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Abstract� High-performance computer processors have 
become much more complex in recent years, especially in the 
research community. We describe a Web-based interactive 
simulation and graphics tool under development at URI for 
the new Levo research processor. The tool mimics Levo 
operation and structure, aiding in broad understanding by 
researchers, students and engineers.  
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computing, online simulation, user-defined content. 

I. INTRODUCTION 

MICROPROCESSOR performance has increased 
dramatically over the last thirty years. This has 

unfortunately been accompanied by a similar, if not more 
rapid, increase in chip transistor count and complexity. 
Current microprocessors have 10�s of millions of 
transistors. These chips are so complex that one-half or 
more of the total chip development cost is in functional 
verification (checking its logic).  High euro or dollar 
development cost is just one consequence of the increased 
complexity: time-to-market may become unacceptable. 
Also, educating verification engineers about the chip�s 
operation becomes extremely hard, as does the difficulty of 
debugging the chip (finding and fixing its flaws). 
 While chip manufacturers can afford to employ hundreds 
of engineers to design and debug their chips, the 
microprocessor- or microarchitecture-research community 
cannot.  Further, students are limited in their background 
and the amount of time they can devote to understanding 
complex designs.  Also, it is highly desirable to provide 
easy access to support tools.  Lastly, such tools should be 
adaptable to completely different processor designs. 
 In this paper we describe the LevoVis Web-based 

simulation visualization tool. Originally devised 
specifically for the Levo research processor[6, 7] 
development effort at the University of Rhode Island (URI) 
and Northeastern University (NEU), the tool has been 
modified to be adaptable to any computer architecture or 
microarchitecture. The remainder of the paper is organized 
as follows. In Section II other approaches are briefly 
reviewed.  We broadly describe the Levo microarchitecture 
in Section III.  LevoVis itself is described at a high level in 
Section IV.  LevoVis usage is explained in Section V.  
Examples of LevoVis operation, including a series of 
screenshots, are given in Section VI.  In Section VII we 
briefly review the future plans for LevoVis. We conclude in 
Section VIII.  Lastly, LevoVis-accessing details are given 
in Section IX. 
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II. OTHER APPROACHES 
Although there are many systems available for the 

visualization of microprocessor internals, there are few 
systems that provide a detailed cycle-by-cycle analysis of 
execution.  Of the few, perhaps the most prolific of these is 
Rivet[1].  While very powerful, Rivet does not work over 
the Internet, nor does it provide for easily redefinable 
views.   

III. THE LEVO RESEARCH PROCESSOR 
Processor performance is composed of two elements, 

assuming a fixed instruction set: clock frequency f, as in a 
�2 GHz� Intel Pentium 4 processor, and Instructions Per 
Cycle IPC, which is rarely quoted. Given the above, 
performance P in terms of instructions per second is:  

   *P IPC f=
Note that this is only meaningful when comparing 
processors with the same instruction set, such as an Intel 
Pentium III and an AMD Athlon.  

Levo is concerned with maximizing IPC while still 
allowing f to be maintained at a high level, thereby 
improving performance. Levo is still in development, but 
already exhibits IPC�s between 5 and 10 (the norm for a 
commercial processor is less than 1 IPC). 

A simplified view of the central Execution Window part 
of Levo is shown in Fig. 1.  Each Active Station, or AS, 
holds one instruction at a time.  The Mainline or M columns 
hold regular instructions.  The DEE (Disjoint Eager 
Execution[8]) or D columns hold certain speculatively 
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executed instructions.  In this version of Levo, every four 
ASs are grouped together and share one Processing 
Element or PE. (A PE contains all of the arithmetic and 
Boolean logic necessary to execute the actual operations of 
a machine instruction.) 

Whenever an instruction executes, it broadcasts its 
result[5] and a novel identifying time tag on a bus 
dedicated to its group. This result is read by later ASs that 
need the result; once a later result gets a new datum, it 
executes.  Since long busses can slow down a processor 
(decrease f and hence decrease performance), each bus is 
segmented into electrically separate segments by the 
Register Forwarding Units or RFUs.  Each RFU also delays 
data transmission by one or more cycles, which would 
decrease performance unacceptably except for a special 
characteristic of typical code: instruction results are 
typically used close to where they are produced[2], thus 
most instructions will not be substantially affected by the 
RFU delays, keeping performance high. 
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Fig. 1.  Levo Execution Window simplified block diagram. Note the 
regularity of the design; this leads to a machine that is scaleable with 
respect to number of Processing Elements (adders, etc.). Also,  this is a 
small design for illustrative purposes; a real Levo would be many times 
larger, leading to an extremely large amount of static and dynamic state to 
keep track of. 

A typical Levo processor would have about 1024 ASs as 
well as 64 PEs and other supporting hardware. Thus, the 
amount of internal state or information at any given time is 
substantial, making understanding and debugging quite 
challenging: hence our interest in developing LevoVis. 

IV. LEVOVIS ARCHITECTURE AND OVERVIEW 
In the development of a complicated microprocessor, the 

flexibility to choose which data should be viewed and the 
ability to change its view is critical. 

The Levo Visualization System is made up of several 
components. A high-level block diagram of LevoVis is 
presented in Fig. 2., showing its relationship to the Web 

(Internet) and supporting elements, such as the LevoSim 
simulator. The Levo Visualizer renders the state of the 
Levo processor to the user and takes user input and sends 
these to the Levo Server.  It is automatically downloaded 
into a user�s browser upon the first visit to the Levo 
Visualizer homepage.  The Levo Visualizer Server controls 
the heavy processes of compilation of user submitted code, 
simulation of user submitted code and the management of 
archival storage of previous simulations. 

Stored within the visualizer is a graphical representation 
of the Levo machine.  The representation is in the Scalar 
Vector Graphics (SVG)[10] format, which is an eXtensible 
Markup Language (XML)-based [9] hierarchical graphics 
description language.  This graphical representation was 
created using an illustrating program supporting SVG 
output.  The SVG format conveniently provides support for 
the grouping of graphical elements in a hierarchical way.   

The heart of the Visualizer is the tree-traversal algorithm 
that creates the view from the data.  The Levo processor is 
comprised of several components that fit together 
hierarchically.  The state of these grouped components as 
revealed through simulation is stored in XML.  When 
initially created the graphical view must implement a 
similar naming convention[3] for the grouped elements.  
The tree traversal algorithm begins at the root of both the 
data and visualization trees and looks for SVG group tags 
that match node elements within the simulation data.  When 
a match is found, the visual element is rendered; see Fig. 3. 

Arbitrary views of Levo can be created using an SVG 
compliant illustration tool (such as: Adobe Illustrator, 
CorelDraw, or DIA{Unix}) without touching a single line 
of LevoVis code.  The only requirement is that the same 
naming convention is followed between the data output and 
the data view.  This also means the actual simulation output 
may easily be extended, adding new state or even changing 
simulators completely without requiring any �retooling� of 
the Levo Visualizer. 

This approach was chosen over using standard graphic 
library routines because of the flexibility gained.  Using 
(Java�s or anyone�s) graphical library elements would have 
made the support of arbitrary views significantly more 
difficult.  It would also require revision of the visualizer 
client should the Levo simulated state output ever change. 

The Levo Visualizer Server feeds the simulation data to 
the client using RMI[4] (a Java object control and 
serialization protocol) in chunks of 10 Levo cycles when 
requested by the client.  The simulation files are quite large, 
holding thousands of cycles worth of Levo state, using 
several hundred megabytes of disk space.  A cycle index 
mechanism is used to quickly find any requested cycle.  
The server is also responsible for compiling user-submitted 
code and activating simulation of all code on the LevoSim 
simulator. 
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Fig. 2.  LevoVis system block diagram. The part above the �Internet� resides on the user�s machine (client); the part below resides on the server.
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Simulation Data XML 
 

 
 
SVG Graphic Component XML 

<busname> <g id="busname" style="stroke:none;"> 
   <path style="fill:#919191;" d="M518.404,816.771H361.103v-71.47h157.302v71.47z" />  
   
 <name>  <g id="name"> 
    <text transform="matrix(1 0 0 1 372.1318 760.8867)"> 
  Instruction Request    <tspan x="0" y="0" style="font-size:14;">Instruction Request</tspan>  
   </text> 
 </name>  </g> 
 <rfbus>  <g=�rfbus�> 
  <path style="fill-rule:evenodd;clip-rule:evenodd;fill:#FAF523;stroke:#2F63AB;stroke- 
   width:1;stroke-miterlimit:4;" d="M473.741,812.622h- 
   77.443v-48.121h77.443v48.121z" />  
  <text transform="matrix(1 0 0 1 400.8115 776.5322)"> 
   <tspan x="0" y="0">UID:</tspan> 
  <uid>    <g id="uid"> 
   ffbe8d20     <tspan x="36" y="0">ffbe8d20</tspan> 
  </uid>   </g> 
    <tspan x="0" y="9.5">Hold:</tspan>  
  <hold>   <g id="hold"> 
   0     <tspan x="36" y="9.5">0</tspan>  
  </hold>   </g> 
   <tspan x="0" y="19">Busy:</tspan>  
  <busy>   <g id="busy"> 
   0     <tspan x="36" y="19">0</tspan>  
  </busy>   </g> 
    <tspan x="0" y="28.5">Dp:</tspan>  
  <dp>   <g id="dp"> 
   0     <tspan x="36" y="28.5">0</tspan>  
  </dp>   </g> 
  </text> 
 </rfbus>  </g> 
</busname> </g> 

 
(a) Illustration of the mapping between simulation data and the SVG graphical representation. 

 

 
(b) The resulting rendered output from (a). 

 
Fig. 3.  LevoSim data, the LevoVis SVG graphical representation, and the resulting Levo Visualizer user-viewed output. 

V. USING LEVOVIS 
Initially the user has no part of LevoVis on their machine 

(the client). When the user first contacts the LevoVis 
Webserver through a standard web browser, the server 
downloads the initial Java applet client part of LevoVis to 
the client. The LevoVis Server is then under the control of 
the client�s Levo Visualizer.   The view presented in Fig. 4. 
is a sample view presented to the user.   

The user is able to go forwards and backwards through 
the code�s execution, moving by an arbitrary number of 
cycles at will. The user is also able to dynamically change 
what state is displayed. In this way the user is able to 
understand both the detailed and high-level operation of, in 
this case, the Levo research machine.  The graphical 

representation can be modified to suit any machine or 
change in Levo�s microarchitecture; in such a case, of 
course, the simulator running on the server would change. 

Users can either enter their own C code to be simulated, 
or select a pre-compiled program to be used.  Among the 
precompiled programs are some of the Spec2000 Integer 
benchmarks currently used in development of the Levo 
processor.  In the case of a custom program, the code is 
primarily compiled into MIPS-1 binary or machine code by 
a standard Silicon Graphics compiler and stored on the 
LevoVis Server.  In either code case, the machine code is 
fed into the LevoSim program. LevoSim is a cycle-accurate 
simulator running on the LevoVis Server. LevoSim 
simulates the internal operation of Levo by executing the 
machine code as if LevoSim contained real hardware. For 
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every cycle of simulation, LevoSim saves the internal Levo 
state on the server�s disk.  

VI. LEVOVIS EXAMPLES (SCREENSHOTS) 
We now present several examples of what a user would 

see in their Web browser when running LevoVis.  Four 
somewhat different screenshots are shown in Fig. 4. 

through Fig. 7. (Fig. 4. - Fig. 6. are concept shots; real data 
is not shown.) 

Fig. 4. shows the basic layout of the Levo Visualizer. 
There are three major components of the window: the state 
navigation and selection TREE pane on the left, the actual 
state DISPLAY pane on the right, and the small CYCLE 
time and code selection pane on the bottom. 

 

 

Fig. 4.  Screenshot of low-level Levo structures and their state as seen on the user�s browser. Note the cycle navigation bar at the bottom.  Also note the left pane 
of the screen: it allows the user to select exactly what state to display. (The left pane has a collapsing-tree structure, similar to that used for file systems, ergo 
Windows Explorer.) 
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The TREE pane shows the current cycle's state. With this 
view, the user can quickly find the value of each element.  
While a particular DISPLAY view may not expose all the 
data from the simulator at once, the TREE view is 
guaranteed to allow access to the full state contents for any 
given cycle. The CYCLE pane navigator component is used 
to control the view position in the simulation history.  The 
current position can be advanced either by a single cycle 
forwards or backwards in execution history or an arbitrary 
time can be selected. This pane also contains a file selector 

to allow the user to change to a different code simulation. 
Fig. 5. shows another view of the window, with a 

different simulation and with most of the Levo Execution 
(or Instruction) Window displayed. Fig. 6. is another 
screenshot, this time also displaying dynamic bus state in 
the bottom of the DISPLAY pane.  

Lastly, Fig. 7. shows the actual state of a Levo 
simulation at cycle 12 of the execution of the Dhrystone 
program.  (Explaining all of the data is beyond the scope of 
this paper.) 

 
Fig. 5.  Levo Visualizer screen shot showing more of a particular configuration of Levo. 
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Fig. 6.  Screenshot showing both Levo static state (that in registers, e.g.,  ASs) and dynamic state (that on wires or busses, e.g., the Memory Forwarding Bus 
towards the bottom of the right pane).  The �Instruction Window� on the right is the same as the �Execution Window� discussed earlier. 

 



SSGRR 2002 Conference 
 

8

 
Fig. 7.  Last screenshot, showing actual static state of the Levo ASs and PEs for cycle 12 of the execution of the industry-standard Dhrystone performance test 
program.

VII. ONGOING ENHANCEMENTS 
Clearly, LevoVis opens a wealth of possibilities for 

enhancing the visualization of processors. Some of our 
current work and ongoing enhancements includes: 

• finish on the fly code compilation / submission 
• add inline stream compression of the data between 

the client and server to decrease network bandwidth 
consumption 

• add ability to select different views on the fly 
• allow the use to pop out child windows, each with 

their own cycle navigator, so different windows can 
see different cycles for state comparison between 
cycles 

•  add a delta indicator (some indication of elements 
who�s state has changed between cycles) 

• add statistics gathering. 

VIII. SUMMARY 
LevoVis provides a wealth of flexibility and state 

visualization capabilities for complex processors. These 
allow ready understanding, analysis, and debugging of 
processors by researchers, students, and engineers working 
concurrently and remotely from the LevoVis host. That is, 
world-wide access to current and future processor internal 
operation is possible.  

Further, while our discussion has focused on one 
machine (Levo), we must emphasize that LevoVis is 
adaptable to any style of processor; indeed, even to any 
type of synchronous digital system. 

IX. LEVOVIS ACCESS 
The LevoVis host resides at the Dept. of Electrical and 

Computer Engineering at the University of Rhode Island, 
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and may be accessed indirectly or directly, resp., through 
the URLs: 

 http://www.levo.org 
or: 
  http://ovel.ele.uri.edu:8080 
(Yes, that�s Levo backwards, for historical reasons.) It is 
also accessible indirectly via the authors� web sites, 
including: 

 http://www.ele.uri.edu/~uht 
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