
SSGRR 2002w Conference

1

Interactive High-Performance Processor
Understanding via the Web

Augustus K. Uht, Sean Langford, and David Morano

Abstract� High-performance computer processors have
become much more complex in recent years, especially in the
research community. We describe a Web-based interactive
simulation and graphics tool under development at URI for
the new Levo research processor. The tool mimics Levo
operation and structure, aiding in broad understanding by
researchers, students and engineers.

Index Terms� Microarchitecture, high-performance
computing, online simulation, user-defined content.

I. INTRODUCTION

MICROPROCESSOR performance has increased
dramatically over the last thirty years. This has

unfortunately been accompanied by a similar, if not more
rapid, increase in chip transistor count and complexity.
Current microprocessors have 10�s of millions of
transistors. These chips are so complex that one-half or
more of the total chip development cost is in functional
verification (checking its logic). High euro or dollar
development cost is just one consequence of the increased
complexity: time-to-market may become unacceptable.
Also, educating verification engineers about the chip�s
operation becomes extremely hard, as does the difficulty of
debugging the chip (finding and fixing its flaws).
 While chip manufacturers can afford to employ hundreds
of engineers to design and debug their chips, the
microprocessor- or microarchitecture-research community
cannot. Further, students are limited in their background
and the amount of time they can devote to understanding
complex designs. Also, it is highly desirable to provide
easy access to support tools. Lastly, such tools should be
adaptable to completely different processor designs.
 In this paper we describe the LevoVis Web-based

simulation visualization tool. Originally devised
specifically for the Levo research processor[6, 7]
development effort at the University of Rhode Island (URI)
and Northeastern University (NEU), the tool has been
modified to be adaptable to any computer architecture or
microarchitecture. The remainder of the paper is organized
as follows. In Section II other approaches are briefly
reviewed. We broadly describe the Levo microarchitecture
in Section III. LevoVis itself is described at a high level in
Section IV. LevoVis usage is explained in Section V.
Examples of LevoVis operation, including a series of
screenshots, are given in Section VI. In Section VII we
briefly review the future plans for LevoVis. We conclude in
Section VIII. Lastly, LevoVis-accessing details are given
in Section IX.

This work was supported in part by the U.S. National Science
Foundation under Grants Nos. MIP-9708183 and EIA-9729839, the
University of Rhode Island Office of the Provost, the Xilinx Corp., and the
Mentor Graphics Corp.

Augustus K. Uht is with the University of Rhode Island, Department of
Electrical and Computer Engineering, 4 East Alumni Ave., Kingston, RI
02881 USA (telephone: +1-401-874-5431, e-mail:
mailto:uht@ele.uri.edu).

Sean Langford was with the University of Rhode Island, and is
currently with Experience Inc., One Faneuil Hall Marketplace 3F, Boston,
MA 02109 USA (e-mail: langfors@ele.uri.edu).

David Morano is with the Electrical and Computer Engineering
Department, Northeastern University, Boston, MA, USA (email:
morano@computer.org).

II. OTHER APPROACHES
Although there are many systems available for the

visualization of microprocessor internals, there are few
systems that provide a detailed cycle-by-cycle analysis of
execution. Of the few, perhaps the most prolific of these is
Rivet[1]. While very powerful, Rivet does not work over
the Internet, nor does it provide for easily redefinable
views.

III. THE LEVO RESEARCH PROCESSOR
Processor performance is composed of two elements,

assuming a fixed instruction set: clock frequency f, as in a
�2 GHz� Intel Pentium 4 processor, and Instructions Per
Cycle IPC, which is rarely quoted. Given the above,
performance P in terms of instructions per second is:

 *P IPC f=
Note that this is only meaningful when comparing
processors with the same instruction set, such as an Intel
Pentium III and an AMD Athlon.

Levo is concerned with maximizing IPC while still
allowing f to be maintained at a high level, thereby
improving performance. Levo is still in development, but
already exhibits IPC�s between 5 and 10 (the norm for a
commercial processor is less than 1 IPC).

A simplified view of the central Execution Window part
of Levo is shown in Fig. 1. Each Active Station, or AS,
holds one instruction at a time. The Mainline or M columns
hold regular instructions. The DEE (Disjoint Eager
Execution[8]) or D columns hold certain speculatively

mailto:uht@ele.uri.edu

SSGRR 2002w Conference

2

executed instructions. In this version of Levo, every four
ASs are grouped together and share one Processing
Element or PE. (A PE contains all of the arithmetic and
Boolean logic necessary to execute the actual operations of
a machine instruction.)

Whenever an instruction executes, it broadcasts its
result[5] and a novel identifying time tag on a bus
dedicated to its group. This result is read by later ASs that
need the result; once a later result gets a new datum, it
executes. Since long busses can slow down a processor
(decrease f and hence decrease performance), each bus is
segmented into electrically separate segments by the
Register Forwarding Units or RFUs. Each RFU also delays
data transmission by one or more cycles, which would
decrease performance unacceptably except for a special
characteristic of typical code: instruction results are
typically used close to where they are produced[2], thus
most instructions will not be substantially affected by the
RFU delays, keeping performance high.

from next columnfrom next columnfrom next column

to previous columnto previous columnto previous column

RFU

AS AS

AS AS
M D

PE

RFU

AS AS

AS AS
M D

PE

RFU

RFU

AS AS

AS AS
M D

PE
RFU

RFU

AS AS

AS AS
M D

PE
RFU

RFU

AS AS

AS AS
M D

PE

RFU

AS AS

AS AS
M D

PE
RFU

AS AS

AS AS
M D

PE

RFU

AS AS

AS AS
M D

PE
RFU

AS AS

AS AS
M D

PE

Column +1i Column -1iColumn i

Fig. 1. Levo Execution Window simplified block diagram. Note the
regularity of the design; this leads to a machine that is scaleable with
respect to number of Processing Elements (adders, etc.). Also, this is a
small design for illustrative purposes; a real Levo would be many times
larger, leading to an extremely large amount of static and dynamic state to
keep track of.

A typical Levo processor would have about 1024 ASs as
well as 64 PEs and other supporting hardware. Thus, the
amount of internal state or information at any given time is
substantial, making understanding and debugging quite
challenging: hence our interest in developing LevoVis.

IV. LEVOVIS ARCHITECTURE AND OVERVIEW
In the development of a complicated microprocessor, the

flexibility to choose which data should be viewed and the
ability to change its view is critical.

The Levo Visualization System is made up of several
components. A high-level block diagram of LevoVis is
presented in Fig. 2., showing its relationship to the Web

(Internet) and supporting elements, such as the LevoSim
simulator. The Levo Visualizer renders the state of the
Levo processor to the user and takes user input and sends
these to the Levo Server. It is automatically downloaded
into a user�s browser upon the first visit to the Levo
Visualizer homepage. The Levo Visualizer Server controls
the heavy processes of compilation of user submitted code,
simulation of user submitted code and the management of
archival storage of previous simulations.

Stored within the visualizer is a graphical representation
of the Levo machine. The representation is in the Scalar
Vector Graphics (SVG)[10] format, which is an eXtensible
Markup Language (XML)-based [9] hierarchical graphics
description language. This graphical representation was
created using an illustrating program supporting SVG
output. The SVG format conveniently provides support for
the grouping of graphical elements in a hierarchical way.

The heart of the Visualizer is the tree-traversal algorithm
that creates the view from the data. The Levo processor is
comprised of several components that fit together
hierarchically. The state of these grouped components as
revealed through simulation is stored in XML. When
initially created the graphical view must implement a
similar naming convention[3] for the grouped elements.
The tree traversal algorithm begins at the root of both the
data and visualization trees and looks for SVG group tags
that match node elements within the simulation data. When
a match is found, the visual element is rendered; see Fig. 3.

Arbitrary views of Levo can be created using an SVG
compliant illustration tool (such as: Adobe Illustrator,
CorelDraw, or DIA{Unix}) without touching a single line
of LevoVis code. The only requirement is that the same
naming convention is followed between the data output and
the data view. This also means the actual simulation output
may easily be extended, adding new state or even changing
simulators completely without requiring any �retooling� of
the Levo Visualizer.

This approach was chosen over using standard graphic
library routines because of the flexibility gained. Using
(Java�s or anyone�s) graphical library elements would have
made the support of arbitrary views significantly more
difficult. It would also require revision of the visualizer
client should the Levo simulated state output ever change.

The Levo Visualizer Server feeds the simulation data to
the client using RMI[4] (a Java object control and
serialization protocol) in chunks of 10 Levo cycles when
requested by the client. The simulation files are quite large,
holding thousands of cycles worth of Levo state, using
several hundred megabytes of disk space. A cycle index
mechanism is used to quickly find any requested cycle.
The server is also responsible for compiling user-submitted
code and activating simulation of all code on the LevoSim
simulator.

SSGRR 2002w Conference

3

Fig. 2. LevoVis system block diagram. The part above the �Internet� resides on the user�s machine (client); the part below resides on the server.

SSGRR 2002 Conference

4

Simulation Data XML

SVG Graphic Component XML

<busname> <g id="busname" style="stroke:none;">
 <path style="fill:#919191;" d="M518.404,816.771H361.103v-71.47h157.302v71.47z" />

 <name> <g id="name">
 <text transform="matrix(1 0 0 1 372.1318 760.8867)">
 Instruction Request <tspan x="0" y="0" style="font-size:14;">Instruction Request</tspan>
 </text>
 </name> </g>
 <rfbus> <g=�rfbus�>
 <path style="fill-rule:evenodd;clip-rule:evenodd;fill:#FAF523;stroke:#2F63AB;stroke-
 width:1;stroke-miterlimit:4;" d="M473.741,812.622h-
 77.443v-48.121h77.443v48.121z" />
 <text transform="matrix(1 0 0 1 400.8115 776.5322)">
 <tspan x="0" y="0">UID:</tspan>
 <uid> <g id="uid">
 ffbe8d20 <tspan x="36" y="0">ffbe8d20</tspan>
 </uid> </g>
 <tspan x="0" y="9.5">Hold:</tspan>
 <hold> <g id="hold">
 0 <tspan x="36" y="9.5">0</tspan>
 </hold> </g>
 <tspan x="0" y="19">Busy:</tspan>
 <busy> <g id="busy">
 0 <tspan x="36" y="19">0</tspan>
 </busy> </g>
 <tspan x="0" y="28.5">Dp:</tspan>
 <dp> <g id="dp">
 0 <tspan x="36" y="28.5">0</tspan>
 </dp> </g>
 </text>
 </rfbus> </g>
</busname> </g>

(a) Illustration of the mapping between simulation data and the SVG graphical representation.

(b) The resulting rendered output from (a).

Fig. 3. LevoSim data, the LevoVis SVG graphical representation, and the resulting Levo Visualizer user-viewed output.

V. USING LEVOVIS
Initially the user has no part of LevoVis on their machine

(the client). When the user first contacts the LevoVis
Webserver through a standard web browser, the server
downloads the initial Java applet client part of LevoVis to
the client. The LevoVis Server is then under the control of
the client�s Levo Visualizer. The view presented in Fig. 4.
is a sample view presented to the user.

The user is able to go forwards and backwards through
the code�s execution, moving by an arbitrary number of
cycles at will. The user is also able to dynamically change
what state is displayed. In this way the user is able to
understand both the detailed and high-level operation of, in
this case, the Levo research machine. The graphical

representation can be modified to suit any machine or
change in Levo�s microarchitecture; in such a case, of
course, the simulator running on the server would change.

Users can either enter their own C code to be simulated,
or select a pre-compiled program to be used. Among the
precompiled programs are some of the Spec2000 Integer
benchmarks currently used in development of the Levo
processor. In the case of a custom program, the code is
primarily compiled into MIPS-1 binary or machine code by
a standard Silicon Graphics compiler and stored on the
LevoVis Server. In either code case, the machine code is
fed into the LevoSim program. LevoSim is a cycle-accurate
simulator running on the LevoVis Server. LevoSim
simulates the internal operation of Levo by executing the
machine code as if LevoSim contained real hardware. For

SSGRR 2002 Conference

5

every cycle of simulation, LevoSim saves the internal Levo
state on the server�s disk.

VI. LEVOVIS EXAMPLES (SCREENSHOTS)
We now present several examples of what a user would

see in their Web browser when running LevoVis. Four
somewhat different screenshots are shown in Fig. 4.

through Fig. 7. (Fig. 4. - Fig. 6. are concept shots; real data
is not shown.)

Fig. 4. shows the basic layout of the Levo Visualizer.
There are three major components of the window: the state
navigation and selection TREE pane on the left, the actual
state DISPLAY pane on the right, and the small CYCLE
time and code selection pane on the bottom.

Fig. 4. Screenshot of low-level Levo structures and their state as seen on the user�s browser. Note the cycle navigation bar at the bottom. Also note the left pane
of the screen: it allows the user to select exactly what state to display. (The left pane has a collapsing-tree structure, similar to that used for file systems, ergo
Windows Explorer.)

SSGRR 2002 Conference

6

The TREE pane shows the current cycle's state. With this
view, the user can quickly find the value of each element.
While a particular DISPLAY view may not expose all the
data from the simulator at once, the TREE view is
guaranteed to allow access to the full state contents for any
given cycle. The CYCLE pane navigator component is used
to control the view position in the simulation history. The
current position can be advanced either by a single cycle
forwards or backwards in execution history or an arbitrary
time can be selected. This pane also contains a file selector

to allow the user to change to a different code simulation.
Fig. 5. shows another view of the window, with a

different simulation and with most of the Levo Execution
(or Instruction) Window displayed. Fig. 6. is another
screenshot, this time also displaying dynamic bus state in
the bottom of the DISPLAY pane.

Lastly, Fig. 7. shows the actual state of a Levo
simulation at cycle 12 of the execution of the Dhrystone
program. (Explaining all of the data is beyond the scope of
this paper.)

Fig. 5. Levo Visualizer screen shot showing more of a particular configuration of Levo.

SSGRR 2002 Conference

7

Fig. 6. Screenshot showing both Levo static state (that in registers, e.g., ASs) and dynamic state (that on wires or busses, e.g., the Memory Forwarding Bus
towards the bottom of the right pane). The �Instruction Window� on the right is the same as the �Execution Window� discussed earlier.

SSGRR 2002 Conference

8

Fig. 7. Last screenshot, showing actual static state of the Levo ASs and PEs for cycle 12 of the execution of the industry-standard Dhrystone performance test
program.

VII. ONGOING ENHANCEMENTS
Clearly, LevoVis opens a wealth of possibilities for

enhancing the visualization of processors. Some of our
current work and ongoing enhancements includes:

• finish on the fly code compilation / submission
• add inline stream compression of the data between

the client and server to decrease network bandwidth
consumption

• add ability to select different views on the fly
• allow the use to pop out child windows, each with

their own cycle navigator, so different windows can
see different cycles for state comparison between
cycles

• add a delta indicator (some indication of elements
who�s state has changed between cycles)

• add statistics gathering.

VIII. SUMMARY
LevoVis provides a wealth of flexibility and state

visualization capabilities for complex processors. These
allow ready understanding, analysis, and debugging of
processors by researchers, students, and engineers working
concurrently and remotely from the LevoVis host. That is,
world-wide access to current and future processor internal
operation is possible.

Further, while our discussion has focused on one
machine (Levo), we must emphasize that LevoVis is
adaptable to any style of processor; indeed, even to any
type of synchronous digital system.

IX. LEVOVIS ACCESS
The LevoVis host resides at the Dept. of Electrical and

Computer Engineering at the University of Rhode Island,

SSGRR 2002 Conference

9

and may be accessed indirectly or directly, resp., through
the URLs:

 http://www.levo.org
or:
 http://ovel.ele.uri.edu:8080
(Yes, that�s Levo backwards, for historical reasons.) It is
also accessible indirectly via the authors� web sites,
including:

 http://www.ele.uri.edu/~uht

ACKNOWLEDGMENT
We are indebted to Laurette Bradley, who first suggested

the creation of a Web-based visualizer for Levo.
We are also profoundly grateful to the whole Levo team

for their hard work and support.

REFERENCES
[1] R. Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum, and P.
Hanrahan, "Rivet: A flexible environment for computer systems
visualization," Computer Graphics - US, vol. 34, no. 1, pp. 68-73,
February 2000.

[2] M. Franklin and G. S. Sohi, "Register Traffic Analysis for
Streamlining Inter-Operation Communication in Fine-Grain Parallel
Processors," in Proceedings of the Twenty-Fifth International Symposium
on Microarchitecture (MICRO-25): IEEE and ACM, December 1992, pp.
236-245.

[3] D. Morano, "Levo State Trace Output Description," unpublished
report, 2001, URL: via: http://www.levo.org, to appear.

[4] Sun Microsystems, "Java Programming Language," URL:
http://java.sun.com, accessed: November 2001.

[5] R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple
Arithmetic Units," IBM Journal of Research and Development, vol. 11, no.
1, pp. 25-33, January 1967.

[6] A. K. Uht, A. Khalafi, D. Morano, T. Wenisch, M. d. Alba, and D.
Kaeli, "Levo: IPC in the 10's via Resource Flow Computing," in Work-In-
Progress session, PACT-2001; appears in a special issue of IEEE TCCA
News, December 2001.

[7] A. K. Uht, D. Morano, A. Khalafi, M. d. Alba, T. Wenisch, M.
Ashouei, and D. Kaeli, "IPC in the 10's via Resource Flow Computing
with Levo," Department of Electrical and Computer Engineering,
University of Rhode Island, Kingston, RI Technical Report 092001-001,
September 18, 2001, Available via: http://www.ele.uri.edu/~uht.

[8] A. K. Uht and V. Sindagi, "Disjoint Eager Execution: An Optimal
Form of Speculative Execution," in Proceedings of the 28th International
Symposium on Microarchitecture (MICRO-28). Ann Arbor, MI,
November/December 1995, pp. 313-325.

[9] W3C, "The World Wide Web Consortium (XML) Homepage," URL:
http://www.w3.org, accessed: November 2001.

[10] W3C, "The World Wide Web Consortium SVG Homepage," URL:
http://www.w3.org/Graphics/SVG/Overview.html, accessed: November
2001.

http://www.levo.org/
http://ovel.ele.uri.edu:8080/
http://www.ele.uri.edu/~uht
http://www.levo.org/
http://java.sun.com/
http://www.ele.uri.edu/~uht
http://www.w3.org/
http://www.w3.org/Graphics/SVG/Overview.html

	Introduction
	Other Approaches
	The Levo Research Processor
	LevoVis Architecture and Overview
	Using LevoVis
	LevoVis Examples (Screenshots)
	Ongoing Enhancements
	Summary
	LevoVis Access

