be found in a technical report by Uht et al [21].

3.1 High-Level Microarchitecture Components

Figure 1 provides a high-level view of our microarchitecture. Our microarchitecture shares many basic simi-
larities to most conventional machines. The main memory block, the L2 cache (unified in the present case),
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Figure 2: High-level View of the Distributed Microarchitecture. Shown is a layout of the Active Stations
(AS) and Processing Elements (PE) along with some bus interconnections to implement a large, distributed
microarchitecture.

and the L1 instruction cache are all rather similar to those in common use. Except for the fact that the main
memory, L2 cache, and L1 data cache are all address-interleaved, there is nothing further unique about these
components. Our L1 data cache is similar to most conventional data caches except that it also has the ability
to track speculative memory writes. Our L1 d-cache shares a similar goal with the Speculative Versioning
Cache [8] but is simpler is some respects. Since we allow speculative memory writes to propagate out to the
L1 data cache, multiple copies of a speculative write may be present within the L1 data cache at any time.
They are differentiated from each other through the use of time-tags. Time-tags are the basic mechanism
used in the microarchitecture to order all operands, including memory operands, while they are being used by
instructions currently being executed. Time-tags are small values that are associated with operands that serve
as both an identifying tag and as a means to order them with respect to each other. The Warp Engine [4] also
used time-tags to manage large amounts of speculative execution, but our use of them is much simpler than
theirs.

The i-fetch unit first fetches instructions from i-cache along one or more predicted program paths. Due
to our relatively large instruction fetch bandwidth requirement, we allow for the fetching of multiple i-cache
lines in a single clock. Instructions are immediately decoded after being fetched. All further handling of the
instructions is done in their decoded form. Decoded instructions are then staged into an instruction load buffer
so that they are available to be loaded into the ezecution window when needed. The execution window is
where our microarchitecture differs substantially from existing machines. The transfer of decoded instructions
from the instruction load buffer to our adaptation of reservation stations is termed instruction load. This
instruction load buffer is organized so that a large number of instructions can be broadside loaded into the
execution window in a single clock. The multiple buses going from the i-fetch unit to the execution window in
Figure 1 is meant to reflect this operation. This maximum number of instructions loaded into the execution
window at a time is termed the column height of the machine.

3.2 The Execution Window

Figure 2 shows a more detailed view of the execution window with its subcomponents. We have extended the
idea of Tomasulo’s reservation station [19] to provide the basic building block for a distributed microarchi-
tecture. Tomasulo’s reservation station provided for the simultaneous execution of different instructions over



several functional units. Register results from the functional units were placed on a common data bus and
looped back to provide source register operands for instructions waiting in the reservations stations as well as
for updating of the register file. In our microarchitecture, an output result is not looped back to the input of
the same reservation station that provided the result but rather is forwarded to different stations that are spa-
tially separated, in silicon or circuit board space, from the first. This operation is termed operand forwarding.
We call our adaptation of the reservation station an active station (AS). Like a reservation station, an active
station can only hold a single instruction at a time. After an instruction is loaded into as AS, it remains there
until it can be retired (either committed or squashed) from the execution window. However, instructions can
be re-executed when events indicate that a re-execution is warranted or required for proper program order
fulfillment.

Rather than lay the ASes out in silicon simply next to functional units that will execute the instructions
loaded to them (like with the original reservation station idea), we lay them out in a two dimensional grid
whereby sequentially loaded instructions will go to sequential ASes down a column of the two dimensional grid
of ASes. The use of a two dimension grid simply provides a means to implement the necessary hardware either
in a single silicon IC or through several suitable ICs laid out in a grid on a circuit board. The number of ASes
in the height dimension of the grid is the same as the column height of the machine, introduced previously.
The example machine of Figure 1 has a column height of six (six instruction load buses shown feeding the
execution window). The column height can also be seen more clearly in Figure 2 when the total number of
ASes in a single column of ASes is counted.

Dispersed among the active stations are associated execution units. An execution unit is represented in
the figure as a processing element (PE). PEs may consist of an unified all-purpose execution unit capable of
executing any of the possible machine instructions or, more likely, consist of several functionally partitioned
units individually tailored for specific classes of instructions (integer ALU, FP, or other), as is typical of most
current machines. Groups of active stations along with their associated processing element are termed a sharing
group (SG). They are termed sharing groups because the execution resources within one of them can be shared
among the enclosed ASes. The example machine of Figure 2 consists of two columns of SGs. Sharing groups
somewhat resemble the relationship between the register file, reorder buffer, reservation stations, and function
units of most conventional microarchitectures. They have a relatively high degree of bus interconnectivity
between them, as conventional microarchitectures do. The ASes serve the role of both the reservation station
and the reorder buffer of more conventional machines. The transfer of a decoded instruction, along with its
associated operands, from an AS to its PE is isolated to within the given SG. The use of this execution resource
sharing arrangement also allows for reduced interconnections between adjacent SGs. Basically, only operand
results need to flow from one SG to subsequent ones.

In our present microarchitecture, we always have two columns of ASes within a SG. The first AS column
is reserved for the main-line path of the program and is labeled ML in the figure. The second column of
ASes is reserved for the possible execution of a DEE path and is labeled DEF in the figure. In this machine
example, each SG contains three rows of ASes (for a total of six) and a single PE. Many machine sizes have
been explored so far but only a subset of these sizes is further investigated in this paper. A particular machine
is generally characterized using the tuple:

e sharing group rows

e active station rows per sharing group
e sharing group columns

e number of DEE paths allowed

These four characteristic parameters of a given machine are greatly influential to its performance, as expected,
and is termed the geometry of the machine. These four numbers are usually concatenated so that the geometry
of the machine in Figure 2 would be abbreviated 2-3-2-2.

When an entire column of ASes is free to accept new instructions, generally an entire column worth of
instructions are loaded to the free AS column from the instruction load buffer, in a single clock. Conditional
branches are predicted just before they are entered into the instruction load buffer (for subsequent load to the
ASes). The prediction of a branch accompanies the decoded instruction on an instruction load operation.



Also employed within the execution window is a scheme to dynamically predicate, at execution time, all
instructions that have been loaded into active stations. This predication scheme essentially provides for each
loaded instruction an ezecution predicate. These execution predicates are just a single bit (like with explicit
architectural predication) but are entirely maintained and manipulated within the microarchitecture itself,
not being visible at the ISA level of abstraction.

3.3 Operand Forwarding and Machine Scalability

An interconnect fabric is provided to forward result operands from earlier ASes to later ASes, in program order.
Result operands are one of three possible types: register, memory, and instruction execution predicates. The
interconnect allows for arbitrary numbers of sharing groups to be used in a machine while still keeping all bus
spans to a fixed (constant) length. All of the buses in Figure 2, with the exception of the instruction load
buses, form the interconnection fabric. Several bus arrangements are possible but we only further explore one
such arrangement (that shown in the figure). In the general case, several buses are used in parallel to make
up a single forwarding span. This is indicated by the use of the bold lines for buses in the figure. More than
one bus in parallel for each bus span is generally required to meet the bandwidth needs of the machine.

Active bus repeater components are used (and required) to allow for constant length bus spans. A bus
repeater component is generally termed a forwarding unit (FU) and is so labeled in the figure. These forwarding
units do more than just repeat operand values from one span of a bus to the next. For registers and memory,
operands are filtered so that redundant forwards of the same value (as compared with that last forwarded)
are eliminated. These can also be termed silent forwards. This filtering provides a means to reduce the
overall bandwidth requirements of the forwarding interconnection fabric. Each forwarding unit employed in
the present work also has a small amount of storage for memory operands. This storage serves as a cache for
memory operand values. We term this small cache storage a L0 data cache.

For register and predicate operands, values that are generated by ASes contend for one of the outbound
buses (labeled shared operand forwarding buses in the figure) to forward the value. Requests for bus use will
be satisfied with any bus clock-slot that may be available on any of the buses in parallel, belonging to a given
span. All other ASes on the outbound bus span snoop operand values forwarded from previous (in program
order) ASes. In addition, a forwarding unit (the bus repeater) also snoops the same operands and forwards
the operand value to the next bus span if necessary (if the value was different than the previous value). For
register and predicate operands, they are also looped around from the bottom of one column of SGs to the
top of the next column of SGs. Operands from the bottom of the far right column of SGs gets looped around
to the top of the far left column. This behavior forms the characteristic ring pattern of operand flow, inherent
in many microarchitectures. Forming a closed loop with these buses, and essentially just renaming columns
(identifying the one closest to retirement), is easier than physically transferring (shifting) the contents of one
column to the next when a column of ASes retires.

For memory operands, we employ a second operand forwarding strategy. When memory operands are
generated by ASes, again the AS contends for one of the outbound buses (labeled shared operand forwarding
buses in the figure) in order to forward the operand value. However, unlike the register and predicate operand
forwarding strategy, memory operands also travel backwards, in program ordered time, and get snooped by
the forwarding units that are at the top of each SG column. This is done so that the operand can be transfered
onto a memory operand transfer bus, shown at the top of Figure 2. These buses are address-interleaved and
provide the connectivity to get memory operands (generally speculative) over to the L1 data cache. Values
are tentatively stored in the L1 data cache along with their associated operand time-tags until a committed
value is determined. Similarly, operands returning from the L1 data cache to service requests from ASes,
are first put on one of the memory operand transfer buses (based on the interleave address of the operand).
These operands then get snooped by all of the forwarding units at the top of each SG column, after which the
operand is forwarded on a shared operand forwarding bus to reach the requesting ASes.

Persistent register, predicate state and some persistent memory state is stored in the forwarding units.
Persistent state is not stored indefinitely in any single forwarding unit but is rather stored in different units as
the machine executes column shift operations (columns of ASes get retired and committed). However, this is
all quite invisible to the ISA. This microarchitecture also implements precise exceptions [17] similarly to how
they are handled in most speculative machines. A speculative exception (whether on the main-line path or a
DEE path) is held pending (not signaled in the ISA) in the AS that contains the generating instruction until
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Figure 3: Operand snoop logic within an AS. The logic used for snooping of input operands for ASes is shown.

it would be committed. No action is needed for pending exceptions in ASes that eventually get squashed.
When an AS with a pending exception does commit, the machine directs the architected control flow off to
an exception handler through the defined exception behavior for the given ISA. This might include saving the
precise instruction return address to either an ISA architected register or memory. Typically, the exception
handler code will save the architected registers to memory using normal store instructions of the ISA. Interrupts
can be handled in more flexible ways than exceptions. One way to handle interrupts is to allow all instructions
currently being executed within the execution window to reach commitment, then architected program flow
can vector off to a code handler, similarly as the case of instruction exceptions above.

3.4 Enforcing Program Order and Dependencies

Program dependencies (control, register, and memory) are maintained through the use of time-tags. Time-
tags are associated with all transient operands within the machine. This has some resemblance to register
tags used in more conventional microarchitectures but has been more generalized for use in this distributed
microarchitecture. Since instructions remain in the ASes that they were loaded into until they retire, the whole
set of ASes fulfill the role of the reorder buffer or register update unit of more conventional microarchitectures.
As a column of ASes gets retired, that column becomes available for the loading of newly decoded instructions.
In addition, a time-tag associated with each column get decremented. Time-tags associated with operands
can be decomposed into row and column parts. The column part of the operand time-tag is identically the
column time-tag, so when a column has its time-tag decremented, it effectively renames the operands within
that column. The next column in the machine (with the next higher time-tag) becomes the next column that
will get retired. The operation of decrementing column time-tags in the execution window is termed a column
shift. The hardware used for the snooping of an input operand of an AS is shown in Figure 3. Basically, a new
operand is snarfed when it has the same address and path identifier as the current AS as well as a time-tag
value that is less than that of the current AS itself but greater or equal to that of the last snarfed operand.
Simpler snooping hardware is used in forwarding units. A more detailed discussion of the mechanism used for
enforcing program dependencies can be found in a report by Kaeli et al [11].

3.5 Conditional Branches and Multipath Execution

If a conditional backward branch is predicted taken, the i-fetch unit will speculatively follow it and continue
loading instructions into the execution window for the mainline path from the target of the branch. This case
allows for the capture of program loops within the execution window of the machine and can be thought of as
hardware loop unrolling. For a backward branch that is predicted not-taken, we continue loading instructions
following the not-taken output path. If a forward branch has a near target, such that it can be loaded within
the execution window, then we load instructions following the not-taken output path of the branch, whether
or not it is the predicted path. This represents the fetching of instruction in the memory or static order
rather than the program dynamic order and is very common in the absence of a loop. The fetching and
loading of instructions following the not-taken output path (static program order) of a conditional branch is



very advantageous for capturing hammock styled branch constructs. Simple single-sided hammock branches
generally have near targets, they are thus captured within the execution window.

Our mainline path continues along the predicted branch output path regardless of whether it was the taken
or not-taken one. We spawn a DEE path for the opposite output of the branch from the mainline path case,
whatever it is. For forward branches with a far target, if the branch is predicted taken, we load instructions
following the target of the branch. If the branch is predicted not-taken, we continue loading instructions for
the mainline path following the not-taken outcome of the branch. In both of these cases, we do not spawn a
DEE path for this branch.

DEE paths are created by loading an available column of ASes, a free second column of ASes within a
SG column, with the same decoded instructions from the AS column that contained the conditional branch
instruction that gave rise to the DEE path. However, there are a limited number of AS columns available
at any one time for DEE paths in the machine. Several strategies for the management of the DEE path AS
columns are possible and we present two such strategies in the present work.

One such strategy is very simple and just spawns DEE paths for suitable conditional branches (as explained
above) on a first come, first served basis. That is, as machine execution resources that are reserved for DEE
paths become available, those resources are assigned to the next conditional branch for which a DEE path
has not already been assigned. The DEE path is allowed to remain executing until its originating conditional
branch gets resolved, at which point either it or the corresponding main-line path is squashed (the other of
the two paths commits).

A second strategy that we explore is to monitor the amount of time that existing DEE paths have been
resident in the execution window, and to squash those paths that have reached a residency threshold. Residency
time in the execution window is approximated by the number of column shifts that have occurred since a DEE
path was spawned. Again, a column shift corresponds with the retirement of the AS column with the lowest
valued time-tag. The rationale is that the longer a DEE path is resident within the execution window, the
likelihood of the conditional branch that gave rise to it being mispredicted becomes less. Thus, that DEE path
is no longer using the underlying execution resources as well as maybe some new DEE path might (remember
that the DEE path is used to follow the not predicted path). When a DEE path is squashed in order to make
room for the spawning of a new DEE path, the associated executed resources are released and assigned to
another conditional branch. This is termed the release strategy of managing DEE paths.

4 Simulation Results

We first describe our simulation process. Then results showing IPCs for each of three modes of execution of
the machine is given. Finally, results showing the sensitivity of our machine to varying the latencies of several
components in the memory hierarchy is presented.

4.1 Methodology

The simulator is a recently built tool that shares some similarity to SimpleScalar [3] but which was not based
on it. We execute SpecInt-2000 and SpecInt-95 programs on a simulated machine that features a MIPS-1 ISA
along with the addition of some MIPS-2 and MIPS-3 ISA instructions. We are using the standard SGI Irix
system libraries so we needed to also support the execution of some MIPS-2 and MIPS-3 instructions (present
in the libraries). All programs were compiled on an SGI machine under the Irix 6.4 OS and using the standard
SGI compiler and linker. Programs were compiled with standard optimization (-0) for primarily the MIPS-1
ISA (-032). No changes to the SGI compiler or linker were made to create the binary benchmark programs.

We chose five benchmark programs to work with, four from the SpecInt-2000 benchmark suite and one from
the SpecInt-95 program suite. These programs were chosen to get a range of different memory and looping
behavior, while also presenting challenging conditional control flow behavior. The particular programs used
along with some statistics are given in Table 1. All programs were executed using the SpecInt reference
inputs. All accumulated data was gathered over the simulated execution of 500 million instructions, after
having skipped the first 100 million instructions. The first 100 million instructions, however, were used to
warm up the various simulator memory caches. The dynamic conditional branches in Table 1 are a percent
of total dynamic instructions. The numbers for the Simple Single-sided (S-S) Hammock branches [6, 16] are
percentages of total dynamic conditional branches.



Table 1: Benchmarks Programs Simulated and Some Statistics.

benchmark ‘ bzip2 ‘ parser ‘ go ‘ gzip ‘ gap ‘
br. prediction accuracy | 90.5% | 92.6% | 72.1% | 85.4% | 94.5%
avg. L1-T hit rate 97.2% | 96.6% | 92.4% | 94.7% | 89.0%
avg. L1-D hit rate 98.8% | 99.0% | 98.8% | 99.8% | 99.3%
avg. L2 hit rate 90.1% | 86.0% | 96.8% | 73.0% | 88.5%
dynamic cond. brs. 12.0% | 11.0% | 12.1% | 13.4% | 6.5%
S-S hammock brs. 23.4% | 42.1% | 35.7% | 45.2% | 27.3%

Table 2: Machine geometries simulated for each of the benchmark programs.
SG rows | ASes per SG | SG columns | max D-paths
8 4 8 8
8 8 8 8
16 8 8 8
32 2 16 16
32 4 16 16

4.2 TPC Results for Singlepath and Multipath Execution

In this section, we present IPC data for three different modes of machine execution, each on five machine
geometries. The execution modes are : no multipath execution (singlepath), simple multipath execution ,
and enhanced multipath execution. The numbers of each of the major machine components, for each of the
five simulated geometries, are given in Table 2. Although we have explored a large number of various sized
machines, these particular geometries were chosen in order to get a range of IPC performance across a number
of very different machine sizes and shapes. The common machine characteristics used in this section for
obtaining IPC results is given in Table 3. The L1, L2, and main memory access latencies do not include the
forwarding unit and forwarding bus delays within the execution window. These machine characteristics are
fairly representative of existing typical values for a 2 GHz processor. They are similar to, or more conservative
than, a recent Pentium-4 (0.13 um) processor [15]. The IPC results for each of the three modes of machine
execution are presented in Tables 4, 5, and 6. The geometry labels (4-tuples) at the tops of these tables consist
of the concatenated numbers of machines components for: SG rows, AS rows per SG, SG columns, and the
number of DEE paths allowed for that execution.

Table 4 gives the IPC results for each of the benchmark programs, when executing in singlepath mode.
For singlepath execution, the allowed number of DEE paths is zero.

In addition to the individual benchmark IPC results, we also present the harmonic mean of the IPC across
all benchmarks. Table 5 gives the results using the simple method (first-come-first-serve) for the spawning of
DEE paths.

Examining the data, we can see that our simple (first-come-first-serve) multipath execution strategy signif-
icantly outperforms singlepath execution. This was expected as the microarchitecture is able to capture inside
of the execution window many of the instructions following both outcomes of forward conditional branches,
thereby largely hiding any misprediction penalties of those branches.

Next we want to get results for machine simulations using our more complicated release management
strategy for DEE paths. In this enhanced strategy, DEE paths are allowed to remain within the execution
window for a certain number of columns shifts (described previously). We first attempt to determine the best
number of column shifts to use as a metric for path residency. For this we took one machine geometry and
varied the number of column shifts the machine waits before releasing a DEE path. We use the machine



Table 3: General machine characteristics. These machine parameters are used for all simulations as the default
except where one of these parameters may be varied.

L1 I/D cache access latency 1 clock

L1 I/D cache size 64 KBytes

L1 I/D block size 32 bytes

L1 I/D organization 2-way set associative
L2 cache access latency 10 clocks

L2 cache size 2 MBytes

L2 block size 32 bytes

L2 organization direct mapped

main memory access latency 100 clocks

memory interleave factor 4

forwarding unit minimum latency (all) | 1 clock

forwarding-bus latency (all) 1 clock

number of forwarding buses in parallel | 4

branch predictor PAg

1024 PBHT entries
4096 GPHT entries
saturating 2-bit counter

Table 4: TPC results for singlepath execution.
geometry 8-4-8-0 | 8-8-8-0 | 16-8-8-0 | 32-2-16-0 | 32-4-16-0

bzip2 3.4 4.2 48 4.2 4.7
parser 2.8 3.3 38 35 3.9

go 2.6 3.2 3.6 3.4 3.6

gzip 3.4 44 5.2 48 5.3

gap 45 5.6 6.1 6.5 6.3
HAR-MEAN | 3.2 3.9 4.6 4.2 46

Table 5: IPC results for multipath execution using the simple D-path strategy.
geometry 8-4-8-8 | 8-8-8-8 | 16-8-8-8 | 32-2-16-16 | 32-4-16-16

bzip2 3.9 4.8 5.5 4.9 5.3
parser 4.0 4.3 5.1 4.6 5.1

go 4.6 5.6 6.4 5.9 6.3

gzip 4.7 5.9 6.8 6.2 6.8

gap 5.6 6.9 7.1 8.3 7.2
HAR-MEAN 4.5 5.4 6.1 5.7 6.1
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Table 6: IPC results for multipath execution using the release D-path strategy.
geometry 8-4-8-8 | 8-8-8-8 | 16-8-8-8 | 32-2-16-16 | 32-4-16-16

bzip2 4.2 5.0 5.8 5.4 5.7
parser 4.3 4.6 5.3 5.0 5.4

go 5.1 5.9 6.7 6.5 6.8

gzip 5.0 6.3 7.0 6.7 7.2
gap 6.0 7.5 7.5 8.9 7.9
HAR-MEAN 4.8 5.7 6.4 6.3 6.5

geometry of 16-8-8-8 along with the parameters listed in Table 3 to investigate IPC speedups as the number
of column shifts waited for is varied. Figure 4 shows the resulting IPC speedups, as compared with the
simple disjoint path management strategy. For this particular machine geometry, this strategy performs worse
than the simple strategy when the number of column shifts waited for is approximately fewer than four or
five. However, when DEE paths are retained in the execution window for approximately six columns shifts, a
performance speedup of about two to five percent is realized over the simple DEE path strategy. From these
results, we will chose to allow DEE paths to remain in the execution window for six column shifts for all five
machine geometries explored and all benchmarks.

Table 6 gives the results using the release method for the spawning of DEE paths. Again, these allow
DEE paths to stay resident in the execution window through six column shifts (determined above) and the
remaining parameters of the machine are those in table 3.

From these results, it is observed that our more complicated DEE release strategy performs better than
our simple strategy for all machine geometries explored here. This is encouraging and suggests that attention
to the management of the DEE paths is important to getting higher IPC speedups. Some other strategies
for the management of how and when to spawn DEE paths have been proposed but they have not yet been
explored. This is an area that we intend to explore more fully in the future.

Our lowest performing machine geometry (8-4-8-8) when executing in singlepath mode, yielded a harmonic
mean [PC of 3.2. However, the same geometry machine, when executing using the enhanced DEE path
strategy, yielded a harmonic mean IPC of 4.8 (substantially better). Finally, the largest sized machine geometry
simulated using the enhanced DEE path strategy, yielded a harmonic mean IPC of 6.5.
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4.3 Memory Sensitivity Results

In this section we present IPC data corresponding to varying some parameters associated with the memory
subsystem. We show IPC speedup results for varying the access latencies, in clocks, for: L1 I-cache, L1 D-
cache, L2 cache, and main memory. All of this data was gathered on a machine geometry of 16-8-8-8 with
the other parameters (the ones that are not varied) being those that are listed in Table 3. Figure 5 presents
the IPC speedups for varying the L1 I-cache hit latency clocks from one up to eight. Figure 6 presents IPC
speedup results as the L1 D-cache hit latency is also varied from one to eight clocks. For these two figures,
the speedups (the ordinate) range from 0.0 through 1.2. Figure 7 presents the IPC speedup results as the L2
cache (unified I/D) hit latency is varied from one up to 16 clocks (our design choice was 10 clocks). Finally
Figure 8 presents the IPC speedup results as the main memory access hit latency is varied from twenty clocks
up to 800 clocks. For the L2 cache and main memory sensitivity graphs, the speedups (ordinate) range from
0.9 through 1.02. All IPC speedups in these figures are relative to the 1 clock access latency cases. As
can be seen from Figures 5 and 6, the machine is slightly more sensitive to L1 D-cache latency than to L1
I-cache latency. This is expected due to the variability in speculative memory accesses that is present for data
memory accesses, that is not as prevalent in instruction accesses. Fortunately, latencies of 1 or 2 clocks for
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L1 caches is more likely to scale better with increasing processor clock rate than memory components further
from the processor.

For the L2 cache (ours is currently unified), speedups are possible when using short clock latencies than
the 10 clocks that we used as our default. Although L2 latencies are likely to also scale somewhat with future
increasing processor clock rates, they are not likely to scale as well as L1 is expected to do. Fortunately our
machine already obtains good IPC numbers for an L2 latency of 10 clocks.

With respect to main memory, the microarchitecture is quite insensitive to latencies out to 100 clocks
and only then starts to degrade slightly after that. Since 100 clocks (as we count it — after our repeater
and bus delays) is probably typical at the present time (assuming a 2 GHz CPU clock rate and the latest
DDR-SDRAMS), our memory system arrangement is properly hiding most of the long main memory latency
as it should. Since our machine is still quite insensitive to main memory latency out to 800 clocks, we might
expect to operate the current machine up to about 10 GHz with similar performance. Our insensitivity to
main memory latency is due to both the conventional use of L1 and L2 caches but also to the width of our
execution window. When memory load requests are generated from instructions soon after they were loaded
into the execution window, the width of the machine (in SG columns) provides substantial time to allow for
those memory load requests to be satisfied, even when they have to go back to L1, L2, and to main memory.

5 Conclusions

We have presented the overview of a large-scale distributed microarchitecture suitable for extracting high
ILP from sequential programs. This microarchitecture is designed to also implement speculative multipath
execution. We presented results for the machine executing in singlepath mode and two types of management
for alternative speculative paths in multipath mode. It was shown that multipath execution provides additional
IPC performance over singlepath execution using both of the heuristics that we explored for managing the
alternative paths. Further, our enhanced DEE path release heuristic provided an additional average of about
five percent better IPC over the simple DEE path management heuristic for a modest sized machine. We
also showed that our microarchitecture exhibits significant insensitivity to a wide range of memory system
component latencies.
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