
Levo: IPC in the 10�s via Resource Flow Computing
Augustus K. Uht*, David Morano°, Alireza Khalafi°, Marcos de Alba°,

Thomas Wenisch*, Maryam Ashouei° and David Kaeli°

Departments of Electrical and Computer Engineering
*University of Rhode Island
{uht,iota}@ele.uri.edu

°Northeastern University
{morano,akhalafi,mdealba,mashouei,

kaeli}@ece.neu.edu

I. INTRODUCTION1
Many studies have concluded that typical programs (e.g.,
SPECint) contain a significant amount of Instruction Level
Parallelism (ILP) for non-oracle assumptions. For example,
Lam and Wilson[2] reported an ILP of about 40 for SP-CD-
MF (single path speculative execution with minimal control
dependencies[3]).

So why are academia and industry still working with
single digit IPC�s? In short, nobody has been aggressive
enough: issue widths are typically set to four instructions
and advanced high-ILP techniques have not been used. One
of the major problems faced by current designers is that
none of the existing methods scales well and the required
hardware is both complex and costly.

The Levo machine model attempts to extract available

1 This work was partially supported by the National Science
Foundation through grants: MIP-9708183, DUE-9751215,
EIA-9729839; by the URI Office of the Provost; by an
equipment grant from the Champlin Foundations; by
donations from Mentor Graphics Corporation and Xilinx
Corporation; and by the Spanish Ministry of Education.
Patents applied for.

ILP and still considers both scalability in hardware and
simplicity in design; see Figure 1.

We have initially evaluated Levo with a limit study
having real hardware constraints.

II. KEY IDEAS IN LEVO
First, instruction issue is in-order and speculative. Although
currently single-path (SP), we are also considering multi-
path issue.

Instruction time tags � used to enforce data and control
dependencies; each tag is typically a small number of bits
per instruction.

Hardware runtime predication � used for all forward
branches with targets within the execution window.
Backward branches are handled via unrolling and

conversion to forward branches.
Registerless datapath � there is no

central ISA register file. This reduces
contention for a key shared resource.

Active stations (AS) � a more
intelligent version of Tomasulo�s
reservation stations.

Resource flow execution �
aggressive speculation. Instructions are
executed independently of any data flow
or control flow dependencies, as long as
execution resources, such as Processing
Elements (PE), are available.

III. LEVO TIME TAGS
The time tags enforce the nominal
sequential order only of dependent
instructions. This results in minimal data
dependencies being enforced (only
flow), and in conjunction with the
hardware predication mechanism results
in minimal control dependencies.

Time tags accompany all in-flight
(in Execution Window) register and
storage values. Time tags also

accompany predicate outputs of branch instructions, which
are broadcast similarly to register and storage values.

Each time tag has two parts:
• Column tag � this is decremented by 1 whenever the left-

most column is loaded, corresponding to a column right-
shift in the Execution Window.

• Row tag � this never changes.

Figure 1. Levo Block Diagram. Memory Window not shown.

Instruction
Fetch

Predication
Assignment

Logic

Instruction
Load
Buffer

Temporally earliest
instruction

Temporally latest
instruction

Instruction
Window

n x m Time-order
Execution Window

C

O

M

M

I

T

C

O

L

U

M

N

m

PE

Sharing Group
- 4-8 AS�s
- Single PE
- Forwarding and
backwarding busses

AS(0,0)
AS(0,1)

AS(0,2)
AS(0,3)

C

O

L

U

M

N

C

O

L

U

M

N

1

C

O

L

U

M

N

The
a
ins
dec
loc

stag
ma

Ref
win
The
pre
Ins
col

Sta
ins
col
wit
inc
com
the
inte
mo
tem
col
cha
sca

bac
bro

needs an input value, it sends the
request to earlier AS�s via a
backwarding bus. The requested data
is returned via the standard
forwarding bus protocol.

Referring to Figure 2, an Active
Station connects to the spanning
busses corresponding to the AS�s
position in its column. Each AS
performs simple comparison
operations on the time tags and
addresses broadcast on the spanning
busses to determine whether or not to
snarf data or predicates.

A Predicate is assigned to AS�s
after a branch but before the branch�s
target (the branch domain[3]). A
Canceling Predicate is assigned to
instructions after the domain, to
remove the enabling/disabling
function of the predicate.

V. MODELING AND RESULTS
Three levels of modeling are used: �

Active Station
(src and dest regs,

access to a pipelined PE,
time tag comparators,

snarfing logic)

Predication
Logic

Predicate Spanning Busses
(predicate, address/time tag,
canceling predicate)

Register Spanning Busses *
(time tag, data, address)

*Functions similarly
to a Tomasulo CDB

Broadcast
result, result
address, and
AS time tag

!Bus spans are limited
to ensure scalability
Figure 2. Active Station. Details and bus connections. Memory Spanning
Busses not shown; are similar to Register Spanning Busses.
 concatenation of the column tag with the row tag gives
unique indicator of the position of the associated
truction in the execution window. With the column
rementation indicated above, the time tags are always
ally accessed small integers, unlike other approaches[1].

Time tags are also used in Levo�s memory commit
e. Depending on the results of our current studies, we

y also use them in the Memory Window.

IV. LEVO DESCRIPTION
erring to Figure 1, we see that Levo is composed of three
dows: Instruction, Execution and Memory (not shown).
 Instruction Window performs branch and loop

dictions, fetches instructions, and puts them in the
truction Load Buffer for future loading to the leftmost
umn of the Execution Window.

The Execution Window is an n-by-m array of Active
tions, each Active Station corresponding to one
truction and one time tag. Multiple Active Stations in a
umn are combined into Sharing Groups (SG). The AS�s
hin a Sharing Group vie for the resources of the group,
luding one or more pipelined Processing Elements (like
plete ALU�s) (PE) and the broadcast bus output(s) to

 appropriate Spanning Buss(es). The spanning busses
rconnect the Sharing Groups. Each SG sources one or
re spanning busses. Each spanning bus is connected to
porally adjacent Sharing Groups among one or more

umns. The spanning bus length is constant and does not
nge with the size of the Execution Window; this ensures
lability. A spanning bus is typically one column long.

Spanning busses are comprised of both forwarding and
kwarding busses. Forwarding busses are used to
adcast register, storage and predicate values. If an AS

Trace-driven model (FastLevo), �Cycle-accurate model
(LevoSim), and �Synthesizable VHDL hardware model
(HDLevo).
 With a 256 (32x8) AS Levo, FastLevo gives IPC�s of 8-
12 on a subset of SPECint2000; there were various
conservative and optimistic assumptions made, which will
be removed in later studies. The initial results were
validated by both LevoSim and HDLevo.

More information on the Levo microarchitecture and
these initial results may be found in [4], available via:
http://www.ele.uri.edu/~uht .

REFERENCES

[1] J. G. Cleary, M. W. Pearson, and H. Kinawi, "The

Architecture of an Optimistic CPU: The Warp Engine," in
Proceedings of the Hawaii International Conference on
Systems Science (HICSS), vol. 1: University of Hawaii,
January 1995, pp. 163-172.

[2] M. S. Lam and R. P. Wilson, "Limits of Control Flow on
Parallelism," in Proceedings of the 19th Annual International
Symposium on Computer Architecture. Gold Coast,
Australia: IEEE and ACM, May 1992, pp. 46-57.

[3] A. K. Uht, "A Theory of Reduced and Minimal Procedural
Dependencies," IEEE Transactions on Computers, vol. 40,
no. 6, pp. 681-692, June 1991.

[4] A. K. Uht, D. Morano, A. Khalafi, M. d. Alba, T. Wenisch,
M. Ashouei, and D. Kaeli, "IPC in the 10's via Resource
Flow Computing with Levo," Department of Electrical and
Computer Engineering, University of Rhode Island,
Kingston, RI 092001-001, September 18, 2001.

http://www.ele.uri.edu/~uht

	*
	I. Introduction
	II. Key Ideas in Levo
	III. Levo Time Tags
	IV. Levo Description
	V. Modeling and Results
	References

