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Abstract 
TEAPC is an IBM/Intel-standard PC realization of 
the TEAtime performance “maximizing” adaptive 
computing algorithm, giving performance beyond 
worst-case-specifications. TEAPC goes beyond the 
TEAtime algorithm by adapting to the current CPU 
load. It is also the first machine to use extensive 
underclocking for disaster tolerance, low power 
consumption and high reliability. This is all done 
dynamically, at runtime, on an unmodified standard 
operating system (Windows 2000) with a purely 
software-implemented feedback-control based 
algorithm. 

1 Introduction 
Adaptive systems “maximize” performance or 
“minimize” power consumption with respect to 
changes in environmental, operating and 
manufacturing conditions. Underclocking reduces the 
operating frequency below that normally specified, 
reducing power consumption and increasing 
reliability. In this paper we present a prototype based 
on the standard IBM/Intel PC architecture realizing 
both adaptive computing and underclocking. 

In other work an adaptive system called TEAtime 
[13] was demonstrated by Uht with a simple physical 
prototype (see Section 2). We wanted to fully 
demonstrate TEAtime’s potential by putting it in a 
production microprocessor, but that is problematic. 
We therefore did the next best thing: demonstrating 
TEAtime’s adaptive attributes on a real PC 
assembled with COTS (Commercial Off-The-Shelf) 
parts. TEAPC, the resulting prototype, goes further 
than TEAtime: It adapts to current CPU 
computational loading, and greatly underclocks for 
disaster tolerance and low power, while still 
functioning normally. 

The initial TEAPC implementation used timing-
based sensors, similar to that used in the TEAtime 
prototype. For reasons to be discussed later, this was 

abandoned in favor of basing the real-time 
performance or frequency of the CPU on the CPU’s 
real-time internal temperature. Since this is the major 
component of variation of timing within an Intel 
microprocessor (the CPU’s core voltage is highly 
regulated and approximately constant), it mirrors the 
original TEAtime philosophy. Further, it is possible 
to base the real-time performance on the real-time 
power consumption of the entire PC; the latter is 
partially addressed in this paper. 

We have implemented the entire control system in 
software, in a Windows application. It runs in a 
normal application mode on Windows 2000, 
multitasking normally with other applications. CPU 
frequency and core voltage are changed dynamically, 
based on the output of a feedback control system 
using the CPU chip temperature as its primary input. 
While details such as specific hardware device 
addresses may change, the basic approach and 
detailed realization of the control loop and 
underclocking should be implementable on any PC to 
be built, as well as many that already exist. 

Summarizing, our goals are: TEAPC should have the 
adaptation and frequency maximization properties of 
TEAtime; additionally, TEAPC should realize 
adaptation to varying CPU loads, low power 
consumption and high reliability on-demand, and 
disaster tolerance. All of these goals have been 
realized with the aid of a purely software-based 
feedback control system, employing CPU frequency 
underclocking as needed. 

The rest of the paper is organized as follows. Section 
2 discusses prior work and background information. 
Section 3 describes the initial TEAPC solution and 
real system constraints. In Section 4 TEAPC’s final 
version is discussed, along with the experimental 
methodology. Section 5 presents the experiments, 
data, and analyses. Examples of different TEAPC 
operating scenarios are given in Section 6. We 
conclude in Section 7. 
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2 Prior Work 
Performance- and power- adaptive computing 
approaches have only been proposed in the last 
decade or so. Most techniques are mainly concerned 
with power reduction [1, 4, 5], while a few recent 
methods consider performance enhancement [6, 8]. 
Most methods use voltage-scaling for power-
reduction. The recent Razor proposal [2] and the 
earlier TIMERRTOL model [11] are unusual in that 
timing errors are not avoided, but rather are used as a 
feedback mechanism to regulate either power 
consumption (Razor) or performance 
(TIMERRTOL). They employ different methods to 
recover from the timing errors. One of the key 
observations that can be made about all of this 
adaptive computing work is that in general the same 
basic mechanism can be used for either power 
reduction or performance enhancement (or both). 
These methods achieve better-than-worst-case 
performance or power consumption. 

Skadron et al [9] first considered the use of formal 
feedback control theory as applied to the on-chip 
control of chip temperature of a microprocessor. 
Instruction fetch toggling was used to control the 
chip temperature. In [10] on-chip frequency-scaling 
was used to regulate the chip temperature using a 
simple linear relationship between frequency and 
temperature; formal control theory was not needed 
since the relevant thermal delays and changes in 
frequency and temperature were small. Slowdown 
was also small. Reliability could not be enhanced. In 
TEAPC, performance can be increased with the 
particular methods used, and at the system level, 
without chip modification. Should reliability be an 
issue, TEAPC can instead enhance that. 

Rohou and Smith [7] used operating-system based 
software to control the temperature of a chip in a 
system via frequency scaling; performance only 
decreases, never increases. The frequency control 
mechanism puts the CPU in either a doze state or a 
full operation state; however, TEAPC utilizes 
sophisticated feedback control for adjustment of 
frequency, temperature and reliability, executing all 
code normally, all of the time.  Also, TEAPC does 
not require operating system modifications, and can 
increase performance. 

Uht’s TEAtime (Timing Error Avoidance) system 
[12-14], approximated a maximization of 
performance much above that normally allowed by 
standard design practices. The key component was 
tracking logic, a one-bit wide copy of the worst-case-
delay path between any pair of flip-flops in the digital 
system, plus a small safety margin delay. In 

operation, the tracking logic is fed a never-ending 
stream of alternating one’s and zero’s. The operating 
frequency of the system is incrementally increased 
until an error occurs in the output of the tracking 
logic; at this point the frequency is decreased until 
the error ceases, and then the process repeats. Since 
the tracking logic is guaranteed by design to be 
slower than any other path in the system, any timing 
error will occur in the tracking logic first, and only 
there. Hence, timing errors in the main system are 
completely avoided. This also completely avoids 
added pipeline stalls or other additional clock cycles. 
Throughput increases of almost a factor of two were 
demonstrated in a physical TEAtime prototype. 

TEAtime adapted to changes in the environment 
(e.g., temperature), operating conditions (e.g., supply 
voltage) and manufacturing conditions (e.g., quality 
of a given production run), dynamically 
“maximizing” performance 

While the TEAtime prototype demonstrated the basic 
worth and functionality of the TEAtime idea, it used 
a very simple home-brew processor implemented on 
an FPGA. In our desire to extend the TEAtime ideas 
and applications, we decided to implement and 
evaluate TEAtime on a real PC, using COTS parts. 
We have created a high-performance feedback-
control system using normal application software, not 
requiring any operating system modifications. 
Disaster tolerance is achieved, and reduced power 
consumption and increased reliability may be user-
specified. TEAPC is the result. 

3 Initial TEAPC Architecture 
and Control System 
3.1  Foundations of TEAPC 
The guiding principle in the design of TEAPC was to 
use as much COTS hardware and software as 
possible. To this end, TEAPC’s foundation is a 
standard IBM/Intel PC architecture assembled out of 
COTS parts. (A commercial PC was not considered, 
since it would be unlikely to allow the kind of 
internal access we required. However, the results of 
this work can easily be applied to commercial PC’s, 
during their design, construction and/or testing.) 

We wished to be conservative in our results, so 
assembled TEAPC out of harder-to-control high-end 
parts (at the time): a 3.0 Ghz Intel Pentium 4 
microprocessor with an 800 MHz bus and an Intel 
875P chipset (a “chipset” is the glue logic that 
connects the CPU to the main memory and I/O 
devices; in Figure 4 it is the Northbridge/Southbridge 
pair of chips). The main memory used high speed 
DDR (Dual Data Rate) dynamic RAM. 
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3.2  Initial Approach Towards a 
TEAPC Prototype 
Our initial plan and activities were to closely model 
TEAPC operation on that of the TEAtime prototype. 
While we were of course unable to embed tracking 
logic in the existing components, especially the CPU, 
we were still able to create tracking sensors whose 
delay varied with temperature, supply voltage, etc. 
While we did not fully validate the following, since 
each sensor was a standard CMOS logic gate 
integrated circuit we felt the sensor would to a large 
degree mirror the sensitivity of the internal logic of 
the parts to be monitored. 

We monitored four components on the PC’s 
motherboard: the CPU, the Northbridge and the two 
main memory modules. The sensors were 4-gate 
surface-mount IC’s with 50 mil (thousandths of an 
inch) pitch leads. Each sensor was thermally-coupled 
to its component by fixing the top (non-lead) side of 
the sensor to the component with thermal grease or 
thermal tape between the two. In reality, to avoid 
complex machining, each sensor was attached to the 
heat sink of its component, as close as possible to the 
component itself. 

Each sensor’s gates were wired in series at the 
sensor, with an input, an output and power 
connections brought out on four 30 gauge wires to an 
added FPGA. The FPGA contained counters and 
other control circuitry to measure the delay through 
each sensor. The FPGA in turn connected to TEAPC 
itself through TEAPC’s parallel port. The teapc 
program received the digitized delays, and used them 
as inputs to the TEAPC control algorithm.  

The control algorithm uses the CPU’s frequency as 
the algorithm’s dependent output. Every component’s 
temperature is dependent on the component’s power 
dissipation, and the latter is roughly proportional to 
the component’s operating frequency. Since each of 
the components’ clocks has roughly the same 
frequency as the CPU’s clock, they all heat up at 
roughly the same time. This in turn heats the sensors, 
increasing their delay, and the feedback loop is 
complete; see Figure 1. 

3.3  The Feedback Control System 
Hope springing eternal, the first attempt at a control 
system was to use essentially the same one as in the 
original TEAtime prototype: a zero-delay feedback 
system incrementally increasing or decreasing the 
frequency (Note: from now on, ‘frequency’ refers to 
the CPU’s frequency, which indirectly controls the 
rest of the components’ frequencies.) The classical 

method worked poorly, often giving large frequency 
oscillations, all the way from hard lower to upper 
limits and back, and slow response. The main reason 
for the inadequacy of this simplistic approach is the 
thermal capacitance of the components’ heatsinks, 
with the resulting roughly exponential time delay 
between component heating and sensor response. 

We then used formal feedback control system theory 
to eventually achieve a fast frequency response to 
thermal changes. The basic control input is a 
temperature setting, Tset, used by the control system 
to maintain a CPU temperature of Tset degrees C. 
Tset would typically be made equal to a temperature 
just above the maximum CPU frequency under full 
load, so as to maximize performance. However, 
should the user desire to save power or increase the 
reliability of the CPU Tset can be reduced. 

The original system had four feedback loops (see 
Figure 1), one per sensed component, and only one 
dependent control variable, the frequency. The 
system still oscillated greatly. This is because the 
system is formally uncontrollable:  Its   
controllability matrix is not full rank. Physically, two 
similar feedback loops cannot be independently 
controlled of the other (similar) pair since they have 
the same input. Since the only component near to 
overheating was the CPU, the other three sensors 
were removed from the control system. We verified 
the safety of the other components only after 
monitoring the temperature of each of them under 
many conditions, using a thermocouple placed next 
to each sensor. 

The control system went through several single-pole 
design iterations, an example of which is shown in 
Figure 2. While the frequency oscillations were 
reduced, the system still responded slowly. 

Our current solution to the control system design 
problem completely eliminated the external sensor 
system, instead relying on the internal temperature of 
the CPU for the only input to the system. This sped 
up the system considerably. Second, the final system 
was designed with state-of-the-art discrete-time 
techniques as an integral control system using state-
space methods [3, 15]. The system was modeled from 
measured input/output data using the System 
Identification Toolbox (from the Mathworks). The 
Toolbox returned a second-order model, and this was 
approximated with a first-order system model. The 
latter is shown in Figure 3. This system has excellent 
response characteristics, having a frequency settling 
time of only about 10 seconds for a Tset change 
equivalent to a change in frequency from 2.5 GHz to 
3.5 GHz of the CPU under full load. 
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Figure 1.  First formal feedback control system tried. Each of four sensors has its own feedback path. 
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Figure 3.  Final TEAPC feedback control system.
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4 Final Version of TEAPC and 
Experimental Setup 
The final version of TEAPC is shown in Figure 4, 
with its major relevant components listed in Table 1. 
Figure 5 is a photograph of TEAPC. 

4.1  Final TEAPC System 
With the external sensors and associated extra control 
hardware eliminated from the system, the new parts 
of the TEAPC solution are only software, utilizing 
hardware information and control paths already 
existing on the motherboard. Referring to Figure 4, 
the teapc program reads the CPU’s core 
temperature, core voltage, and fan speed from the 
Super I/O chip. The program reads and sets the CPU 
frequency by accessing the Clock Synthesizer. 
Likewise, the program reads and sets the CPU core 
voltage via the Vcore Regulator Controller. The 
Synthesizer and Regulator are accessed with the two-
wire SMBUS through the Southbridge. Program 
access to all of these components, as well as the 
control registers of the chipset itself, is made via the 
x86 I/O address space. Readily-available freeware off 
of the Web is used to directly access the I/O space 
from within the (Windows) program. Presumably, a 
commercial version of the software would use safer 
indirect access within the Windows API (Application 
Program Interface). 

4.2  Software Realization of 
Modified TEAtime Algorithm. 
The TEAPC control program was written in C and 
C++. The program is only 800 Kbytes large, 
including the feedback control system. teapc uses 
less than 1% of the CPU’s time; see Section 5.6. 

The control loop is updated every second. This is 
straightforward. The non-CPU parts of the control 
loop are represented in the program by a list of the 
blocks previously shown. At an update point, the 
program starts with the input data (the running-
averaged CPU temperature), and re-calculates the 
control block values around the loop. The new CPU 
frequency is the main output, with the CPU core 
voltage sometimes linked to the frequency. For 
safety, the maximum and minimum possible output 
frequencies are hard limits; when reached, we say the 
frequency has “pegged” (as in an old analog meter). 
In all of the experiments, the rate of change of 
frequency with respect to time was solely determined 
by the control system’s dynamics. 

4.3  Added Hardware for 
Experiments 
A simple on/off switch was added for the disaster 
tolerance experiment. An external power meter with 
a serial interface was also added to measure changes 
in total PC power consumption. 

5 Experiments 
The experiments characterized TEAPC’s operation 
and demonstrated its achievement of the project’s 
goals. Only the CPU frequency was directly varied 
by the feedback control system. The Northbridge and 
memory clock frequencies are a fixed fraction of the 
CPU frequency, and thus also change. In three cases 
the CPU core voltage was varied as a function of the 
CPU clock frequency. All other components in the 
PC used their standard operating conditions, in 
particular their normal frequencies and voltages.  

In general, we see that although there is some 
oscillation in the dependent variables, it is not great. 
The CPU temperature may still oscillate, even with a 
constant CPU frequency; this is mainly due to load 
changes in the CPU-100%-loading burn-in program 
(SiSoft’s Sandra). 

In the experiments, Tset was often set to a point 
lower than that needed for maximum performance. 
This was done both to characterize the system and to 
demonstrate its operational flexibility; see Table 3. 

5.1  Step Response to Frequency 
Change 
Table 2 shows TEAPC’s CPU temperature’s reaction 
speed to changes in CPU frequency. Overall, the 
CPU neither heats up or cools very quickly. The 
settling time varies substantially with load and 
direction of frequency change. It is relatively easy to 
heat up the CPU, but takes considerably longer to 
cool it, regardless of the CPU’s load. This is intuitive, 
as it is usually the case in thermodynamics that 
forced addition or removal of energy to a system will 
heat up or cool, respectively, faster than with a 
passive transfer mechanism. In TEAPC’s case the 
increasing frequency directly increases the CPU’s 
power consumption and temperature, whereas 
removal of the resulting heat depends on the thermal 
resistance and capacitance of the passive cooling 
system. 
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Figure 4.  Major relevant motherboard structures used in TEAPC. 

 

Table 1.  Major TEAPC components and extra experimental equipment.  

PC Component Manufacturer Part Number/Description 
Motherboard Gigabyte GA-8KNXP (Rev. 2); w/DPS regulator 

CPU Intel P4 3.0 GHz, 800 MHz bus 
Chipset Intel 875P, ICH5R 
Clock Synthesizer ICS ICS952635 
Super I/O (Environment Monitor) ITE IT8712F V0.6 
CPU Volt. Regulator Control ITE IT8206R V0.1 

Main Memory Ultra 
U10-5903R; 2 x 512 MB;  
400 MHz DDR, Dual Channel 
(Operated at 320 MHz.) 

Operating System Microsoft Windows 2000 SP4, HT disabled 
Disk System – RAID 0+1 ITE GigaRAID IT8212F 

Disks Maxtor 4 x 6E040L0, 40 GB, 133MHz IDE 
Equipment for experiments only   

Fan Controller & Temp. Monitor Thermaltake Hardcano 12; for 4 fans, 4 thermocouples 

Power Meter 
Electronic 
Educational 
Devices 

watts up? PRO 
(Note: this is the unit’s model name.) 

CPU Fan Controller custom On/Off, control select: MOBO or Hardcano 
 

Table 2.  Step response of CPU temperature to CPU frequency changes, under differing loads. 

Run 
ID 

CPU 
Utilization  

Frequency Transition 
(GHz) 

Start Temp. 
(deg. C.) 

End Temp. 
(deg. C.) 

Settling Time 
(2%) (sec.) 

91 100% 3.5 to 2.5 59.3 53.7 90 
92 100% 2.5 to 3.5 52.5 58.9 60 
93 ~5% 3.5 to 2.5 53.1 48.0 170 
94 ~5% 2.5 to 3.5 48.0 52.9 130 
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Figure 5.  TEAPC prototype, with experiment 
instrumentation shown on the display. (Author-
identifying marks whited-out.) 

Interestingly, the response times approximately 
double from a full load condition to an approximately 
unloaded condition. This may arise from the internal 
CPU power control system, which shuts down major 
sections of the CPU when the sections are not used. 
Hence, in a lightly loaded system a given increase in 
frequency increases power consumption less than a 
fully loaded system; in the latter, the entire chip is 
affected by the frequency change, decreasing the 
response time. 

5.2  Performance Maximization 
Figure 6 demonstrates TEAPC’s ability to operate at 
better-than-worst-case performances via dynamic 
adaptation of the clock frequency to desired changes 
in operating temperature. In the figure, TEAPC is 
under full load and starts executing in an 
underclocked power-saving mode, then has its Tset 
raised appropriately. TEAPC rapidly increases its 
frequency, strictly in response to the control system. 
It reaches full performance (the hard upper-limit 
‘peg’) within about 10 seconds, even though it takes 
longer for the actual CPU temperature to reach its 
final value. The CPU core voltage was held constant 
at its high value, 1.5125 V., and was not linked to the 
frequency. 

5.3  Modest Frequency Changes 
Figure 7 shows the results of a small step change in 
frequency, midway between the two peg points. 
Voltage-to-frequency linking was used. By raising 
Tset, the frequency was changed from 2.75 GHz to 
3.25 GHz, with the final average value reached after 
about 150 seconds. From the results we see that small 
frequency changes are also handled by the control 
algorithm, although pegging may still occur to a 
limited degree. 

5.4  Load Adapting; Vcore Linking 
TEAPC also dynamically and automatically adapts to 
changes in computation load. In Figure 8 the system 
is initially stable at the upper peg point of 3.5 GHz, 
and under no load. At the indicated point, the Sandra 
CPU-burn program is started, putting the CPU under 
full load. The control system senses the rapid 
increase in CPU temperature, and immediately drops 
the frequency. Within about 50 seconds TEAPC’s 
frequency has dropped to about 2.65 GHz, on 
average, while the CPU temperature has stayed 
relatively constant around the temperature set point. 
The power consumption stays about the same. In this 
case, the CPU core voltage was held constant at its 
high value, 1.5125 V., and was not linked to the 
frequency. 

We performed the same experiment, this time with 
the CPU core voltage a function of frequency. The 
highest frequency corresponds to the highest voltage, 
and the lowest frequency corresponds to the lowest 
voltage. The results are shown in Figure 9. The lower 
voltage and hence reduced requirement for power 
allow a higher final operating frequency, about 3.0 
GHz, with no change in the power consumption. 
Thus, the voltage-to-frequency linking results in 
higher performance for the same power consumption. 

5.5  Disaster Toleration and Low-
Power Setting 
The disaster tolerance experiment consists of turning 
off the CPU’s cooling fan while the CPU is under full 
load and at its “maximum” frequency. Moving air 
from a fan through a passive heatsink greatly lowers 
the heatsink’s thermal resistance and thus greatly 
increases the amount of heat a heatsink can dissipate. 
Hence, stopping the fan is a disastrous condition, and 
an excellent test of TEAPC’s adaptation abilities.  

Figure 10 shows TEAPC’s response first to fan ‘off’ 
and then fan ‘on’ conditions. Initially, the CPU ran at 
its “maximum” frequency of 3.50 GHz and a 
corresponding core voltage of 1.5125 V., and while 
under full load. The CPU’s core voltage was linked 
to the CPU frequency. As is shown in the figure, 
shortly after the CPU’s fan was turned off the CPU 
temperature began to rise, causing the control system 
to lower the CPU’s frequency (and hence also its core 
voltage). Since the CPU’s temperature never dropped 
below the Tset value of 56 degrees C., the control 
system dropped the CPU’s frequency all the way 
down to its “minimum” value of 1.1 GHz and the 
corresponding minimum core voltage of 1.0875 V. 
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Figure 6.  "Maximize" performance adaptation. 
Vcore not linked to CPU frequency. 
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Figure 7.  Small step adaptation, 2.75 GHz 
(Tset=48 C.) to 3.25 GHz (Tset=52 C.). Vcore is 
linked to CPU frequency. 

At this point we ran other applications to test the 
capabilities of the CPU at such extreme conditions. 
At the low frequency, TEAPC was still functional; no 
OS or other crashes occurred, the burn program still 
worked, and Web browsing was fully functional and 
executed simultaneously with the burn and a 
PowerPoint presentation. Sample web pages included 
video clips. Therefore, while the system operates at 
reduced performance, it is still functional at the low 
frequency and voltage, with the CPU fan stopped; 
disaster tolerance is achieved. (In a production 
system more extensive testing would be needed.) 

(Note that while other applications are running in the 
foreground, teapc is not active due to the nature of 
its construction as a “console” application in Borland 
C++ Builder 6, the IDE (Integrated Development 
Environment) used for teapc. This is why no data 
points are shown in the vicinity of t = ‘A’ seconds. In 
a production system this phenomenon would not 
occur, and teapc would always be active.) 

The CPU temperature dropped slightly while the 
frequency and voltage decreased, then rose slightly to 
a steady 59 degrees C. (The CPU can operate safely 
up to 70 degrees C.; this is an Intel specification.) 

After the fan was turned back on, the control system 
sensed the drop in the CPU’s temperature and 
increased the CPU’s frequency. Thus, TEAPC 
always adapts to the existing conditions, taking 
advantage of favorable ones as well. Disaster 
recovery is also achieved. 

The power savings at the low frequency and voltage 
settings were substantial. The overall PC power 
decreased from about 218 W. down to 132 W., under 
full load, a power savings of about 40%. 
Underclocking is a useful tool. 
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Figure 8.  Load adaptation test. Vcore NOT linked 
to CPU frequency. 

1

1.5

2

2.5

3

3.5

0 100 200 300 400

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e 
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 100 200 300 400
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)

No  load -to - Full load
 

Figure 9.  Load adaptation test. Vcore IS linked to 
CPU frequency. 

5.6  Overhead 
We measured teapc’s CPU utilization  (overhead) 
during full load operation with the feedback control 
system engaged, but with the experimentation 
instrumentation and display system turned off; this 
would be the normal mode of operation in a 
production system. teapc ran in the foreground. 
The measurements were made with a standard 
‘performance counter’ built into the Windows API. 

teapc used less than 1% of the CPU under the 
above conditions. In fact, teapc’s CPU utilization 
was less than the minimum increment of the 
performance counter (about 0.4%); most of the time 
the indicated utilization was 0%. In other words, 
teapc adds practically no execution time overhead 
to the PC’s operation and thus no performance is lost. 

5.7  Real Workload Effects 
If TEAPC is operated in an intermediate mode, 
between maximum performance and minimum power 

consumption, the performance dynamics are likely to 
be as complex as the dynamics of the workload itself, 
if not more complex. However, the net mean 
performance is not likely to change, and unstable 
performance dynamics should be avoidable with a 
well-designed control system. 

For example, first consider Figure 6; the frequency is 
approximately constant, and the core voltage is 
constant. However, the Sandra burn-in code appears 
to have three distinct phases of operation, each one 
using different parts of the CPU and hence using a 
different amount of power; notice the step-function 
shape of the power consumption. This shape repeats 
with each run of the burn-in code; each run executes 
for about 30 seconds. Next, consider Figure 7, with 
TEAPC operating in an intermediate mode, in which 
the frequency can vary. The power curve is no longer 
neat, but mirrors the complexity of both the 
frequency and temperature curves. However, also 
note that the mean performance is relatively stable. 
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Figure 10.  Example of disaster tolerance and recovery: CPU fan turned off then back on; system under full 
load. TEAPC remains functional at the low frequency and core voltage, even with the fan off. TEAPC 
continuously adapts to take the best advantage of existing conditions.  

We observe an interesting phenomenon in Figure 7 
and Figure 9, in both of which the core voltage is 
linked to the frequency: The AC part of the frequency 
data has the shape of an amplitude-modulated signal, 
with the ‘carrier’ period being the same as the period 
of the burn program’s runs (30 seconds). The 
modulating signal seems to have a period of about 
220 and 160 seconds in Figure 7 and Figure 9, 
respectively. The characterization, investigation and 
comprehensive explanation of this phenomenon is a 
subject for future work. 

6 TEAPC Operation in 
Practice 
TEAPC can be operated in many ways depending on 
the needs or desires of the user. The user or operating 
system may change the operating characteristics 
dynamically to suit current demands. Only Tset need 
be changed to accommodate different circumstances. 
For examples, see Table 3. 

7 Summary 
TEAPC demonstrates the numerous and deep 
possibilities inherent in modern PC’s when advantage 
is taken of low-level inputs and outputs, and, most 
especially, when a well-designed feedback-control 
system is used. Many of the TEAtime attributes have 
been realized in TEAPC, as well as many more. 

TEAPC demonstrates: operation at better-than-worst-
case performance levels, adaptation to varying 
environmental and CPU loading conditions, disaster 
tolerance, and low-power/high reliability operation. 
We feel TEAPC could open the way for much more 
versatile and cost-saving PCs, in many cases those 
that already exist. Underclocking is a great tool to 
help achieve several of these features. 
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Table 3.  Some possible operating scenarios. 

Goal Tset 
Comments 

Lowest power, highest 
reliability Low 

Frequency and CPU core voltage are minimized, 
minimizing power consumption and maximizing 
reliability. Suitable for web browsing (even with 
broadband access), email and casual use. Could 
be the normal setting for nighttime operation in 
an office, to minimize operating costs yet 
provide the reliability of “always on” operation. 

Mid-range power, 
reliability Mid-range 

Frequency and core voltage change to maintain a 
constant CPU temperature equal to the Tset 
value. Power could still be low, with high 
reliability. More computationally-demanding 
tasks could be run, with negligible delay, e.g., 
limited animation, large Excel worksheets, etc. 

Highest performance High: frequency is pegged 
at its maximum value 

In the case of the prototype, this would be a case 
of limited overclocking. Reliability is minimized 
and power maximized, but performance is also 
maximized. Useful for computationaly-intensive 
tasks, such as FPGA net routing, or game 
playing. (The maximum frequency could also be 
set for no overclocking.) Could also be the 
daytime setting in an office, so as to minimize 
response time during working hours. 

Disaster tolerance Any 
For all practical purposes, TEAPC is always 
enabled for disaster tolerance. 

Environment change 
tolerance Any 

With high ambient temperatures TEAPC adapts 
the system so as to keep the CPU temperature 
within specifications. Performance is limited, but 
the system still functions. Conversely, with low 
ambient temperatures the more favorable 
conditions can give improved performance. 
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