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SYSTEM AND METHOD OF DIGITAL
SYSTEM PERFORMANCE ENHANCEMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Patent Application
Ser. No. 60/429,736, filed Nov. 27, 2002, now superseded
and is a continuation-in-part application of U.S. patent
application Ser. No. 09/672,128, filed on Sep. 27, 2000, now
abandoned, which claims priority to U.S. Patent Application
Ser. No. 60/156,219, filed on Sep. 27, 1999 now superseded.
all the aforementioned applications being incorporated by
reference in their entireties.

GOVERNMENT LICENSE

This invention was made with government support under
Grant Nos. MIP-9708183, EIA-9729839, and DUE-
9751215, awarded by the National Science Foundation. The
government has certain rights in this invention.

BACKGROUND OF THE INVENTION

The invention relates to the field of digital electronic
systems, and in particular to synchronous digital electronic
systems.

Computers, including their central processing units (e.g.,
Intel Pentium), cell phones, microwave ovens and practi-
cally every electronic device manufactured today uses digi-
tal hardware to operate. Digital circuits that compute a result
based solely on the state of the circuits’ current inputs are
said to be constructed of combinational logic. Combina-
tional systems can be used in many applications, but for any
interesting digital system to be realized the system must base
its output on both current inputs and the system’s prior
outputs or state.

There are two types of digital systems with “state” to be
held in some in a memory device; hence these systems are
often referred to as systems with memory. The first type,
asynchronous digital systems, change state as soon as an
input changes its value. Modeling, designing and verifying
asynchronous systems has in practice been found to be
extremely difficult, even with modern asynchronous tech-
niques. An advantage of digital systems is that they operate
as fast as the logic delays allow.

A second digital system type is a synchronous system, in
which the state only changes at times determined by a global
system clock (i.e., in synchronism with the clock). For
example, consider a Intel Pentium III processor with a basic
on-chip (CPU) clock that oscillates 500 million times a
second (i.e., 500 MHz); the processor only changes its state
at the start of one or more of those oscillations. The
synchronous approach facilitates the design, construction
and use of digital systems.

However, an inherent difficulty and performance penalty
with synchronous systems is that the duration/period of the
clock must be large enough to handle worst-case operating
conditions and manufacturing tolerances. This period is
typically at least two times the length nominally required by
the typical (common) operating and manufacturing toler-
ances. Therefore, the performance of such a digital systems
is often half or less than what it would be but for the
Worst-case.

A digital synchronous system 20 can be represented by a
block diagram model illustrated in FIG. 1. The components
of the system include combinational logic 22 (CL) and
flip-flops or latches (FF) 24. The latches 24 hold the current/
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2

present state of the system. Each latch typically stores one
bit of information. As known, a flip-flop only changes its
contents or state when a clock signal makes a transition. The
same clock goes to all the latches. The combinational logic
22 has no clock input or feedback loops: a change in one of
its inputs propagates to one or more outputs with a delay due
only to electrical circuit and speed-of-light constraints. A
latch 24 also has a propagation delay, but from the clock
transition to a change in its output.

The system 20 operates by using the combinational logic
22 to compute the Next State (NS) of the system from its
present state and the current values of the inputs to the
system. The next state is then stored in the latches 24 when
the clock transitions, and the process repeats. In order for the
system to function properly, the computation must propagate
through the combinational logic and appear at the inputs to
the latches before the relevant transition of the clock occurs
at the latches.

If the exact delays through the logic and latches were
known, the clock frequency would be set to the inverse of
the sum of the delays, and the system would operate at peak
performance (as measured by computations per second).
However, the delays are not constant, but vary with differ-
ences in the manufacturing process, variations in the power
supply voltage, variations in the operating temperature and
humidity, as well as other factors. As a result of these
variations, and the necessity to guarantee the operation of
the digital system in the worst-case situation (e.g., tempera-
ture extremes), the clock speed is set to a lower, more
conservative value than is necessary in most, typical cases.
Consequently, the average user experiences significantly
lower performance than is actually necessary.

Therefore, there is a need for a faster synchronous system
architecture.

SUMMARY OF THE INVENTION

Briefly, according to an aspect of the present invention,
the frequency of a system clock is automatically increased
until a system error is detected, then the frequency of the
clock is automatically slightly reduced to a value that does
not cause system errors.

Briefly, according to another aspect of the invention, the
frequency of a system clock is automatically increased until
an unacceptable number of errors are detected, and then the
frequency of the clock is automatically slightly reduced so
the number of detected errors is less than the unacceptable
number of errors.

The present invention performs a digital computation with
a lower than worst-case-required clock period (i.e., a faster
clock), and at the same time performs the same computation
with a larger, worst-case-assumed, clock period (i.e., a
slower clock) on a second system with identical hardware.
The outputs from the computations are compared to deter-
mine if an error has occurred. If there is a difference in the
two answers, the faster computation must be in error (i.c., a
miscalculation has occurred), and the system uses the
answer from the slower system.

In one embodiment, the present invention utilizes two
copies of the slower system that each run half as fast as the
main system. However, the two copies produce results in the
aggregate at the same rate as the main system, which is
running at a much faster rate than possible without the
invention. Hence the present invention improves perfor-
mance (e.g., speed), albeit with more hardware.

Advantageously, the present invention dynamically
adapts to achieve the best performance possible under the
actual operating conditions.
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In another aspect, the invention comprises a Timing Error
Avoidance (TEAtime) system that includes structure that
uses extra logic with the delay of the longest path between
pipeline registers to test on a cycle-by-cycle basis whether or
not the system clock is too fast or too slow. If a signal
applied to the input of the delay test logic appears at the
output of the test logic within the time of the machine’s
slowest path, the system will provide a signal to speed up the
system clock speed. Alternatively, if the signal applied to the
input of the delay test logic appears at the output of the test
logic at a greater time than the machine’s slowest path, the
system will provide a signal to slow down, minus a safety
margin, the system clock speed. Since the characteristics of
the delay test logic (delay, etc.) mirrors those of the main
logic (they are realized close together on the same chip), the
system Clock adapts both to dynamic environmental
conditions, including temperature and operating voltage, as
well as to statically-varying manufacturing conditions.

These and other objects, features and advantages of the
present invention will become apparent in light of the
following detailed description of preferred embodiments
thereof, as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a functional block diagram of a digital
synchronous system;

FIG. 2 illustrates a first embodiment of a digital system
according to the present invention;

FIG. 3 illustrates a timing diagram for the system illus-
trated in FIG. 2;

FIG. 4 illustrates a first alternative embodiment of the
present invention;

FIG. 5 illustrates a timing diagram for the first alternative
embodiment illustrated in FIG. 4;

FIG. 6 illustrates a second alternative embodiment of the
invention;

FIG. 7 illustrates a timing diagram for the embodiment
illustrated in FIG. 5;

FIG. 8 illustrates a block diagram of a timing error
avoidance system;

FIG. 9 is a more detailed block diagram illustration of the
timing error avoidance system illustrated in FIG. §;

FIG. 10 is a block diagram illustration of the timing
checker circuit illustrated in FIG. 9; and

FIG. 11 illustrates a timing diagram for the embodiment
illustrated in FIG. 10.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 2 illustrates a first embodiment of a digital system 30
according to the present invention. The digital system 30
includes two copies 20a, 205 of a main digital synchronous
system 20 illustrated in FIG. 1, wherein each of the copies
20a, 20b operates at half the speed of the main digital
synchronous system 20. One of the copies replicates the
results of the main digital synchronous system 20 in odd
cycles, while the other copy replicates the results in even
cycles. The two half-speed systems 20a, 20b are operated
one main system cycle out-of-sync with each other. Both of
the half-speed systems’ 20a, 20b outputs on lines 32, 34
respectively are compared with the main system output on
the line 36 in alternate cycles using comparators 38, 40. If
there is a difference between the two outputs (e.g., between
the signals on lines 32 and 36), an error is detected and
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selection logic 42 selects the output signal from the half-
speed system, assuming of course the error was caused by
the higher speed system (i.c., system 20). One cycle of
operation is lost for every correction necessary; this is
referred to as a miscalculation penalty.

FIG. 3 illustrates a timing diagram for the system 30
illustrated in FIG. 2, the first three cycles of operation (i.e.,
0-2) are for the case when no errors occur. The numbers
within the individual signal timing charts indicate which
computation the signal is working on or holds at that time.
At the end of cycle three 52 (at the asterisk), a comparison
of the signal CL.0 (half-speed) on the line 34 with the signal
Q__sys on the line 36 indicates an error in computation 3.
The system 30 then stalls one cycle, with the next state
remaining at 3 in cycle 3 (see 54), which it gets from CL.0,
having the correct version of computation 3, and the system
resumes operation with the correct result. In cycles 3 and
later the ideal computation numbers are shown without
parentheses, and the actual (with delay) computation num-
bers are shown with parentheses.

The half-speed systems 20z, 20b must not be operated
faster than the original worst-case system speed to help
ensure error-free computation to compare the high-speed
main computation with. This solution requires approxi-
mately three times the hardware of the original system.

It is possible to modify the solution to allow performance
increases greater than a factor of two. For each increment of
factor increase (e.g., increment of one from 2x to 3x),
another copy of the hardware must be used. Further, the slow
comparison systems use a clock that is an increment of
factor slower, e.g., in the 3x performance increase case, the
third-clock system (not shown) operates at a third of the
frequency of the main system clock. For each increment of
factor increase, the miscalculation penalty increases by a
cycle (e.g., for the 3x case the penalty is two cycles). Other
cases are handled accordingly. Note that all of the clocks in
the overall system are synchronized.

As the frequency increases, the basic performance of the
system increases, but at some point the degradation in
performance due to the miscalculation penalties from an
increasing error rate offsets the basic (clock rate)
performance, decreasing the overall performance.
Therefore, the system 30 determines the maximum perfor-
mance point, and adapts to changing conditions to determine
the best performance given the actual system operating
conditions and manufacturing tolerances of the components
therein. The system utilizes a control technique to adjust the
system clock frequency in real-time. The basic operation of
such a system may be biased towards increasing the clock
rate, and receive information from the comparators of the
timing error detection circuitry. The system clock drives a
counter having a clock enable function. The counter is
disabled when an error is detected (in the case of our
performance doubling example, this is for one cycle per
error). Therefore, the overall absolute averaged count rate of
the counter is a direct measure of the system’s performance;
as errors increase, it counts less often, although at a faster
rate—the same dynamics as those of the invention’s perfor-
mance.

The smoothed output of the counter is fed back into the
system’s clock generator, adjusting the frequency of the
clock appropriately. If the averaged counter output is low, it
increases the clock frequency (and the counter output also
increases) until the averaged counter output begins to
decrease; the frequency is then incrementally lowered,
increasing the counter output, until the output starts to
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decrease again, at which point the frequency reverses course
once again. That is, the frequency of the clock increases
while the derivative of the performance (integrated counter
output) increases; when the latter decreases, the clock fre-
quency is decreased; when the performance begins to
increase again, the clock frequency is once again increased.

The base digital synchronous system 20 (FIG. 2) is
duplicated, and the outputs of the two copies 20a, 205 (FIG.
2) are compared every cycle. The clock frequency increases
until the copies 20a, 20b (FIG. 2) differ in their results. The
system 30 then backtracks to a known good state, and
operation resumes.

This technique assumes that given the statistical varia-
tions in the manufacture of the two copies 20a, 205, one
copy will fail at a lower frequency than the other. If they
both fail at the same time and in the same way, no error will
be detected, and the system 30 will malfunction. There are
actually cases in which a finite error rate in such a system
can be tolerated. For example, if such a DSP device were
manipulating an image and failed once during the image,
potentially only one pixel of the image out of around a
million pixels total would have an incorrect value, and no
one would notice.

For mission critical applications this technique would not
be suitable. However, the technique may be modified to
function with any probability simply by continuing to add
copies of the original digital system to the modified system,
and comparing all of the outputs. In such a method voting
techniques can be used. These systems have been used (e.g.,
in the Space Shuttle), but to enhance reliability rather than
improve performance. Therefore, existing systems may have
their performance improved by increasing their clock rate to
an acceptable error (tolerated) rate level using the control
system technique according to an aspect of the present
invention.

This embodiment of the invention was tested using pro-
grammable hardware in conjunction with a variable fre-
quency clock generator to provide a piece of combinational
logic. Specifically, a 32-bit adder was built using a
commercial-off-the-shelf Field Programmable Gate Array
(FPGA). The inputs to the 32-bit adder came from registers
using the same clock. There were also two registers on the
output of the adder. The first was loaded one cycle after the
input registers to the adder are loaded with test data. The
second was loaded two clock cycles after the inputs were
loaded. A comparator compared the outputs of the first and
second output registers, hence at times differing by one
cycle. Two one-bit registers were on the comparator output,
to save (i.e., sample) the comparison output at different
times. Therefore, the major basic elements of the invention
were modeled. For each event, two random numbers were
applied to the inputs of the adder at the same time. The
output of the adder was latched both one and two clock
cycles later. By adjusting the clock frequency and looking at
the output register results, and the comparator results, it was
determined when the adder produced correct results, and if
correct/incorrect operation was detected by a slower system
(ie., the second register, which gives the adder twice the
time to compute its result). The overall system was driven
and examined by a host computer, which further verified the
additions.

The primary experiment determined the frequency that
the system can operate at without error, or rather, with very
few (all tolerated) errors. As a base frequency, we used the
results of the design tools that indicate the adder (in the
system, that is, including register delays) can operate at
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6

about 33 MHz (33 million adds per second) assuming worst
case conditions. That corresponds to a clock period of about
30 nanoseconds.

The experiment was performed a number of times. Each
pass included performing twenty different additions on
random numbers at one operating frequency. The system
was initialized to a low frequency. The clock oscillator was
variable from about 360 KHz to 120 MHz. A host computer
sets the frequency, and used a bisection algorithm to quickly
find the highest operating frequency with no errors among
the twenty additions.

After the first run, the operating frequency was deter-
mined to be about 60+ MHz. However, certain aspects of the
data indicated that the system may actually be operated
faster; the comparator was actually too slow. The experiment
was run again allowing the comparator more time to operate
(but still looking at the two output registers clocked at the
original times). The operating frequency increased to about
95 MHz. Therefore, a factor of approximately three
improvement in adder performance was realized.

A problem performing quick additions is the necessity to
allow for the carry to propagate from the least significant bit
(LSB) to the most significant bit (MSB), in the worst case.
However, the worst case rarely happens with random data.
Further, although the probability of a carry out of any
particular bit is about Y, the probability of having carries
propagate over multiple bits decreases exponentially with
the number of bits. A typical “maximum” propagation length
of 8-9 bits was estimated, and that is almost exactly what we
found in the twenty (20) random pairs of addends and
augends (adder inputs) of the experiment. Hence, the worst
case propagation length of 32-bits (in this case) is no where
near seen in typical data, and the output of the adder actually
settles in much less time than one might think.

FIG. 4 illustrates a first alternative embodiment 70 of the
present invention. This embodiment may be realized at the
gate and latch level or at the register level. The system
illustrated in FIG. 4 has a hardware cost that increases at the
same rate as the performance (e.g., about 2x hardware cost
for 2x performance increase, while the power also increases
by a factor of about two). This solution is also easier to build
and does not increase the amount of logic (gate delay) in the
critical path. This solution is applied at the functional level
in a pipelined system. FIG. 5 illustrates a timing diagram for
the first alternative embodiment system 70 illustrated in
FIG. 4.

For the purposes of describing this embodiment, and
certainly not by limitation, it is assumed that the system is
pipelined. In a pipelined system (common in today’s
processors), the work of the original combinational logic is
divided up into several sections/stages. Each stage does part
of the work of the computation, but at different times. As
known, a classic pipelined system operates in the same
fashion as an assembly line, i.e., many products are being
constructed in the line at any given time, but each is at a
different point in the construction process. Although it takes
about the same time to perform a single computation, many
computations can be in process at the same time, realizing
a type of parallelism and thus improving performance.

Referring to FIG. 4, the system 70 includes two identical
copies of the original system, adding comparators, and
clocking adjacent stages on alternate system clock cycles.
The two copies use complementary clocks at corresponding
stages. The two half-speed clocks are skewed by one system
clock cycle, as shown in FIG. 5. Referring to FIG. 5, the
timing diagram illustrates the timing when no errors occur,
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and also the system timing when an error has been detected
at the output of R1, in section A. (FIG. 4).

Referring again to FIG. 4, assume that the hardware
illustrated in the diagram is part of the system’s overall
pipeline (e.g., an Intel Pentium II microprocessor has about
twelve stages in its pipeline). Pipelining allows a higher
speed clock to be used than otherwise. The primed (')
hardware is a copy of the unprimed (top) hardware.

The operation of the system 70 is as follows. Inputs to the
overall system come in at the system clock rate. Note that at
least as far as this hardware is concerned, there is no actual
clock operating at the full rate. The inputs go to each
pipeline 72, 74 in alternate cycles. At time 0, an input is
latched into latch RO 76 by the signal clk.0 on line 78. The
first computation occurs in combinational logic block CL1
80, and is latched one system cycle later at time 1 into latch
R1 82 by the signal clk.1 on line 84. The signals clk.0 and
clk.1 run at half the rate of the overall system clock.

Therefore, the computation in the combinational logic
block CL1 80 as latched in latch R1 82 takes one system
cycle. However, block CL1 80 does not have its inputs
changed until time 2 (see FIG. 5). At end of the second cycle,
the output of latch R1 (one cycle computation time) is
compared with the current output of the combinational logic
block CL1 (two cycles of computation time, hence the
guaranteed correct answer). If the two results, slow one and
fast one, are equal the signal good.l on line 88 is true
indicating that the fast computation is correct and no cor-
rective action needs be taken. At time 2 (see FIG. 5) the
output of the second computation, from combinational logic
block CL.2 90, is latched into latch R2 92. Similar operations
happen in the rest of the pipeline A stages, as well as in
pipeline B. Results leave pipeline A (and B) at a rate one-half
of the overall system clock rate, where the system clock rate
is twice as fast as the system clock rate without the inven-
tion.

However, there are two pipelines, so results are produced
at 0.5*2*2=2 times the rate of the original system.

If a miscalculation occurs, we then have the timing of the
lower diagram 94 illustrated in FIG. 5. In this case, the latch
R1 82 has latched incorrect results from the combinational
logic block CL1 80. This is detected at the end of time 2 by
comparator 87, which provides a signal value on the line 88
indicating that the signal good.l is false. Therefore, the
combinational logic block CL2 90 also has an incorrect
answer, so the signal clk.0 on the line 78 is disabled for all
of pipeline A at time 2 (see FIG. 5). The combinational logic
block CL1 80 is still computing the same result for inputs
IAl, and therefore at time 3 (see FIG. 5) the latch R1 82
latches in the correct result from the combinational logic
block CL1 80. The combinational logic block CL1 80 has
had more than two cycles to compute its result, which is thus
correct. This correct result is now in the pipeline, and normal
high-throughput operation resumes. Therefore, pipeline A
has suffered a miscalculation penalty of two system clock
cycles. Overall, this may lead to a system miscalculation
penalty of one cycle, but if we require that the outputs from
the two pipelines be in order, pipeline B must also be stalled
by two system cycles, and hence we assume the penalty is
two cycles for a miscalculation in this embodiment.

If typical delays are one-third the original system’s worst-
case delays, and we thus would like to improve performance
by a factor of three, a third copy of the system would be
needed, with three clocks running at a third of the system
clock rate, which is itself running three times faster that the
original system clock. Note that the power required to
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operate the new system also increases proportionally to the
performance increase. The miscalculation penalty also
increases proportionally to three cycles.

An advantage of the system illustrated in FIG. 4 versus
the system illustrated in FIG. 2 is that the embodiment in
FIG. 4 does not require selection logic (see 42 in FIG. 2),
which allows a faster clock, or rather, does not increase the
delay through a stage.

Referring still to FIG. 4, inputs to new computations
alternate entering pipeline A and pipeline B every cycle.
Similarly, the output from the overall system alternates
coming from pipeline A and pipeline B every cycle. Also
note that as described above, the two pipelines are indepen-
dent (i.e., a computation in one pipe does not depend on a
computation in the other pipe).

FIG. 6 illustrates yet another embodiment 100 of the
invention. Notably, the embodiment 100 illustrated in FIG.
6 realizes a 2x performance for less than a 2x increase in
hardware cost, while power increases by a factor of four. A
major feature of this embodiment is its applicability to all
digital systems, via the general digital system model illus-
trated in FIG. 1.

Referring to FIG. 6, this embodiment is premised on
creating a mini-version of a proportional pipe, but construct-
ing the stages’ combinational logic in a different manner.
Assuming the original combinational logic block CL illus-
trated in FIG. 2 is split it into two equal-delay combinational
logic sections CLa 102 and CLb 104 (i.e., we increase the
pipelining by a factor of two). This allows the clock fre-
quency to be doubled, and using a two-phase clocking
system the implicit system frequency can be increased by
another factor of two. However, since we only get a result
every complete pass through the pipeline (i.e., every two
implicit system clock cycles), the overall performance
increases by a factor of two.

This embodiment splits the combinational logic block 22
illustrated in FIG. 2 into two blocks 102, 104, wherein each
block includes its own staging register 106, 108 respectively,
as in a pipeline, except the stages are clocked on alternate
system cycles. The system 100 also includes comparators
110, 112. The implicit system clock frequency is 4x the
original. The explicit (physically existing) stage clock fre-
quencies of the solution are 2x the original system clock
frequency, and the same as the new explicit system clock
frequency.

The system 100 also includes error handling logic 120 to
control the unit and handle errors. The error handling logic
generates a signal LDR.a on line 122, which is the synchro-
nous load enable line for the register Ra 106. The register Ra
106 is loaded when the signal LDR.a on the line 122 is true
and the register Ra’s clock goes from 0 to 1. Therefore, the
register is loaded when either there was an error out of the
combinational logic block CLa 102, and the logic block CLa
needs more time to compute its result, or when the prior
stage produced a valid result without extra delay. The
technique for generating the signal LDRb on line 124 within
the error handling logic is similar.

FIG. 7 illustrates a timing diagram for the embodiment
illustrated in FIG. 5. Notably, the two half-speed clocks clk.a
and clk.b are skewed by one implicit system clock cycle.
The explicit system clock is the same as the signal clk.a. The
top diagram 126 (FIG. 7) illustrates the timing when no
errors occur, while bottom diagram 128 illustrates the timing
when an error has been detected at the output of the latch Ra
106 (FIG. 5). The nomenclature: “sla” indicates that state 1,
part a (the first half of the original state) is being computed.
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As with the embodiment illustrated in FIG. 4, the perfor-
mance of the system illustrated in FIG. 6 can be increased
by increasing the number of sections of the system. For
example, to increase the performance by a factor of three,
the combinational logic would be split into three sections,
each ending in a register clocked by one distinct phase of a
three-phase clock.

A base 32-bit adder would require the same overall
combinational logic (combinational adder itself) and at least
two 32-bit registers for the inputs (64-bits of registers total),
and in some cases an additional 32-bit register for the output,
although in a pipelined system the output register would be
counted as part of the next stage. An adder based upon the
embodiment in FIG. 6 would use 92-bits of registers and
three ten- or eleven-bit comparators. Making a rough
assumption that one-bit of comparator costs the same as a
one-bit register, the total hardware cost for the embodiment
illustrated in FIG. 6 125-register-bit equivalents.

A timing error avoidance system 800 is shown in FIG. 8
and comprises standard logic and analog element, an
up/down counter 802 to drive a digital-to-analog converter
(DAC) 804, which in turn generates an analog voltage to
drive a VCO 806 that sets the frequency of the system clock
on a line 808. In the example system, the counter 802 is
always changing, and by at most one, up or down. With
advances in VLSI technology, all of these elements should
be realizable on the same chip as the system. Note that since
there is an explicit feedback loop from the system clock to
the counter’s setting, the absolute value of the counter 802
is not important, only that it be able to go up and down in
response to commands from the timing checker 810.

The timing error avoidance system 800 is constructed by
determining the critical path between register elements
within a digital machine. For example in a pipelined CPU,
this includes determining the slowest (clock-period
determining) stage, and the critical (longest, time-wise) path
through that logic and constructing a one-bit wide version of
that logic in which a change at the one-bit version’s input
from a logic 0-to-1 or a 1-to-0 propagates all the way
through to the end of the logic. This delay test logic is not
connected to any of the regular logic of the machine.
However, the delay test logic nominally has the same delay
as the worst case path through the machine. Drive the delay
test logic 814 with alternating 1°s and 0’s, the latter syn-
chronized with the system clock on the line 802. The
location of this test input corresponds to the output of the
beginning pipeline register of the slowest pipeline stage in a
CPU. At the end of every cycle, if the test data has not
reached the output register of the pipeline stage before the
system Clock edge, then the system is operating slower than
it might, and the system Clock frequency is increased. If,
however, the test data has reached the output register, then
the system Clock frequency is getting close to the system’s
limit, and thus the system Clock frequency is reduced.

In order to show the simplicity of the main timing error
avoidance circuitry, we provide low-level details of its
realization in FIG. 9. The alternating 1°s and O’s are created
by a flip-flop 902 wired for toggle operation. The delay test
logic 814 includes a one-bit slice through an address
multiplexor, the CPU’s register file, the bypass multiplexor
used for operand forwarding in the CPU to reduce data
dependencies, and a zero-detecting comparator across the
data path width.

An exclusive-OR gate 906 normalizes delayed signal on
line 908 to present a signal on line 910 to timing checker 8§10
with the same polarity regardless of the output of the toggle
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flip-flop 902. The delay of the delay test logic 814 is adjusted
at system design time to be slightly greater than that of the
aforementioned critical path to give a suitable safety margin.
This is a relatively simple procedure when a high-quality
logic simulator is used in the design process. In the case of
our example CPU system a structural simulation was per-
formed on the CPU running the test program. From this
simulation, we obtained both the worst-case operating fre-
quency for a non-timing error avoidance (baseline) CPU,
and checked the performance of the timing error avoidance
logic to ensure that the system clock frequency was reduced
before the timing constraints of the regular CPU logic were
violated. This ensured timing error avoidance.

There is one place in the timing error avoidance system
illustrated in FIG. 9 where system failure can occur—this is
at the start of the timing checker 810, where the delayed
signal is latched into a flip-flop. Since the delayed signal can
be positioned anywhere in time, and is not synchronized
with the system clock on line 914, there is the possibility that
the delayed test signal could change value at the same time
as the signal is being latched in the timing checker 810. This
may result in metastability at the output of the timing
checker 810, in which the physical value of the logic output
signal on line 916 of the timing checker flip-flop is neither
0 or 1. It is well known that metastable signals can stay in
this state indefinitely, leading of the value by the rest of the
system logic.

FIG. 10 illustrates an embodiment of the timing checker
circuit 810 that addresses raised in the preceding paragraph.
The timing check circuit 810 samples the delay test signal
D1 on line 910, at two different times. Then, for a single
cycle, only one of flip-flops Q1 1002 or Q2 1004 can
possibly be in a metastable state. That is, flip-flops 1002,
1004 cannot both be metastable in the same cycle, since the
delay test signal on the line 910 only changes value at most
once in a cycle. The output of the logic looking at flip-flip
Q1 1002 and flip-flop Q2 1004 to determine up or down
clock frequency changing is only sampled long after a
metastable condition can begin, as long as the frequency
change increment is kept suitably small. The timing checker
logic ensures that no metastable condition propagates past
the sample point. For example, see FIG. 11 case 3, for an
example of the handling of a metastable condition. Cases 1
and 2 show more typical frequency increasing and
decreasing, respectively.

As shown in FIG. 10, a signal from the VCO is input on
line 918. This signal is input to two serial gate delays to
generate the system clock on line 920.

The timing error avoidance logic is relatively inexpen-
sive. For example, for a 32-bit CPU the hardware cost of the
delay test logic is less than %52 of the cost of the slowest
pipeline stage. The variable frequency oscillator adds only a
small cost.

If a CPU or other digital system has two or more pipeline
stages of similar delay, they can all be treated as described
herein for the single stage case, with a “decrease Clock
frequency” signal from any of them having priority for the
setting of the Clock frequency.

Although the present invention has been shown and
described with respect to several preferred embodiments
thereof, various changes, omissions and additions to the
form and detail thereof, may be made therein, without
departing from the spirit and scope of the invention.

What is claimed is:

1. A method for operating a synchronous digital system
having clock means for synchronously controlling operation
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of system logic with toleration of error in logic operation,
the method including the steps of:
providing a logic operation input; increasing clock fre-
quency of the digital system while monitoring the
system logic for errors in logic operation output to
report a fault;

upon detecting said logic operation fault, slowing the
clock frequency associated with the fault to a clock
frequency at which no fault is detected; and

employing as logic operation output in place of the
current logic operation output a result which is known
to be correct for said logic operation input.

2. The method according to claim 1 wherein the digital
system comprises at least two structurally identical
pipelines, each said pipeline having registers which accept
logic operation successively and which yield logic operation
successively, including the step of causing the clock fre-
quency for each said pipeline to operate with a different
phase but with identical frequency.

3. The method according to claim 1 wherein the digital
system comprises a pipeline having an input register and an
output register for each combinational logic component,
wherein the logic operation input step comprises supplying
the logic operation input to said combinational logic from
the input register in response to a first clock; thereafter

comparing for identity, in response to a second clock,

input values and output values of the output register
receiving output from the combinational logic, said
second clock being identical to but out of phase with
said first clock; and

upon detecting lack of identity, delaying operation of said

first clock until said identity obtains.

4. A synchronous digital system having logic operation
input and logic operation output comprising:

clock means for synchronously controlling operation of

system logic with toleration of error in logic operation,
the clock means including a first clock and at least a
second clock, said second clock being identical to and
out of phase with said first clock;
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a comparator associated with said second clock for moni-
toring the system logic for errors in logic operation
output to report a fault; and

clock control logic for increasing clock frequency of the
digital system upon detecting said logic operation fault,
and upon detecting the fault, being operative to add a
delay to the first clock and thereby to the second clock
such that a known good output is obtained from a
delayed clock and the clock is operative at a frequency
at which no fault is detected.

5. A method for operating a synchronous digital system
having clock means for synchronously controlling operation
of system logic with avoidance of timing error, the method
including the steps of:

providing a logic operation input to tracking logic, said
tracking logic representing a worst case delay path for
said system logic;

increasing clock frequency of the digital system while
monitoring the tracking logic for errors in logic opera-
tion output to report a fault;

upon detecting said tracking logic operation fault, slowing
the clock frequency associated with the fault to a clock
frequency at which no fault is detected.

6. The method according to claim 5, further including the
step of thereafter increasing said clock frequency until a
fault reoccurs.

7. The method according to claim 6, wherein the tracking
logic includes a operational safety margin to guarantee that
a fault occurs in the tracking logic before a fault can occur
in the system logic.

8. The method according to claim 5, wherein input for
said tracking logic is a sequence of digital values including
alternating logic one and logic zero.

9. The method according to claim 8, wherein input for
said tracking logic is a digital bit stream of alternating logic
ones and logic zeroes.

10. The method according to claim 5, wherein logic
transition timing alone determines transition to a too fast
state and transition to a too slow state.



