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I. INTRODUCTION1 
Many studies have concluded that typical programs (e.g., 
SPECint) contain a significant amount of Instruction Level 
Parallelism (ILP) for non-oracle assumptions. For example, 
Lam and Wilson[2] reported an ILP of about 40 for SP-CD-
MF (single path speculative execution with minimal control 
dependencies[3]). 

So why are academia and industry still working with 
single digit IPC�s? In short, nobody has been aggressive 
enough: issue widths are typically set to four instructions 
and advanced high-ILP techniques have not been used. One 
of the major problems faced by current designers is that 
none of the existing methods scales well and the required 
hardware is both complex and costly.  

The Levo machine model attempts to extract available 
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ILP and still considers both scalability in hardware and 
simplicity in design; see Figure 1. 

We have initially evaluated Levo with a limit study 
having real hardware constraints. 

II. KEY IDEAS IN LEVO 
First, instruction issue is in-order and speculative. Although 
currently single-path (SP), we are also considering multi-
path issue. 

Instruction time tags � used to enforce data and control 
dependencies; each tag is typically a small number of bits 
per instruction. 

Hardware runtime predication � used for all forward 
branches with targets within the execution window. 
Backward branches are handled via unrolling and 

conversion to forward branches. 
Registerless datapath � there is no 

central ISA register file. This reduces 
contention for a key shared resource. 

Active stations (AS) � a more 
intelligent version of Tomasulo�s 
reservation stations. 

Resource flow execution � 
aggressive speculation. Instructions are 
executed independently of any data flow 
or control flow dependencies, as long as 
execution resources, such as Processing 
Elements (PE), are available. 

III. LEVO TIME TAGS 
The time tags enforce the nominal 
sequential order only of dependent 
instructions. This results in minimal data 
dependencies being enforced (only 
flow), and in conjunction with the 
hardware predication mechanism results 
in minimal control dependencies. 

Time tags accompany all in-flight 
(in Execution Window) register and 
storage values. Time tags also 

accompany predicate outputs of branch instructions, which 
are broadcast similarly to register and storage values. 

Each time tag has two parts: 
• Column tag � this is decremented by 1 whenever the left-

most column is loaded, corresponding to a column right-
shift in the Execution Window. 

• Row tag � this never changes. 

Figure 1. Levo Block Diagram.  Memory Window not shown. 
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needs an input value, it sends the 
request to earlier AS�s via a 
backwarding bus. The requested data 
is returned via the standard 
forwarding bus protocol. 

Referring to Figure 2, an Active 
Station connects to the spanning 
busses corresponding to the AS�s 
position in its column. Each AS 
performs simple comparison 
operations on the time tags and 
addresses broadcast on the spanning 
busses to determine whether or not to 
snarf data or predicates. 

A Predicate is assigned to AS�s 
after a branch but before the branch�s 
target (the branch domain[3]). A 
Canceling Predicate is assigned to 
instructions after the domain, to 
remove the enabling/disabling 
function of the predicate. 

V. MODELING AND RESULTS 
Three levels of modeling are used: �

Active Station
(src and dest regs, 

access to a pipelined PE,
time tag comparators,

snarfing logic)

Predication
Logic

Predicate Spanning Busses 
(predicate, address/time tag, 
canceling predicate)

Register Spanning Busses * 
(time tag, data, address) 

*Functions similarly 
to a Tomasulo CDB

Broadcast
result, result
address, and
AS time tag

!Bus spans are limited 
to ensure scalability
Figure 2. Active Station. Details and bus connections. Memory Spanning 
Busses not shown; are similar to Register Spanning Busses. 
 concatenation of the column tag with the row tag gives 
unique indicator of the position of the associated 
truction in the execution window. With the column 
rementation indicated above, the time tags are always 
ally accessed small integers, unlike other approaches[1]. 

Time tags are also used in Levo�s memory commit 
e. Depending on the results of our current studies, we 

y also use them in the Memory Window. 

IV. LEVO DESCRIPTION 
erring to Figure 1, we see that Levo is composed of three 
dows: Instruction, Execution and Memory (not shown). 
 Instruction Window performs branch and loop 

dictions, fetches instructions, and puts them in the 
truction Load Buffer for future loading to the leftmost 
umn of the Execution Window. 

The Execution Window is an n-by-m array of Active 
tions, each Active Station corresponding to one 
truction and one time tag. Multiple Active Stations in a 
umn are combined into Sharing Groups (SG). The AS�s 
hin a Sharing Group vie for the resources of the group, 
luding one or more pipelined Processing Elements (like 
plete ALU�s) (PE) and the broadcast bus output(s) to 

 appropriate Spanning Buss(es). The spanning busses 
rconnect the Sharing Groups. Each SG sources one or 
re spanning busses. Each spanning bus is connected to 
porally adjacent Sharing Groups among one or more 

umns. The spanning bus length is constant and does not 
nge with the size of the Execution Window; this ensures 
lability.  A spanning bus is typically one column long. 

Spanning busses are comprised of both forwarding and 
kwarding busses. Forwarding busses are used to 
adcast register, storage and predicate values. If an AS 

Trace-driven model (FastLevo), �Cycle-accurate model 
(LevoSim), and �Synthesizable VHDL hardware model 
(HDLevo).  
     With a 256 (32x8) AS Levo, FastLevo gives IPC�s of 8-
12 on a subset of SPECint2000; there were various 
conservative and optimistic assumptions made, which will 
be removed in later studies. The initial results were 
validated by both LevoSim and HDLevo.  

More information on the Levo microarchitecture and 
these initial results may be found in [4], available via: 
http://www.ele.uri.edu/~uht . 
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