
TEAPC: Adaptive Computing and
Underclocking in a Real PC @

URI
MuRI Technical Report No. 20041027-1

Augustus K. Uht and Richard J. Vaccaro
Dept. of Electrical and Computer Engineering

University of Rhode Island
Kingston, RI, USA 02881-0805

October 27, 2004

Abstract
TEAPC is an IBM/Intel-standard PC realization of the TEAtime performance
“maximizing” adaptive computing algorithm, giving performance beyond worst-
case-specifications. TEAPC goes beyond the TEAtime algorithm by adapting to
the current CPU load. It is also the first machine to use extensive underclocking
for disaster tolerance, low power consumption and high reliability. This is all
done dynamically, at runtime, on an unmodified standard operating system
(Windows 2000) with a purely software-implemented feedback-control based
algorithm.

Copyright 2004 A. K. Uht and R. J. Vaccaro

TEAPC: Adaptive Computing and
Underclocking in a Real PC

Augustus K. Uht and Richard J. Vaccaro
University of Rhode Island

Microarchitecture Research Institute
Department of Electrical and Computer Engineering

4 East Alumni Ave.
Kingston, RI 02864, USA

{uht@ele.uri.edu, vaccaro@ele.uri.edu}

Abstract
TEAPC is an IBM/Intel-standard PC realization of
the TEAtime performance “maximizing” adaptive
computing algorithm, giving performance beyond
worst-case-specifications. TEAPC goes beyond the
TEAtime algorithm by adapting to the current CPU
load. It is also the first machine to use extensive
underclocking for disaster tolerance, low power
consumption and high reliability. This is all done
dynamically, at runtime, on an unmodified standard
operating system (Windows 2000) with a purely
software-implemented feedback-control based
algorithm.

1 Introduction
Adaptive systems “maximize” performance or
“minimize” power consumption with respect to
changes in environmental, operating and
manufacturing conditions. Underclocking reduces the
operating frequency below that normally specified,
reducing power consumption and increasing
reliability. In this paper we present a prototype based
on the standard IBM/Intel PC architecture realizing
both adaptive computing and underclocking.

In other work an adaptive system called TEAtime
[13] was demonstrated by Uht with a simple physical
prototype (see Section 2). We wanted to fully
demonstrate TEAtime’s potential by putting it in a
production microprocessor, but that is problematic.
We therefore did the next best thing: demonstrating
TEAtime’s adaptive attributes on a real PC
assembled with COTS (Commercial Off-The-Shelf)
parts. TEAPC, the resulting prototype, goes further
than TEAtime: It adapts to current CPU
computational loading, and greatly underclocks for
disaster tolerance and low power, while still
functioning normally.

The initial TEAPC implementation used timing-
based sensors, similar to that used in the TEAtime
prototype. For reasons to be discussed later, this was

abandoned in favor of basing the real-time
performance or frequency of the CPU on the CPU’s
real-time internal temperature. Since this is the major
component of variation of timing within an Intel
microprocessor (the CPU’s core voltage is highly
regulated and approximately constant), it mirrors the
original TEAtime philosophy. Further, it is possible
to base the real-time performance on the real-time
power consumption of the entire PC; the latter is
partially addressed in this paper.

We have implemented the entire control system in
software, in a Windows application. It runs in a
normal application mode on Windows 2000,
multitasking normally with other applications. CPU
frequency and core voltage are changed dynamically,
based on the output of a feedback control system
using the CPU chip temperature as its primary input.
While details such as specific hardware device
addresses may change, the basic approach and
detailed realization of the control loop and
underclocking should be implementable on any PC to
be built, as well as many that already exist.

Summarizing, our goals are: TEAPC should have the
adaptation and frequency maximization properties of
TEAtime; additionally, TEAPC should realize
adaptation to varying CPU loads, low power
consumption and high reliability on-demand, and
disaster tolerance. All of these goals have been
realized with the aid of a purely software-based
feedback control system, employing CPU frequency
underclocking as needed.

The rest of the paper is organized as follows. Section
2 discusses prior work and background information.
Section 3 describes the initial TEAPC solution and
real system constraints. In Section 4 TEAPC’s final
version is discussed, along with the experimental
methodology. Section 5 presents the experiments,
data, and analyses. Examples of different TEAPC
operating scenarios are given in Section 6. We
conclude in Section 7.

page 1 of 12

2 Prior Work
Performance- and power- adaptive computing
approaches have only been proposed in the last
decade or so. Most techniques are mainly concerned
with power reduction [1, 4, 5], while a few recent
methods consider performance enhancement [6, 8].
Most methods use voltage-scaling for power-
reduction. The recent Razor proposal [2] and the
earlier TIMERRTOL model [11] are unusual in that
timing errors are not avoided, but rather are used as a
feedback mechanism to regulate either power
consumption (Razor) or performance
(TIMERRTOL). They employ different methods to
recover from the timing errors. One of the key
observations that can be made about all of this
adaptive computing work is that in general the same
basic mechanism can be used for either power
reduction or performance enhancement (or both).
These methods achieve better-than-worst-case
performance or power consumption.

Skadron et al [9] first considered the use of formal
feedback control theory as applied to the on-chip
control of chip temperature of a microprocessor.
Instruction fetch toggling was used to control the
chip temperature. In [10] on-chip frequency-scaling
was used to regulate the chip temperature using a
simple linear relationship between frequency and
temperature; formal control theory was not needed
since the relevant thermal delays and changes in
frequency and temperature were small. Slowdown
was also small. Reliability could not be enhanced. In
TEAPC, performance can be increased with the
particular methods used, and at the system level,
without chip modification. Should reliability be an
issue, TEAPC can instead enhance that.

Rohou and Smith [7] used operating-system based
software to control the temperature of a chip in a
system via frequency scaling; performance only
decreases, never increases. The frequency control
mechanism puts the CPU in either a doze state or a
full operation state; however, TEAPC utilizes
sophisticated feedback control for adjustment of
frequency, temperature and reliability, executing all
code normally, all of the time. Also, TEAPC does
not require operating system modifications, and can
increase performance.

Uht’s TEAtime (Timing Error Avoidance) system
[12-14], approximated a maximization of
performance much above that normally allowed by
standard design practices. The key component was
tracking logic, a one-bit wide copy of the worst-case-
delay path between any pair of flip-flops in the digital
system, plus a small safety margin delay. In

operation, the tracking logic is fed a never-ending
stream of alternating one’s and zero’s. The operating
frequency of the system is incrementally increased
until an error occurs in the output of the tracking
logic; at this point the frequency is decreased until
the error ceases, and then the process repeats. Since
the tracking logic is guaranteed by design to be
slower than any other path in the system, any timing
error will occur in the tracking logic first, and only
there. Hence, timing errors in the main system are
completely avoided. This also completely avoids
added pipeline stalls or other additional clock cycles.
Throughput increases of almost a factor of two were
demonstrated in a physical TEAtime prototype.

TEAtime adapted to changes in the environment
(e.g., temperature), operating conditions (e.g., supply
voltage) and manufacturing conditions (e.g., quality
of a given production run), dynamically
“maximizing” performance

While the TEAtime prototype demonstrated the basic
worth and functionality of the TEAtime idea, it used
a very simple home-brew processor implemented on
an FPGA. In our desire to extend the TEAtime ideas
and applications, we decided to implement and
evaluate TEAtime on a real PC, using COTS parts.
We have created a high-performance feedback-
control system using normal application software, not
requiring any operating system modifications.
Disaster tolerance is achieved, and reduced power
consumption and increased reliability may be user-
specified. TEAPC is the result.

3 Initial TEAPC Architecture
and Control System
3.1 Foundations of TEAPC
The guiding principle in the design of TEAPC was to
use as much COTS hardware and software as
possible. To this end, TEAPC’s foundation is a
standard IBM/Intel PC architecture assembled out of
COTS parts. (A commercial PC was not considered,
since it would be unlikely to allow the kind of
internal access we required. However, the results of
this work can easily be applied to commercial PC’s,
during their design, construction and/or testing.)

We wished to be conservative in our results, so
assembled TEAPC out of harder-to-control high-end
parts (at the time): a 3.0 Ghz Intel Pentium 4
microprocessor with an 800 MHz bus and an Intel
875P chipset (a “chipset” is the glue logic that
connects the CPU to the main memory and I/O
devices; in Figure 4 it is the Northbridge/Southbridge
pair of chips). The main memory used high speed
DDR (Dual Data Rate) dynamic RAM.

page 2 of 12

3.2 Initial Approach Towards a
TEAPC Prototype
Our initial plan and activities were to closely model
TEAPC operation on that of the TEAtime prototype.
While we were of course unable to embed tracking
logic in the existing components, especially the CPU,
we were still able to create tracking sensors whose
delay varied with temperature, supply voltage, etc.
While we did not fully validate the following, since
each sensor was a standard CMOS logic gate
integrated circuit we felt the sensor would to a large
degree mirror the sensitivity of the internal logic of
the parts to be monitored.

We monitored four components on the PC’s
motherboard: the CPU, the Northbridge and the two
main memory modules. The sensors were 4-gate
surface-mount IC’s with 50 mil (thousandths of an
inch) pitch leads. Each sensor was thermally-coupled
to its component by fixing the top (non-lead) side of
the sensor to the component with thermal grease or
thermal tape between the two. In reality, to avoid
complex machining, each sensor was attached to the
heat sink of its component, as close as possible to the
component itself.

Each sensor’s gates were wired in series at the
sensor, with an input, an output and power
connections brought out on four 30 gauge wires to an
added FPGA. The FPGA contained counters and
other control circuitry to measure the delay through
each sensor. The FPGA in turn connected to TEAPC
itself through TEAPC’s parallel port. The teapc
program received the digitized delays, and used them
as inputs to the TEAPC control algorithm.

The control algorithm uses the CPU’s frequency as
the algorithm’s dependent output. Every component’s
temperature is dependent on the component’s power
dissipation, and the latter is roughly proportional to
the component’s operating frequency. Since each of
the components’ clocks has roughly the same
frequency as the CPU’s clock, they all heat up at
roughly the same time. This in turn heats the sensors,
increasing their delay, and the feedback loop is
complete; see Figure 1.

3.3 The Feedback Control System
Hope springing eternal, the first attempt at a control
system was to use essentially the same one as in the
original TEAtime prototype: a zero-delay feedback
system incrementally increasing or decreasing the
frequency (Note: from now on, ‘frequency’ refers to
the CPU’s frequency, which indirectly controls the
rest of the components’ frequencies.) The classical

method worked poorly, often giving large frequency
oscillations, all the way from hard lower to upper
limits and back, and slow response. The main reason
for the inadequacy of this simplistic approach is the
thermal capacitance of the components’ heatsinks,
with the resulting roughly exponential time delay
between component heating and sensor response.

We then used formal feedback control system theory
to eventually achieve a fast frequency response to
thermal changes. The basic control input is a
temperature setting, Tset, used by the control system
to maintain a CPU temperature of Tset degrees C.
Tset would typically be made equal to a temperature
just above the maximum CPU frequency under full
load, so as to maximize performance. However,
should the user desire to save power or increase the
reliability of the CPU Tset can be reduced.

The original system had four feedback loops (see
Figure 1), one per sensed component, and only one
dependent control variable, the frequency. The
system still oscillated greatly. This is because the
system is formally uncontrollable: Its
controllability matrix is not full rank. Physically, two
similar feedback loops cannot be independently
controlled of the other (similar) pair since they have
the same input. Since the only component near to
overheating was the CPU, the other three sensors
were removed from the control system. We verified
the safety of the other components only after
monitoring the temperature of each of them under
many conditions, using a thermocouple placed next
to each sensor.

The control system went through several single-pole
design iterations, an example of which is shown in
Figure 2. While the frequency oscillations were
reduced, the system still responded slowly.

Our current solution to the control system design
problem completely eliminated the external sensor
system, instead relying on the internal temperature of
the CPU for the only input to the system. This sped
up the system considerably. Second, the final system
was designed with state-of-the-art discrete-time
techniques as an integral control system using state-
space methods [3, 15]. The system was modeled from
measured input/output data using the System
Identification Toolbox (from the Mathworks). The
Toolbox returned a second-order model, and this was
approximated with a first-order system model. The
latter is shown in Figure 3. This system has excellent
response characteristics, having a frequency settling
time of only about 10 seconds for a Tset change
equivalent to a change in frequency from 2.5 GHz to
3.5 GHz of the CPU under full load.

page 3 of 12

KG

senssens
KsT

sens/¯K
KNs

N/sens
Tset ()¯C

-

+
+

273.15 ¯K ¯K N
1
s

N

freq/N
KfN

freq
(Hz)

Clock
SynthesizerComponent, Heatsink,

and Sensor

KTs
¯K/sens

+

+
¯K Ksf

s + A

sens CPU

KTs
¯K/sens

+

+
¯K Ksf

s + A

sens Northbridge

KTs
¯K/sens

+

+
¯K Ksf

s + A

sens Memory Module A

KTs
¯K/sens

+
¯K Ksf

s + A

sens Memory Module B

Figure 1. First formal feedback control system tried. Each of four sensors has its own feedback path.

KG
KTs

¯K/sens

senssens
KsT

sens/¯K
KNs

N/sens
Tset ()¯C

-

+
+

273.15 ¯K

23.09

¯K ¯KN

1
s

N

freq/N

freq

KsfKfN
s + A

sens

0.5939 1/27.05
A=0.01526

11.9317e6

(Hz)

Clock Synthesizer
and CPU

Figure 2. Single sensor, single feedback path control system.

KG

KFA

KTf
¯C/freq

N
KNT
N/¯K

Tset ()¯C

-

+

-

+

17.4

¯K
¯C

N
1
s

N N
freq freq

freq/N
KfN B

s + A
B=0.0364

A=0.03345
8.26e6

(Hz) (Hz)

0.28

70.0

Clock Synthesizer, CPU
and CPU internal sensor

Figure 3. Final TEAPC feedback control system.

page 4 of 12

4 Final Version of TEAPC and
Experimental Setup
The final version of TEAPC is shown in Figure 4,
with its major relevant components listed in Table 1.
Figure 5 is a photograph of TEAPC.

4.1 Final TEAPC System
With the external sensors and associated extra control
hardware eliminated from the system, the new parts
of the TEAPC solution are only software, utilizing
hardware information and control paths already
existing on the motherboard. Referring to Figure 4,
the teapc program reads the CPU’s core
temperature, core voltage, and fan speed from the
Super I/O chip. The program reads and sets the CPU
frequency by accessing the Clock Synthesizer.
Likewise, the program reads and sets the CPU core
voltage via the Vcore Regulator Controller. The
Synthesizer and Regulator are accessed with the two-
wire SMBUS through the Southbridge. Program
access to all of these components, as well as the
control registers of the chipset itself, is made via the
x86 I/O address space. Readily-available freeware off
of the Web is used to directly access the I/O space
from within the (Windows) program. Presumably, a
commercial version of the software would use safer
indirect access within the Windows API (Application
Program Interface).

4.2 Software Realization of
Modified TEAtime Algorithm.
The TEAPC control program was written in C and
C++. The program is only 800 Kbytes large,
including the feedback control system. teapc uses
less than 1% of the CPU’s time; see Section 5.6.

The control loop is updated every second. This is
straightforward. The non-CPU parts of the control
loop are represented in the program by a list of the
blocks previously shown. At an update point, the
program starts with the input data (the running-
averaged CPU temperature), and re-calculates the
control block values around the loop. The new CPU
frequency is the main output, with the CPU core
voltage sometimes linked to the frequency. For
safety, the maximum and minimum possible output
frequencies are hard limits; when reached, we say the
frequency has “pegged” (as in an old analog meter).
In all of the experiments, the rate of change of
frequency with respect to time was solely determined
by the control system’s dynamics.

4.3 Added Hardware for
Experiments
A simple on/off switch was added for the disaster
tolerance experiment. An external power meter with
a serial interface was also added to measure changes
in total PC power consumption.

5 Experiments
The experiments characterized TEAPC’s operation
and demonstrated its achievement of the project’s
goals. Only the CPU frequency was directly varied
by the feedback control system. The Northbridge and
memory clock frequencies are a fixed fraction of the
CPU frequency, and thus also change. In three cases
the CPU core voltage was varied as a function of the
CPU clock frequency. All other components in the
PC used their standard operating conditions, in
particular their normal frequencies and voltages.

In general, we see that although there is some
oscillation in the dependent variables, it is not great.
The CPU temperature may still oscillate, even with a
constant CPU frequency; this is mainly due to load
changes in the CPU-100%-loading burn-in program
(SiSoft’s Sandra).

In the experiments, Tset was often set to a point
lower than that needed for maximum performance.
This was done both to characterize the system and to
demonstrate its operational flexibility; see Table 3.

5.1 Step Response to Frequency
Change
Table 2 shows TEAPC’s CPU temperature’s reaction
speed to changes in CPU frequency. Overall, the
CPU neither heats up or cools very quickly. The
settling time varies substantially with load and
direction of frequency change. It is relatively easy to
heat up the CPU, but takes considerably longer to
cool it, regardless of the CPU’s load. This is intuitive,
as it is usually the case in thermodynamics that
forced addition or removal of energy to a system will
heat up or cool, respectively, faster than with a
passive transfer mechanism. In TEAPC’s case the
increasing frequency directly increases the CPU’s
power consumption and temperature, whereas
removal of the resulting heat depends on the thermal
resistance and capacitance of the passive cooling
system.

page 5 of 12

CPU
Intel P4

Northbridge
Intel 875P

Southbridge
I/O

Controller
Intel ICH5R

Main Memory
1 GB Dual Channel

400 MHz
Ultra

Super I/O
ITE 8712F

Clock
Synthesizer
ICS 952635

CPU Vcore
Regulator
Control

CPU
Vcore

Power Supply

FSB

(FSB - Front Side Bus)

LPC Bus

(LPC - Low Pin Count)

SMBUS - IIC Bus

CPU Clock Memory Clock

CPU
Fan

Speed

CPU
Vcore
Volt.

CPU
core

Temp.

Vcore VID

VID

Only directly relevant components
and connections are shown.

(Environment
Monitor)

Figure 4. Major relevant motherboard structures used in TEAPC.

Table 1. Major TEAPC components and extra experimental equipment.

PC Component Manufacturer Part Number/Description
Motherboard Gigabyte GA-8KNXP (Rev. 2); w/DPS regulator

CPU Intel P4 3.0 GHz, 800 MHz bus
Chipset Intel 875P, ICH5R
Clock Synthesizer ICS ICS952635
Super I/O (Environment Monitor) ITE IT8712F V0.6
CPU Volt. Regulator Control ITE IT8206R V0.1

Main Memory Ultra
U10-5903R; 2 x 512 MB;
400 MHz DDR, Dual Channel
(Operated at 320 MHz.)

Operating System Microsoft Windows 2000 SP4, HT disabled
Disk System – RAID 0+1 ITE GigaRAID IT8212F

Disks Maxtor 4 x 6E040L0, 40 GB, 133MHz IDE
Equipment for experiments only

Fan Controller & Temp. Monitor Thermaltake Hardcano 12; for 4 fans, 4 thermocouples

Power Meter
Electronic
Educational
Devices

watts up? PRO
(Note: this is the unit’s model name.)

CPU Fan Controller custom On/Off, control select: MOBO or Hardcano

Table 2. Step response of CPU temperature to CPU frequency changes, under differing loads.

Run
ID

CPU
Utilization

Frequency Transition
(GHz)

Start Temp.
(deg. C.)

End Temp.
(deg. C.)

Settling Time
(2%) (sec.)

91 100% 3.5 to 2.5 59.3 53.7 90
92 100% 2.5 to 3.5 52.5 58.9 60
93 ~5% 3.5 to 2.5 53.1 48.0 170
94 ~5% 2.5 to 3.5 48.0 52.9 130

page 6 of 12

Figure 5. TEAPC prototype, with experiment
instrumentation shown on the display. (Author-
identifying marks whited-out.)

Interestingly, the response times approximately
double from a full load condition to an approximately
unloaded condition. This may arise from the internal
CPU power control system, which shuts down major
sections of the CPU when the sections are not used.
Hence, in a lightly loaded system a given increase in
frequency increases power consumption less than a
fully loaded system; in the latter, the entire chip is
affected by the frequency change, decreasing the
response time.

5.2 Performance Maximization
Figure 6 demonstrates TEAPC’s ability to operate at
better-than-worst-case performances via dynamic
adaptation of the clock frequency to desired changes
in operating temperature. In the figure, TEAPC is
under full load and starts executing in an
underclocked power-saving mode, then has its Tset
raised appropriately. TEAPC rapidly increases its
frequency, strictly in response to the control system.
It reaches full performance (the hard upper-limit
‘peg’) within about 10 seconds, even though it takes
longer for the actual CPU temperature to reach its
final value. The CPU core voltage was held constant
at its high value, 1.5125 V., and was not linked to the
frequency.

5.3 Modest Frequency Changes
Figure 7 shows the results of a small step change in
frequency, midway between the two peg points.
Voltage-to-frequency linking was used. By raising
Tset, the frequency was changed from 2.75 GHz to
3.25 GHz, with the final average value reached after
about 150 seconds. From the results we see that small
frequency changes are also handled by the control
algorithm, although pegging may still occur to a
limited degree.

5.4 Load Adapting; Vcore Linking
TEAPC also dynamically and automatically adapts to
changes in computation load. In Figure 8 the system
is initially stable at the upper peg point of 3.5 GHz,
and under no load. At the indicated point, the Sandra
CPU-burn program is started, putting the CPU under
full load. The control system senses the rapid
increase in CPU temperature, and immediately drops
the frequency. Within about 50 seconds TEAPC’s
frequency has dropped to about 2.65 GHz, on
average, while the CPU temperature has stayed
relatively constant around the temperature set point.
The power consumption stays about the same. In this
case, the CPU core voltage was held constant at its
high value, 1.5125 V., and was not linked to the
frequency.

We performed the same experiment, this time with
the CPU core voltage a function of frequency. The
highest frequency corresponds to the highest voltage,
and the lowest frequency corresponds to the lowest
voltage. The results are shown in Figure 9. The lower
voltage and hence reduced requirement for power
allow a higher final operating frequency, about 3.0
GHz, with no change in the power consumption.
Thus, the voltage-to-frequency linking results in
higher performance for the same power consumption.

5.5 Disaster Toleration and Low-
Power Setting
The disaster tolerance experiment consists of turning
off the CPU’s cooling fan while the CPU is under full
load and at its “maximum” frequency. Moving air
from a fan through a passive heatsink greatly lowers
the heatsink’s thermal resistance and thus greatly
increases the amount of heat a heatsink can dissipate.
Hence, stopping the fan is a disastrous condition, and
an excellent test of TEAPC’s adaptation abilities.

Figure 10 shows TEAPC’s response first to fan ‘off’
and then fan ‘on’ conditions. Initially, the CPU ran at
its “maximum” frequency of 3.50 GHz and a
corresponding core voltage of 1.5125 V., and while
under full load. The CPU’s core voltage was linked
to the CPU frequency. As is shown in the figure,
shortly after the CPU’s fan was turned off the CPU
temperature began to rise, causing the control system
to lower the CPU’s frequency (and hence also its core
voltage). Since the CPU’s temperature never dropped
below the Tset value of 56 degrees C., the control
system dropped the CPU’s frequency all the way
down to its “minimum” value of 1.1 GHz and the
corresponding minimum core voltage of 1.0875 V.

page 7 of 12

1

1.5

2

2.5

3

3.5

0 50 100 150 200

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 50 100 150 200
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. Set (deg. C.)
Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)

Figure 6. "Maximize" performance adaptation.
Vcore not linked to CPU frequency.

1

1.5

2

2.5

3

3.5

0 100 200 300 400

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 100 200 300 400
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)

Figure 7. Small step adaptation, 2.75 GHz
(Tset=48 C.) to 3.25 GHz (Tset=52 C.). Vcore is
linked to CPU frequency.

At this point we ran other applications to test the
capabilities of the CPU at such extreme conditions.
At the low frequency, TEAPC was still functional; no
OS or other crashes occurred, the burn program still
worked, and Web browsing was fully functional and
executed simultaneously with the burn and a
PowerPoint presentation. Sample web pages included
video clips. Therefore, while the system operates at
reduced performance, it is still functional at the low
frequency and voltage, with the CPU fan stopped;
disaster tolerance is achieved. (In a production
system more extensive testing would be needed.)

(Note that while other applications are running in the
foreground, teapc is not active due to the nature of
its construction as a “console” application in Borland
C++ Builder 6, the IDE (Integrated Development
Environment) used for teapc. This is why no data
points are shown in the vicinity of t = ‘A’ seconds. In
a production system this phenomenon would not
occur, and teapc would always be active.)

The CPU temperature dropped slightly while the
frequency and voltage decreased, then rose slightly to
a steady 59 degrees C. (The CPU can operate safely
up to 70 degrees C.; this is an Intel specification.)

After the fan was turned back on, the control system
sensed the drop in the CPU’s temperature and
increased the CPU’s frequency. Thus, TEAPC
always adapts to the existing conditions, taking
advantage of favorable ones as well. Disaster
recovery is also achieved.

The power savings at the low frequency and voltage
settings were substantial. The overall PC power
decreased from about 218 W. down to 132 W., under
full load, a power savings of about 40%.
Underclocking is a useful tool.

page 8 of 12

1

1.5

2

2.5

3

3.5

0 100 200 300 400

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 100 200 300 400
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)

No load -to - Full load

Figure 8. Load adaptation test. Vcore NOT linked
to CPU frequency.

1

1.5

2

2.5

3

3.5

0 100 200 300 400

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 100 200 300 400
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)

No load -to - Full load

Figure 9. Load adaptation test. Vcore IS linked to
CPU frequency.

5.6 Overhead
We measured teapc’s CPU utilization (overhead)
during full load operation with the feedback control
system engaged, but with the experimentation
instrumentation and display system turned off; this
would be the normal mode of operation in a
production system. teapc ran in the foreground.
The measurements were made with a standard
‘performance counter’ built into the Windows API.

teapc used less than 1% of the CPU under the
above conditions. In fact, teapc’s CPU utilization
was less than the minimum increment of the
performance counter (about 0.4%); most of the time
the indicated utilization was 0%. In other words,
teapc adds practically no execution time overhead
to the PC’s operation and thus no performance is lost.

5.7 Real Workload Effects
If TEAPC is operated in an intermediate mode,
between maximum performance and minimum power

consumption, the performance dynamics are likely to
be as complex as the dynamics of the workload itself,
if not more complex. However, the net mean
performance is not likely to change, and unstable
performance dynamics should be avoidable with a
well-designed control system.

For example, first consider Figure 6; the frequency is
approximately constant, and the core voltage is
constant. However, the Sandra burn-in code appears
to have three distinct phases of operation, each one
using different parts of the CPU and hence using a
different amount of power; notice the step-function
shape of the power consumption. This shape repeats
with each run of the burn-in code; each run executes
for about 30 seconds. Next, consider Figure 7, with
TEAPC operating in an intermediate mode, in which
the frequency can vary. The power curve is no longer
neat, but mirrors the complexity of both the
frequency and temperature curves. However, also
note that the mean performance is relatively stable.

page 9 of 12

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

52

53

54

55

56

57

58

59

60

0 50 100 150 200 250
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
PU

 F
an

 S
pe

ed

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)
CPU Fan Speed (KRPM)

CP U Fan turned OFF CP U Fan turned ON

A

Figure 10. Example of disaster tolerance and recovery: CPU fan turned off then back on; system under full
load. TEAPC remains functional at the low frequency and core voltage, even with the fan off. TEAPC
continuously adapts to take the best advantage of existing conditions.

We observe an interesting phenomenon in Figure 7
and Figure 9, in both of which the core voltage is
linked to the frequency: The AC part of the frequency
data has the shape of an amplitude-modulated signal,
with the ‘carrier’ period being the same as the period
of the burn program’s runs (30 seconds). The
modulating signal seems to have a period of about
220 and 160 seconds in Figure 7 and Figure 9,
respectively. The characterization, investigation and
comprehensive explanation of this phenomenon is a
subject for future work.

6 TEAPC Operation in
Practice
TEAPC can be operated in many ways depending on
the needs or desires of the user. The user or operating
system may change the operating characteristics
dynamically to suit current demands. Only Tset need
be changed to accommodate different circumstances.
For examples, see Table 3.

7 Summary
TEAPC demonstrates the numerous and deep
possibilities inherent in modern PC’s when advantage
is taken of low-level inputs and outputs, and, most
especially, when a well-designed feedback-control
system is used. Many of the TEAtime attributes have
been realized in TEAPC, as well as many more.

TEAPC demonstrates: operation at better-than-worst-
case performance levels, adaptation to varying
environmental and CPU loading conditions, disaster
tolerance, and low-power/high reliability operation.
We feel TEAPC could open the way for much more
versatile and cost-saving PCs, in many cases those
that already exist. Underclocking is a great tool to
help achieve several of these features.

page 10 of 12

Table 3. Some possible operating scenarios.

Goal Tset
Comments

Lowest power, highest
reliability Low

Frequency and CPU core voltage are minimized,
minimizing power consumption and maximizing
reliability. Suitable for web browsing (even with
broadband access), email and casual use. Could
be the normal setting for nighttime operation in
an office, to minimize operating costs yet
provide the reliability of “always on” operation.

Mid-range power,
reliability Mid-range

Frequency and core voltage change to maintain a
constant CPU temperature equal to the Tset
value. Power could still be low, with high
reliability. More computationally-demanding
tasks could be run, with negligible delay, e.g.,
limited animation, large Excel worksheets, etc.

Highest performance High: frequency is pegged
at its maximum value

In the case of the prototype, this would be a case
of limited overclocking. Reliability is minimized
and power maximized, but performance is also
maximized. Useful for computationaly-intensive
tasks, such as FPGA net routing, or game
playing. (The maximum frequency could also be
set for no overclocking.) Could also be the
daytime setting in an office, so as to minimize
response time during working hours.

Disaster tolerance Any
For all practical purposes, TEAPC is always
enabled for disaster tolerance.

Environment change
tolerance Any

With high ambient temperatures TEAPC adapts
the system so as to keep the CPU temperature
within specifications. Performance is limited, but
the system still functions. Conversely, with low
ambient temperatures the more favorable
conditions can give improved performance.

References
[1] T. D. Burd, T. A. Pering, A. J. Stratakos, and R.

W. Brodersen, "A Dynamic Voltage Scaled
Microprocessor System," IEEE Journal of
Solid-State Circuits, vol. 35, no. 11, pp. 1571-
1580, November 2000.

[2] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T.
Pham, C. Ziesler, D. Blaauw, T. Austin, K.
Flautner, and T. Mudge, "Razor: A Low-Power

Pipeline Based on Circuit-Level Timing
Speculation," in Proceedings of the 2003
International Symposium on Microarchitecture.
San Diego, Calif., USA: IEEE, ACM,
December 2003.

[3] G. F. Franklin, M. L. Workman, and D. Powell,
Digital Control of Dynamic Systems, 3rd ed:
Prentice-Hall, 1997.

[4] T. Kuroda, K.Suzuki, S. Mita, T. Fujita,
F.Yamane, F. Sano, A. Chiba, Y. Watanabe, K.
Matsuda, T. Maeda, T. Sakurai, and T.
Furuyama, "Variable Supply-Voltage Scheme
for Low-Power High-Speed CMOS Digital
Design," IEEE Journal of Solid-State Circuits,
vol. 33, no. 3, pp. 454-462, March 1998.

[5] M. Miyazaki, J. Kao, and A. Chandrakasan, "A
175mV Multiply-Accumulate Unit Using an
Adaptive Supply Voltage and Body Bias (ASB)
Architecture," in Proceedings of the
International Solid-State Circuits Conference
(ISSCC). San Francisco, CA, USA: IEEE,
February 3-7, 2002.

[6] M. Olivieri, A. Trifiletti, and A. De Gloria, "A
Low-Power Microcontroller with On-Chip Self-
Tuning Digital Clock Generator for Variable-
Load Applications," in Proceedings of the 1999
International Conference on Computer Design:
IEEE, 1999.

[7] E. Rohou and M. Smith., "Dynamically
Managing Processor Temperature and Power,"
in Proceedings of the 2nd ACM Workshop on
Feedback-Directed Optimization (FDDO-2).
Haifa, Israel: ACM, November 1999.

[8] A. E. Sjogren and C. J. Myers, "Interfacing
Synchronous and Asynchronous Modules
Within a High-Speed Pipeline," in Proceedings
of the 17th Conference on Advanced Research
in VLSI (ARVLSI '97), 1997, pp. 47-61.

[9] K. Skadron, T. Abdelzaher, and M. R. Stan,
"Control-Theoretic Techniques and Thermal-
RC Modeling for Accurate and Localized
Dynamic Thermal Management," in Proc. of the
2002 International Symposium on High-
Performance Computer Architecture.
Cambridge, MA, USA: IEEE, 2002.

[10] K. Skadron, M. R. Stan, W. Huang, S.
Velusamy, K. Sankaranarayanan, and D. Tarjan,
"Temperature-Aware Microarchitecture," in
Proceedings of the 30th International
Symposium on Computer Architecture. San
Diego, CA, USA: IEEE and ACM, June 2003.

[11] A. K. Uht, "Achieving Typical Delays in
Synchronous Systems via Timing Error
Toleration," Department of Electrical and
Computer Engineering, University of Rhode
Island, Kingston, RI, Technical Report 032000-

page 11 of 12

0100, March 10, 2000. Available via
http://www.ele.uri.edu/~uht.

[12] A. K. Uht, "Uniprocessor Performance
Enhancement Through Adaptive Clock
Frequency Control," in Proceedings of the
SSGRR-2003w International Conference on
Advances in Infrastructure for e-Business, e-
Education, e-Science, e-Medicine, and Mobile
Technologies on the Internet. L'Aquila, Italy:
Telecom Italia, January 6-12, 2003.

[13] A. K. Uht, "Going Beyond Worst-Case Specs
with TEAtime," Computer, vol. 37, no. 3, pp.
51-56, March 2004.

[14] A. K. Uht, "Uniprocessor Performance
Enhancement Through Adaptive Clock
Frequency Control," IEEE Transactions on
Computers, 2005. In press.

[15] R. J. Vaccaro, Digital Control: A State-Space
Approach: McGraw-Hill, 1995.

page 12 of 12

