United States Patent

US007721048B1

(12) 10) Patent No.: US 7,721,048 B1
Sendag et al. 45) Date of Patent: May 18, 2010
(54) SYSTEM AND METHOD FOR CACHE 6,799,263 B1* 9/2004 Morrisetal. 712/207
REPLACEMENT
(75) Inventors: Resit Sendag, Wakefield, RI (US); Ayse
Yilmazer, Marlborough, MA (US); OTHER PUBLICATIONS
Augustus K. Uht, Cumberland, RI (US)
Bhargava et al., “Accurately modeling speculative instruction fetch-
(73) Assignee: Board of Governors for Higher ing in trace-driven simulation,” IEEE Performance, Computers and
Education, State of Rhode Island and Communications Conference, 1999.
Providence Plantations, Providence, RI Chou et al, “Microarchitecture optimizations for exploiting
(Us) memory-level parallelism,” International Symposium on Computer
" Notice: Subiect disclai the t fthi Architecture, 2004.
) otiee: upject to any ciscatmer, e term o : Tacobovici et al., “Effective stream-based and execution based data
patent is extended or adjusted under 35 . . .
U.S.C. 154(b) by 382 days. prefetching,” International Conference on Supercomputing, 2004.
Jouppi, “Improving direct-mapped cache performance by the addi-
(21) Appl. No.: 11/686,851 tion of a small fully-associative cache and prefetch buffers,” Interna-
tional Symposium on Computer Architecture, 1990.
(22) Filed: Mar. 15,2007
(Continued)
Related U.S. Application Dat
clate ppiicatiofnt Latd Primary Examiner—Sheng-Jen Tsai
(60) Provisional application No. 60/782,653, filed on Mar. Assistant Examiner—Ralph A Verderamo, 111
15, 2006. (74) Attorney, Agent, or Firm—Gauthier & Connors LLP
(1) Int. CI. 57 ABSTRACT
GO6F 12/00 (2006.01) 7
GO6F 13/00 (2006.01)
GO6F 13/28 (2006.01) . is disclosed that includ
GO6F 15/00 (2006.01) A compute.:r processing system 1s disclosed that 1n.c udes a
GOGF 7/38 (2006.01) cache that includes cache blocks of data. The system includes
GO6F 9/00 (2006.01) amarking sub-system, an ordering sub-system, and a replace-
GO6F 9/44 (2006.01) ment sub-system. The marking sub-system identifies and
(52) US.CL . 711/133; 711/136; 711/118,; marks cache blocks that were provided to the cache via a
712/233;712/239; 712/237 wrong path with marking data. The ordering sub-system pro-
(58) Field of Classification Search None vides an order in which the cache blocks of data will be
See application file for complete search history. replaced in the cache, and the ordering sub-system is respon-
(56) References Cited sive to the marking data. The replacement sub-system

U.S. PATENT DOCUMENTS

5,787,465 A *
6,725,338 B2 *

7/1998 Jouppietal.coceeeee 711/117
4/2004 Gomezetal. 711/137

Iielect the cache set in which the

new line will be placed

replaces cache blocks in the cache in accordance with the
ordering sub-system as required.

20 Claims, 13 Drawing Sheets

'—-1102

| Check for invalid lines in set |~1104

Found Invaiid line?

1108 1106

1110

Look for WP lines in set |

Replace this line I
with the new line

1118

For exclusive L1-L2

112
@WP line?

1116

114

NO Replace the Normal
LRU line

YES

Wiite-back the replaced WP
block into L2 without changing
the MRU information, l.e., L2

Replace the LRU WP line

with the new line

WP block is LRU

US 7,721,048 B1
Page 2

OTHER PUBLICATIONS

Martin et al., “Multifacet’s General Execution-driven Multiprocessor
Simulator (GEMS) Toolset,” Computer Architecture News, vol. 33,
No. 4, Sep. 2005.

Mauer et al., “Full-System Timing-First Simulation,” Joint Interna-
tional Conference on Measurement and Modeling of Computer Sys-
tems, 2002.

Moudgill et al., “An approach for quantifying the impact of not
simulating mispredicted paths,” Performance Analysis and Its Impact
in Design, 1998.

Mutluetal., “Cache filtering techniques to reduce the negative impact
of useless speculative memory references on processor perfor-
mance,” Symposium on Computer Architecture and High Perfor-
mance Computing, 2004.

Mutlu et al., “Understanding the effects of wrong-path memory ref-
erences on processor performance,” Workshop on Memory Perfor-
mance Issues, 2004.

Mutlu et al., “Runahead execution: An alternative to very large
instruction windows for out-of-order processors,” International Sym-
posium on High-Performance Computer Architecture, 2003.
Rotenberg et al., “A study of control independence in superscalar
processors,” International Symposium on High Performance Com-
puter Architecture, 1999.

Sendag et al., “Exploiting the prefetching effect provided by execut-
ing mispredicted load instructions,” Euro-Par, 2002.

Sendag et al., “The Impact of Incorrectly Speculated Memory Opera-
tions in a Multithreaded Architecture,” IEEE Transactions on Parallel
and Distributed Systems, vol. 16, No. 3, pp. 271-285, Mar. 2005.
Chen et al., “Using Incorrect Speculation to Prefetch Data in a Con-
current Multithreaded Processor,” International Parallel and Distrib-
uted Processing Symposium, 2003.

Sendag et al., “The Effect of Executing Mispredicted Load Instruc-
tions on Speculative Multithreaded Architecture,” Workshop on
Multi-threaded Execution, Architecture and Compilation, 2002.
Moshovos et al., “JETTY: Filtering Snoops for Reduced Energy
Consumption in SMP Servers,” International Symposium on High-
Performance Computer Architecture, 2001.

Moshovos, “RegionScout: Exploiting Coarse Grain Sharing in
Snoop-Based Coherence,” International Symposium on Computer
Architecture, 2005.

Saldanha et al., “Power Efficient Cache Coherence,” Workshop on
Memory Performance Issues, 2001.

Ekman et al., “TLB and Snoop Energy-Reduction using Virtual
Caches in Low-Power Chip-Multiprocessors,” International Sympo-
sium on Low-Power Electronics and Design, 2002.

Ekman et al., “Evaluation of Snoop-Energy Reduction Techniques
for Chip-Multiprocessors,” Workshop on Duplicating, Deconstruct-
ing, and Debunking, 2002.

Tendler et al., “POWERA4 system microarchitecture,” IBM Technical
White Paper, 2001.

Wilkes, “The memory gap and the future of high performance memo-
ries,” Computer Architecture News, vol. 29, No. 1, pp. 2-7, Mar.
2001.

Yeh et al., “Alternative implementations of two-level adaptive branch
prediction,” International Symposium on Computer Architecture,
1992.

Sohi et al., “Multiscalar Processors,” International Symposium on
Computer Architecture, 1995.

Culler et al., “Parallel programming in Split-C,” Supercomputing,
1993.

Uht et al., “Levo-A Scalable Processor with High IPC,” Journal of
Instruction-Level Parallelism, vol. 5, 2003.

* cited by examiner

US 7,721,048 B1

Sheet 1 of 13

May 18, 2010

U.S. Patent

E

ajepl|eAul 1seapeoiq (e Loy e

| < S VI0BE)SIXeN e

W 490/q Jo Adod
paleys ajepi|eau] UOCHOY e
SSIW SJAA JJUBAT @ SleplfeAul Lo Yy dooug Juea] e
PAUMQ) 1Y/ JO DJEIS » PaIBYS Y/ 4O GIBIS e

N < O YJORIEIS JXON

0d Aq1senbai g Aue i¥00|q Yied-Buoim sl y Yoo|g e
Lusem aioy] Ji ajeis A Ul Uied 1094400 4] UMOP UOINaaxa
[I1S U8ag 9ABY PINOUS | @ SENUHLIOD PUE 2] SI0) (d @

19942 dM e 0d U1 saAj0sal uonenoadsg e
POUMQ) V10 B1EIS ® PaleyS 1y 10 9IEIS @

WO V30019 [<8 v 390|9

0 ¥ 3190ig) Y 00|g

| 10S$82014 0 J0ssa00.1d

¥ }00]q UO S3}IM |d

| 108882014 () 108$82014

juonenoads-siy :soAj0soy uoienoadg

0 < N VO 9)ElS [XaN e S <['VJORlBIS JxaN o
ayoen ¥ %00]q ayoes pesy (q

§,10558004d Joysenbal 8y g x20|q Moeq alum (2 LoNoY e
0} Y 490]q PIEMIOS (UONJY e v ¥o0|q jo Adoo

peal uo Iy doous :Jusag e Ajuo-peal e 1sanbay quaal e

POUIPOIN 1Y %3010 JO BIEIS * PIBAUJ 1Y 300[q JO BjElS ®

O<W[volg S<I| vxolg

| Jossenold 0 10888901

¥)20|g speal AjeAnenoads od

W < | 'V JO 81B)S JXON e
300(q 8y2ed Aypou (o 188
%002 ayoed peal (g 8)epieAul ales ay] 0] dew g pue y
1seopeolg (e :UOIOY e PBIIPO i YOO JO SIEIS @
SSILL SYAN (JUBAT e (0d unwasaud jou)
PIEAU| 1Y 400|q JO BlE]S e PlleAU] 'y %00(q JO BIE]S e

W<l| o W | axyog

|, 10SS82014 0 J0s$900.d

V190]q UO SSJIM Ld J[eiul

Ny

US 7,721,048 B1

Sheet 2 of 13

May 18, 2010

U.S. Patent

¢ 9ld

90T
v,S1 °c veds 7 seidap ‘Sopou ppgy | OEINES 22107 OTPUTeWONIS[Y psuis
SaMmagrotI 71 ¢ muﬁgomﬁca I27eM JO ﬁOﬁwﬁﬂDﬂH.Hm MNWMMNM.
SIUSUISAOTU
Hea00 BZIXRL e300 9[e0s-281e] SojRIUIIS Hbaoo
$Z01 XIpel ‘s10391Ul 7 1108 XIpel Jagaluy xapoa
sjutod 349 L4 -1 Xe[dwo) W
198 v1B(q 1ndnoy wondrLasa(NIBUWII U

US 7,721,048 B1

Sheet 3 of 13

May 18, 2010

U.S. Patent

¢ Old

OIS TBOTYOIRISTL] 100 UUOIIIIU]
Aoue] WV SUQyz “ueq Jad 91 AgD) & AIOUIAJA] THEIA]
ST’1 PUB 17] 2AIST[OXY
Aouosyey in suQg ‘Aem-~g gIN ¢ ‘PRITUN) R Tl
SIHSI A1ug Z¢€
Aouaje| sseoor SUZ 1M SY00[d 91Ag |7 ‘Aem-7 OMZE ‘A1 1mds SOMIE) TT
afqer wondsoxs §v) pur Sy ANty 7€
3J[OB]S SSOIPPE TLIAI ANA-H9Q
d
HEM 2y Y 10]01pald Yotel] I VHSD §101IWEIE]
jeuad tuororpaIdsii yourlg 2]0A0 O 105599014
B[NPIYIs/OY ANU-37T/9ST
JUSTUDINDI/(IRASIP IPIM-8
uonnIsXxs IapIo-Jo~mo ‘ourfadid a8w1s-¢1 ZHO T
810882501d IT] DMV ASENN 91 §108S300.1J
onfEA FEYENTEREN |

/

0€

U.S. Patent May 18, 2010 Sheet 4 of 13 US 7,721,048 B1

40
/
44 44 44
| D | D ! D
46— L2 L2 — 46 L2 — 46
snoop shoop snoop
42— Main Memory (/O)
FIG. 4A
48
J
45 45 45
P+Caches P+Caches P+Caches
4)7 4)7 49 4)7 49
Memory /O]I Memory O s . s Memory I/O
(Interconnection network)
|
43

FIG. 4B

US 7,721,048 B1

Sheet 5 0of 13

May 18, 2010

U.S. Patent

(A

AOVHIAV| pewe | WILYM | NV3O0

Xlavd 144

G OlId

JOVH3AY| pews

11

d31VM | Nv300

X1avy 144

- 0F

- GY

08

US 7,721,048 B1

Sheet 6 of 13

May 18, 2010

U.S. Patent

9 'Old

21 11
JOoVNIAY| pewe | ¥3lvm [NVI00 | Xiavd | Lldd JOVYIAV| pewe | WALYM [NVIO0 | XIOvM | 1dd
0
BRI B ELE N | LIN N JE B B
£ -5 -, I R e T et B [RREEE s oL
ey L e L S B e e et [Rbts I cebhiy B bl -Gl
DO N [O I O O I Ut U B AR oz
- - f----| P | fom o ey -2
e e T St T S E - 06
R T e e
.......... e o b DY
... doL O | ——__Logp
05

US 7,721,048 B1

Sheet 7 of 13

May 18, 2010

U.S. Patent

L Ol4

(¥)

iSSIW Jo8uIpuf o
Yied j081109 8y} UO
paisanbal y ¥o0|g e

N1

(dM) 2

|

(do) @

(€)

V ¥00]|q saeoeidal (g
300|q ujed 1081107 e
pajsanbal g)oo|g e

Ndl

(dm) 2

|

(do)a

(2)

g }20|q saoe|dal

9 Yo0l|g Uyed-Buoipp e
paisanbai O yoo|g e

nd1

(dM) D

(dOD) Vv

(1)

i<l

(do) g

(do) v

US 7,721,048 B1

Sheet 8 of 13

May 18, 2010

U.S. Patent

8 ©lId

pgwa

HALYM
21 | 1

Ad0LO3Id

NVI00
21 | 1

XIavy
z1 | 1

144
NJ 1

| 21 | 1

pewa

HIALVM
21 | 11

1svoavousg
‘ NY300 ‘

21 | 17

§o<x
21 | 1

144
21 |

L1

21| 1

74

]] |

| I |

L

———r

1 I |
R

| i 1

| 1 |

AR

ARERRRERRRERRRNRRRNNGN

1

%0
~%01

- 1-%02
F1%0€
%07

%09

-%09
-%0.
-%08
-%06

%001

SSIW J08UIPUI R

SsiW 081A

pasnun

pssn

O

/

08

U.S. Patent May 18, 2010

FIG. 9

Sheet 9 of 13

US 7,721,048 B1

900

Processor speculatively dispatches load instructions to LQ/ROB

— 902

.

the speculative load request to L1

Cache controller checks MSHRs and LQ and issues

Cache — 904

'

BEU signals the branch misprediction

— 906

908
Wrong

91)8

b

YES W NO

9‘)!0

Mark all the instructions after the mispredicted
branch as WP (need to match the speculative
branch tag) in RS/LQ/ROB/MSHRs

Clear the speculative tags for
all the correct-path instructions
in RS/LQ/ROB.

920

Load instruction?

YES

YES

Issued before?

912

Load instruction?

Cache hit on
WP line?

930 916
Line still Mark the
Send line address and WP in request? line as CP
signal to cache controller
NO
996 934
SLMQ
implemented?
YES
928 936 v 932

1. Mark MSHR entry as WP. For the WP SLMQ
2. When service completed, entries, access cache
mark the cache line as WP and mark WP blocks

1. Mark MSHR entry as WP.
2. When service completed,
mark the cache line as WP

US 7,721,048 B1

Sheet 10 of 13

May 18, 2010

U.S. Patent

0L ©I4

001

Nw_‘
B mmm N do oLl $1088900.d JaUI0
1Uf) UORNIAXT Youe eubis i’ Alows|y
Hun uoy 3 Youelig [eunis 4 DOIEYS
—[_uBIS dM Yew dm .
¢l * 18]02jU07) AlOWa ‘
" (ons) y
. onenp ¥ %00l di ‘
wm\r . S| DROT [A{\V —
gpeotpenss| | di aAle|noadg dO 0Ll
0 YIOMJBN UONDBULDAISIU
v peo pajejdwod | di TCRETAR] s
B LouRIg pajoIpaldsiy
9 aneng Jsenbey anan Mwﬂmmo%m anan aww:_u
aual 0} uondnAsy| | do dd 8l 0 d ow, i
(g0y) ialng Japiosy HorgaIM
: owrv 1 598s|W
VAR SHHSW
acl . °
be
AH_W_/\V SialsIbay s . < L 4 @IO|_\|
ool | ll4 Jasibey fujpueH . . TR
pajoslioly SIS SSINL - SEREI AHOYO 71
| Beqa/ssiN/iH 70l
, L dM | (am)
anss| anle|noads c0l Soeg’] ‘euna [
| (97) 8nenp peor J9jjoauog syaey ejeq o , anang) 1sanbay 77

vel

f

18|04U00 BY2ED 77

US 7,721,048 B1

Sheet 11 of 13

May 18, 2010

U.S. Patent

aull Y

[ewoN 8y} aoe|day

149"

Ll Ol

8l mau sy} yim
aull dM NY1 8L evejdey

Ny 8143019 dM
27101 ‘uoleusoul NYIN 8y}

~9LLL

Ul dM punod

19S U] S8UI| M 101 Yoo

OLLL-

ON

¢aul| plleAu| punod

v

BuiBuey Jnouym z7 03Ul 400(q
d padedal aLp YoRd-elUm
2717 8AIsnjaxe o4

A
8t

S| MaU 3y Liim
aul| siy) soejdey

S3A

YOLL—

}9S U} $aUI| Pl|EAUI 10} ¥o8YD)

A

COLL—

paoed 8q |jIm sulf MaU
8l DIUM UJ)9S 8yoeDd 8u) 108j8S

US 7,721,048 B1

Sheet 12 of 13

May 18, 2010

U.S. Patent

¢l "9Ol4
pasn s aulj pasn s| auj|
3y} Jey} sl Jusdal SO B} 1BY) S JUS08. IS0
{ {
N} d0 A} dd
wi>ui>11>03
Uied BUop :dm
N) dM Yjed-j08.io :dQ N} dM
2)01A3 8q O] UD — e
aaiaiclan 7/ A b | am
at<hl o d2 Nyl 01 d0
V-1es —— Y -188 -
20ct 00c1

US 7,721,048 B1

Sheet 13 of 13

May 18, 2010

U.S. Patent

€l 9ld

AYOL1O3dId

pgLus 43IVM Nv300

XIaQvd IEE

peua

1Svoavoug
HILYM NY300 Xiavy 144

-0l

-0¢€

oy

uswade|das + Jajy [

Jeyy

Juswaoejdal 7

US 7,721,048 B1

1

SYSTEM AND METHOD FOR CACHE
REPLACEMENT

PRIORITY

The present application claims priority to U.S. Provisional
Patent Application Ser. No. 60/782,653 filed Mar. 15, 2006.

BACKGROUND

Shared-memory multiprocessor (SMP) systems are typi-
cally built around a number of high-performance out-of-order
superscalar processors, each of which employs aggressive
branch prediction techniques in order to achieve high issue
rate. During program execution, these processors specula-
tively execute the instructions following the target of a pre-
dicted branch instruction. When a branch is mispredicted, the
processor must restore its state to the state that existed prior to
the mispredicted branch before the processor can start execut-
ing instructions down the correct path. However, during
speculative execution, i.e., before the branch outcome is
known, the processor speculatively issues and executes many
memory references down the wrong-path. Although these
wrong-path memory references are not allowed to change the
processor’s architectural state, they do change the data and
instructions that are in the memory system, which can affect
the processor’s performance.

Previous analyses have studied the effects that specula-
tively executed memory references have on the performance
of out-of-order superscalar processors. Wrong-path memory
references may function as indirect prefetches by bringing
data into the cache that are needed later by instructions on the
correct execution path. Unfortunately, these wrong-path
memory references also increase the amount of memory traf-
fic (i.e., increased bandwidth consumption) and can pollute
the cache with cache blocks that are not referenced by instruc-
tions on the correct path. Of these two effects, cache pollu-
tion—particularly in the .2 cache—is the dominant negative
effect.

There is a need for a more efficient and economical cache
memory system, and in particular, a cache memory system
that retains the positive eftects of prefetching, but improves
the performance of an SMP system without significantly
increasing the complexity of the memory subsystem.

In this study, we proposed an enhancement that tries to
minimize the negative effects of wrong-path memory refer-
ences, while retaining their positive effects (i.e., prefetching),
to improve the performance of an SMP system without sig-
nificantly increasing the complexity of the memory sub-
system. Specifically, we propose and evaluate a cache
replacement policy that is wrong-path aware. For this pur-
pose, we add a field to each cache line to indicate whether or
not that cache line was due to an instruction on the correct-
path or the wrong-path. When evicting a cache block from a
set, evict the oldest wrong-path cache block. Our results show
that this simple mechanism can significantly reduce the nega-
tive impact that wrong-path memory accesses have on the
performance of SMP systems.

SUMMARY

The invention provides a computer processing system that
includes a cache that includes cache blocks of data. In accor-
dance with an embodiment, the system includes a marking
sub-system, an ordering sub-system, and a replacement sub-
system. The marking sub-system identifies and marks cache
blocks that were provided to the cache via a wrong path with

10

15

20

25

30

35

40

45

50

55

60

65

2

marking data. The ordering sub-system provides an order in
which the cache blocks of data will be replaced in the cache,
and the ordering sub-system is responsive to the marking
data. The replacement sub-system replaces cache blocks in
the cache in accordance with the ordering sub-system as
required.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description may be further understood with
reference to the accompanying drawings in which:

FIG. 1 shows an illustrative diagrammatic view of a cache
memory write process (involving steps 1-4) that may be rem-
edied by a system in accordance with an embodiment of the
invention;

FIG. 2 shows a table of benchmarks and input data sets in
a system in accordance with an embodiment of the invention;

FIG. 3 shows a table of broadcast (snoop)-based and direc-
tory-based SMP systems parameters in a system in accor-
dance with an embodiment of the invention;

FIGS. 4A and 4B show illustrative diagrammatic views of
broadcast and directory based SMPs that may be used with a
system in accordance with an embodiment of the invention;

FIG. 5 shows an illustrative graphical representation of the
percentage of increase in 1.1 and [.2 cache traffic for broad-
cast-based SMPs in a system that may be employed in accor-
dance with an embodiment of the invention;

FIG. 6 shows an illustrative graphical representation of the
percentage increase in L1 and 1.2 cache traffic for directory
SMPs in a system that may be employed in a system in
accordance with an embodiment of the invention;

FIG. 7 shows an illustrative diagrammatic view of an
example of an indirect miss caused by wrong-path memory
references in a system that may benefit from a system in
accordance with an embodiment of the invention;

FIG. 8 shows replacements due to wrong-path memory
references for a system in accordance with an embodiment of
the invention;

FIG. 9 shows an illustrative diagrammatic flow chart of'the
operation of a system in accordance with an embodiment of
the invention;

FIG. 10 shows an illustrative diagrammatic view of a func-
tional block diagram of a system in accordance with an
embodiment of the invention;

FIG. 11 shows a illustrative diagrammatic flow chart of a
wrong-path aware replacement methodology in accordance
with an embodiment of the invention;

FIG. 12 shows an illustrative diagrammatic view of an
example of a WP block eviction in a system in accordance
with an embodiment of the invention; and

FIG. 13 shows an illustrative graphical representation of
the percentage speedup in execution time for a wrong-path
aware replacement, an [.2 wrong-path filter, and for a com-
bination of both.

The drawings are shown for illustrative purposes only.

DETAILED DESCRIPTION

A common feature of current-generation high-perfor-
mance multiprocessor systems is out-of-order execution pro-
cessing with aggressive branch prediction. Despite their rela-
tively high branch prediction accuracy, these processors still
execute many memory instructions along mispredicted paths.
These wrong-path memory references may pollute the caches
and increase the amount of cache and memory traffic. On the
positive side, however, they may prefetch data into the caches
for memory references on the correct path. While computer

US 7,721,048 B1

3

architects have thoroughly studied the impact of wrong-path
effects in uniprocessor systems, there is no comparable work
for multiprocessor systems. The present invention considers
the effects of wrong-path memory references on the memory
system behavior of shared-memory multiprocessor (SMP)
systems for both broadcast and directory-based cache coher-
ence.

Ithas been found that these wrong-path memory references
can increase the amount of cache-to-cache transfers by 32%,
invalidations by 8% and 20% for broadcast and directory-
based SMPs, respectively, and the number of writebacks by
up to 67% for both systems. In addition to the extra coherence
traffic, wrong-path memory references also increase the num-
ber of cache line state transitions by 21% and 32% for broad-
cast and directory-based SMPs, respectively. In order to
reduce the performance impact of these wrong-path memory
references, two mechanisms are introduced: filtering wrong-
path blocks that are not likely-to-be-used and wrong-path
aware cache replacement. These mechanisms are believed to
yield speed increases of up to 37%.

Shared-memory multiprocessor (SMP) systems are typi-
cally built around a number of high-performance out-of-order
superscalar processors, each of which employs aggressive
branch prediction techniques in order to achieve a high issue
rate. During program execution, these processors specula-
tively execute the instructions after the predicted target of the
branch. When a branch is mispredicted, the processor must
restore its state to the state that existed prior to the mispre-
dicted branch before the processor can start executing instruc-
tions down the correct path. During speculative execution
however, i.e., before the branch outcome is known, the pro-
cessor speculatively issues and executes many memory ref-
erences down the wrong-path. Although these wrong-path
memory references are not allowed to change the processor’s
architectural state, they do change the data and instructions
that are in the processor’s caches, which can affect its perfor-
mance.

It is known that wrong-path memory references may func-
tion as prefetches by bringing data into the cache that are
needed later by instructions on the correct execution path.
Unfortunately, these wrong-path memory references also
increase the amount of memory traffic (i.e., increased band-
width consumption) and can pollute the cache with cache
blocks that are not referenced by instructions on the correct
path. Of these two effects, cache pollution—particularly in
the [.2 cache—is the dominant negative effect. It is important
to model wrong-path memory references, since they have a
significant impact on the estimated performance.

The present invention considers the effect that wrong-path
memory references have on the memory system behavior of
SMP systems, in particular, for both broadcast-based and
directory-based cache coherence. For these systems, not only
do the wrong-path memory references affect the performance
of'the individual processors, they also affect the performance
of'the entire system by increasing the number of cache coher-
ence transactions, the number of cache line state transitions,
the number of write-backs and invalidations due to wrong-
path coherence transactions, and the amount of resource con-
tention (buffer usage, bandwidth, etc.).

To minimize the effect that wrong-path memory references
have on the performance of a SMP system, a mechanism is
employed to filter out the wrong-path cache blocks that are
unlikely to be used on the correct-path. The filtering mecha-
nism uses temporal locality and .1 data cache evictions to
determine whether the corresponding cache block should be
evicted from the [.2 cache. In addition to this filtering mecha-
nism, a cache replacement policy is proposed that is wrong-

10

15

20

25

30

35

40

45

50

55

60

65

4

path aware. More specifically, a field (or bit) is added to each
cache line to indicate whether or not that cache line was due
to an instruction on the correct-path or the wrong-path. When
evicting a cache block from a set, the oldest wrong-path cache
block is evicted first. The results show that both of these
mechanisms can significantly reduce the negative impact that
wrong-path memory accesses have on the performance of
SMP systems.

A system of the invention, therefore may analyze and quan-
tify the effect that wrong-path memory accesses have on the
performance of SMP systems, in particular, how wrong-path
memory accesses affect the cache coherence traffic and state
transitions, and the resource utilization. In accordance with
an embodiment, a system of the invention includes a filtering
mechanism and a replacement policy to minimize the impact
that wrong-path memory references have on the performance
of SMP systems.

When designing a coherent shared-memory interconnect,
an important design decision is the choice of the cache coher-
ence protocol. Popular protocols include: MSI (Modified,
Shared, Invalid), MESI (Modified, Exclusive, Shared,
Invalid), MOSI (Modified, Owned, Shared, Invalid), and
MOESI (Modified, Owned, Exclusive, Shared, Invalid).
When a processor accesses memory, the coherence state (i.e.,
M, O, E, S, or I) of the cache lines in the processors’ data
caches may change. Although the branch prediction accuracy
of modem high-performance processors is high, when a
branch misprediction does occur, loads on the mispredicted
path access the memory subsystem, which can generate addi-
tional coherence traffic. While these extra state transitions do
not violate the coherency of the data copies they may degrade
the performance of the cache coherence protocol and, subse-
quently, the performance of the memory subsystem, and,
finally, the performance of the SMP.

A speculatively-executed load instruction that is later
determined to be on a mispredicted path may bring a cache
block into the data cache that replaces another block that may
be needed by a load on the correct-path. As a result of these
replacements, wrong-path loads pollute the data cache, which
may cause additional cache misses. FIG. 1 shows an example
of such an event involving four steps as shown. Step 1
involves the starting condition where Processor 0 includes
block B (modified) and Processor 1 includes block A (invalid)
as P1 writes on block A as shown at 10. Step 2 involves the
step of PO speculatively reading block A as shown at 12. Step
3 involves a mis-speculation regarding Block A being on the
wrong path and Processor 1 being in the wrong state as shown
at14. Step 4 involves P1 writing again on Block A with a write
miss as shown at 16. In this example therefore, Processor 0
speculatively requests Block A, which causes the replace-
ment. These speculatively accessed memory references may
also potentially hide the memory latency for later correct path
misses, i.e. prefetching, which may improve the processor’s
performance.

FIG. 1 therefore shows a summary of the wrong-path
effects on a SMP system for MOSI (Modified, Owned,
Shared, Invalid) or MOESI (Modified, Owned, Exclusive,
Shared, Invalid) coherence protocols. Blocks A and B map to
the same cache. Initially and as shown at 10, Block B is in the
Modified (M) state in Processor 0’s cache and it is the LRU
(Least Recently Used) block in the set, while Block A is in
Processor 1’s cache in the M state. Processor 0 speculatively
reads block A as shown at 12. A Shared (S) copy of the block
replaces Block B and causes a writeback. The copy in Pro-
cessor 1’s cache changes its state to O. The speculation turns
out to be incorrect as shown at 14. Note the extra cache
transactions and state transitions. As shown at 16, the Proces-

US 7,721,048 B1

5

sor 1 writes on block A and gets the exclusive ownership
(state of Block A is M now). This causes invalidation to be
sent to the caches sharing Block A.

In contrast to the writebacks caused by the correct-path
replacements, in a SMP system, the coherence actions caused
by wrong-path memory references can also cause writebacks.
For example, if the requested wrong-path block has been
modified by another processor, i.e., its cache coherence state
is M, a shared copy of that block is sent to the requesting
processor’s cache, which subsequently may cause a replace-
ment. When the evicted block has a cache coherence state of
M (exclusive, dirty) or O (shared, dirty) state, this causes an
additional writeback, which would not have occurred if the
wrong-path load had not accessed memory in the first place.
Step 2 in FIG. 1 illustrates this example. Extra writebacks, in
addition to what is discussed above, may occur in MSI or
MESI coherence SMPs. For these two protocols, if the
requested wrong-path block is in the M state in another pro-
cessor’s cache, a shared copy of that block is sent to the
requesting processor’s cache and also it is written back to the
memory. Then the cache coherence state of that cache block
is demoted from M to S in the original owner’s cache. This
additional writeback may not occur without the wrong-path
load.

The loads issued down the wrong-path may cause addi-
tional invalidations. For example, assuming a MOESI proto-
col, when a wrong-path load instruction accesses a cache
block that another processor has modified, the state of that
cache block changes from M to O in the owner’s cache and
will have a cache coherence state of shared, S, in the request-
er’s cache. If the owner of that cache block needs to write to
it, the owner changes the state of that block from O to M and
invalidates all other copies of that cache block. Therefore, as
this example shows, changes in the cache coherence state of
a cache block due to a wrong-path load can cause additional
invalidations. FIG. 1, Step 4 illustrates this example.

In addition to causing additional replacements, writebacks,
and invalidations, wrong-path memory references can also
cause transitions in the cache coherence state of a cache
block. For example, when a wrong-path memory reference
accesses amodified cache block in another processor’s cache,
under the MOESI protocol, the cache coherence state of that
block changes from M to O in the owner’s cache. The state of
that cache block changes back to M when the owner writes to
that block. These changes in the cache coherence are due
solely to the wrong-path access. Therefore, in this case, a
wrong-path memory access in another processor results in
two extra cache state transitions in the owner’s cache (see
Steps 2 and 4 in FIG. 1).

The extra cache block state transitions caused by wrong-
path memory references may degrade the performance. For
example, when implementing a snooping coherence protocol,
the operation of detecting a write miss, obtaining the bus,
getting the most recent value, and updating the cache cannot
be done as if it took a single cycle. This requires adding a
number of transient states for pending write misses and write-
backs (for a write-back cache). The controller will leave those
states when the bus is available. A wrong-path memory ref-
erence, which causes this type of extra transitions, competes
with other correct-path requests to acquire the bus. The pro-
cessor will also stall when it requests a block that is in tran-
sient state due to an earlier WP request. Such problems are
slightly worse in a directory-based system that does not have
a broadcast mechanism like a bus, which can be used to order
all requests.

Due to these extra replacements, writebacks, invalidations,
and changes in the cache coherence state, wrong-path

10

15

20

25

30

35

40

45

50

55

60

65

6

memory accesses increase the amount of traffic due to L1 and
L2 cache accesses, as well as increasing the number of snoop
and directory requests.

Even if wrong-path memory references do not affect the
performance of the SMP system, they still may increase sys-
tem’s overall power consumption. It is known that filtering
unnecessary snoops can reduce the total [.2 cache power by
30%. Accordingly, reducing the cache line transitions and
cache coherence traffic due to wrong-path memory accesses
should also reduce the power consumption.

Finally, in addition to the aforementioned effects, wrong-
path memory accesses can also increase the amount of
resource contention. More specifically, wrong-path memory
accesses compete with correct-path memory accesses for the
multiprocessor’s resources, such as request and response
queues at the communication interconnect, and inter-proces-
sor bandwidth. The additional cache coherence transactions
may increase the frequency of full service buffers. A sufficient
network bandwidth is assumed to keep the network conten-
tion low. With the possible exceptions of fft, which uses
all-to-all communication, and em3d, network contention was
not a problem for the benchmarks reviewed below.

FIG. 2 shows at 20 a list of five benchmarks that were used
in an embodiment. The first four benchmarks are benchmarks
from the SPLASH-2 benchmark suite, while em3d is an elec-
tromagnetic force simulation benchmark.

A 16-processor SPARC v9 system running an unmodified
copy of Solaris 9 was evaluated. Both snoop-based and direc-
tory-based SMP systems were simulated with an invalida-
tion-based cache coherence. The MOSI and MOESI cache
coherence protocols were employed, respectively, for the
snooping-based and directory-based SMP systems. Each
node includes an aggressive, dynamically-scheduled, out-of-
order processor core, two-levels of cache, coherence protocol
controllers, and a memory controller.

FIG. 3 shows at 30 broadcast (snoop)-based and directory-
based SMP system parameters. FIG. 4A shows at 40 a block
diagram of a simulated broadcast-based SMP systems that
includes a main memory 42 coupled to multiple processors 44
via L2 caches 46. FIG. 4B shows at 48 a block diagram of a
simulated directory system that includes an interconnection
network 43 coupled to P+caches 45, memory units 47 and I/O
units 49 as shown.

Simulation results were collected using a full system simu-
lator that includes cycle-accurate models of an out-of-order
processor core, cache hierarchy, various cache coherence pro-
tocols, multibanked memory (unified or distributed), and
various interconnection networks. The simulation was a tim-
ing-first simulation approach in which functional and timing
aspects of the simulators are decoupled. The timing modules
determined when instructions should be executed. The result
of the execution of each instruction, however, is ultimately
dependent on the simulator.

To avoid measuring the time needed for thread-forking,
measurements were begun at the start of the parallel phase by
using a functional simulation to execute the benchmarks until
the start of the parallel phase. Then, the first iteration of the
loop was used to warm-up the caches and branch predictors.
After the first iteration, the benchmark was simulated for an
additional iteration to gather our simulation results.

The impact that executing wrong-path memory references
have on the caches, the communication between processors
due to coherence transactions, and the overall performance of
SMP were evaluated. To measure the various wrong-path
effects, the speculatively generated memory references were
tracked and mark as being on the wrong-path when the branch
misprediction was known.

US 7,721,048 B1

7

The percentage increase in the [.1 cache, L2 cache, and
coherence traffic due to the wrong-path memory references
for 4- and 16-processor SMP systems were quantified. FIG. 5
shows at 50 the increase in the traffic between the processor
and its L1 data cache and between the L1 cache and the L2
cache due to wrong-path memory references, as a percentage
of the total number of memory references, for broadcast-
based SMPs. FIG. 6 shows at 60 the same type of data for
directory-based SMPs.

FIG. 5 shows that, for a 4-processor broadcast-based SMP,
wrong-path loads increase the total number of L1 and 1.2
cache accesses by an average of 8% and 14%, respectively.
Fora 16-processor broadcast-based SMP, this increase is 15%
for L1 and 35% for [.2 cache accesses. For directory-based
SMPs, FIG. 6 shows that these loads increase the percentage
of L1 and 1.2 cache accesses by an average of 9% and 14%,
respectively, for 4 processors, and 13% and 32%, respec-
tively, for 16 processors. With 16 processors, for all bench-
marks and for both SMP systems, the percentage increase in
the number of L2 references is larger than the percentage
increase in the number of .1 cache references. With 4 pro-
cessors, however, except em3d, there is no such a trend. For
em3d, while the percentage increase in the number of L1
cache accesses is negligible for both 4 and 16 processors and
for both systems, the number of L1 misses increases by as
much as 45%. Overall, 16-processor SMPs are affected by
wrong-path memory references much more than 4-processor
SMPs are.

The wrong-path memory accesses increase the number of
coherence transactions by an average of 18% and 32%, for 4
and 16 processors, respectively, for both broadcast and direc-
tory-based SMPs. For em3d, the coherence traffic increases
by over 60%. Extra traffic due to wrong-path memory refer-
ences increases as the number of processors increases.

From a performance point-of-view, wrong-path memory
references can have both a positive and negative effect on the
processor’s performance by either prefetching data into the
caches or by polluting them, respectively. To determine the
potential performance impact that wrong-path memory ref-
erences have in SMP systems, the misses caused by wrong-
path loads may be categorized into four groups: unused, used,
direct miss, and indirect miss. In the unused wrong-path
block category, the wrong-path cache block is either evicted
before being used or is never used by a correct-path. On the
other hand, cache blocks in the used wrong-path block cat-
egory are eventually used by a correct-path memory refer-
ence. Direct miss cache blocks can severely degrade the sys-
tems performance because they replace a cache block that a
later correct-path load accesses, but the wrong-path block is
evicted before being used. Finally, since unused wrong-path
misses change the LRU state of cache blocks in that set, which
may eventually cause correct-path misses, we call these
misses indirect misses.

For example, consider that A, B, C and D are cache blocks
that map to the same cache set. Assume that in this example,
and as shown in FIG. 7: Cache is two-way set-associative
cache that initially contains blocks A and B as shown at 70; B
is the LRU block as shown at 72; C is the wrong-path refer-
ence as shown at 74; and both A and D are on the correct path
as shown at 76. In this situation, the sequence of operations is
as follows: Wrong-path block C replaces B, correct-path miss
block D replaces A, correct path miss block A replaces C. If
wrong-path reference for block C did not occur, then the
correct-path reference for block A would have been a cache
hit because block D would replaced block B instead.

FIG. 8 classifies the wrong-path-caused cache misses into
the aforementioned four categories as shown at 80. The

10

15

20

25

30

35

40

45

50

55

60

65

8

results show that 55% to 67% of the wrong-path replacements
in the L1 data cache and 12% to 36% of the wrong-path
replacements in the [.2 are used in broadcast-based systems.
Direct misses account for 5% to 62% of all wrong-path
replacements and account for a higher percentage of wrong-
path misses in broadcast-based SMP systems than for direc-
tory-based. Finally, indirect misses account for less than 5%
of all wrong-path misses for most of the benchmarks and
systems tested.

It is important to note that direct and indirect misses are
responsible for the pollution caused by the wrong-path
memory references. While they have similar effect on the L1
data cache for both broadcast and directory systems, their
effects on .2 cache are different between the two SMP sys-
tems. For directory-based, almost all of the L2 replacements
are used, while the opposite is true for broadcast-based. This
suggests that wrong-path memory references have a greater
effect on broadcast-based systems. A small number of remote
misses caused by wrong-path loads however, may have a
disproportionately large performance impact in a directory-
based system, as compared to a broadcast-based system.

Broadcast-based cache coherence provides the lowest pos-
sible latency to retrieve data since misses can either be served
by remote caches or shared memory. In contrast, in a direc-
tory-based SMP, misses can be served locally (including the
local directory), at a remote home node, or by using both the
home node and the remote node that is caching an exclusive
copy, i.e., a three-hop miss. The latter case has a higher cost
because it requires interrogating both the home directory and
a remote cache. Coherence misses account for most of the
remote misses.

Correct-path and wrong-path cache coherence transactions
may be serviced for broadcast and directory-based SMP sys-
tems, respectively. The results are similar for both SMP sys-
tems. Namely, remote caches service a greater percentage of
the wrong-path misses than for correct-path misses for all
benchmarks except em3d. For those benchmarks, the per-
centage of misses serviced by remote caches varies from 12%
to 80% for correct-path loads and 55% to 96% for wrong-path
loads. For the directory-based SMP, in all benchmarks, local
memory services only a very small percentage of both cor-
rect-path and wrong-path memory references.

As described above, wrong-path replacements may cause
extra writebacks that would not occur otherwise. The percent-
age increase in the number of replacements and writebacks
due to wrong-path memory references was also reviewed.
The percentage increase in the number of E (for directory
MOESI) and S line replacements. E—1 transitions—which
increased by 2% to 63%—are particularly important since the
processor loses the ownership of a block and, more impor-
tantly, the ability to silently upgrade its value, which can
significantly increase the number of invalidations needed for
write upgrades. For em3d, there is a large increase in both the
replacements and writebacks.

Wrong-path memory accesses increase the number of
writebacks from 4% to 67%. It is important to note that
writebacks may result in additional stall cycles when an 1.2
cache miss occurs after the processor starts to perform a
writeback, since it cannot begin to service the miss until the
writeback completes.

The impact that wrong-path memory references have on
the number of cache line state transitions was also analyzed.
The results show that the number of cache line state transi-
tions increase by 20% to 24% for a broadcast-based SMPs
and by 27% to 44% for directory-based. Although the per-

US 7,721,048 B1

9

centage increase is smaller for the broadcast-based system,
the number of cache line state transitions is much higher at the
beginning.

A processor loses ownership of an exclusive cache block
(M or clean E) when another processor references it. In order
to regain ownership, the processor has to first invalidate all
other copies of that cache block, i.e., S—1 for all other pro-
cessors. There is 8% to 11% increase in the number of write
misses due to wrong-path references—each of which subse-
quently causes an invalidation—for broadcast-based SMPs;
this percentage is higher, 15% to 26%, for the directory-based
SMPs.

In accordance with various embodiments, the invention
provides systems and methodologies that seek to minimize
the negative eftects of wrong-path memory references, while
retaining their positive effects (i.e., prefetching), to improve
the performance of an SMP system without significantly
increasing the complexity of the memory subsystem.

The first step to reduce the negative effects of wrong-path
memory references is to detect the wrong-path (WP) requests.
Mispredicted branches are usually resolved in the Branch
Execution Unit (BEU) before most of the wrong-path L1
misses, and before almost all of the wrong-path 1.2 misses
complete. Therefore, whether an .1 or .2 cache miss is down
the WP is usually known before the block is placed into the
cache. Most of the current processors use Miss Status Hold-
ing Registers (MSHRs) to track outstanding memory
requests. Each MSHR entry stores the speculative tag for the
missed load instruction. When a branch misprediction is sig-
naled by the BEU, the speculative tag for the corresponding
branch can be matched with the tags in MSHRs and marked as
WP.

In order to implement a WP-aware replacement policy,
each cache block also needs a 1-bit to specify whether the
block is brought into the cache due to WP or CP (Correct-
Path). This bit is set to CP by default. The WP loads which
miss in .1 and that are already completed (e.g., serviced by
L2 hit) before the branch resolution are not detected and thus
marked as CP. However, with the help of a simple mechanism,
almost all of the blocks brought by WP loads can be marked
as WP. If a speculative load request misses in the .1 and is
serviced by the .2, the [.1-missed address may be kept in a
small first-in-first-out (FIFO) queue (4-8 entries speculative
load miss queue, SLMQ) when removed from the MSHRs
giving more time to BEU to signal the misprediction. The WP
addresses in this queue matching the mispredicted branch tag
can then be used to access the data cache and mark the WP
blocks. This operation may be done by probing the cache
whenever there is available access port to the cache thus does
not compete with the ordinary memory requests.

Most of the blocks brought by WP loads may be marked as
WP even without this FIFO queue. However, such a queue is
useful when a predicted branch instruction’s operands
depend on a long latency operation (such as a load that misses
in L.2) to produce the operand value. In this case, we may not
be able to capture the WP loads in the MSHRs because of the
late branch resolution. Therefore, an SLMQ will be benefi-
cial. On the other hand, another scenario may help on-time
marking of load misses as WP. When the branch is resolved
but cannot be committed because it is waiting for a long
latency operation which is at the reorder buffer head to com-
plete execution and commit, the out-of-order core continues
execution. The WP loads in the load queue which were not
ready to be issued can become ready after the branch resolu-
tion and can simply be marked as WP when placed in the
MSHRs if they miss in [.1.

10

15

25

30

35

40

45

50

55

60

65

10

FIG. 9 shows the basic operation of a methodology in
accordance with an embodiment ofthe invention, and FIG. 10
shows a system for implementing a system in accordance
with an embodiment of the invention. The following abbre-
viations are used in the Figures: LQ: Load Queue, ROB:
Reorder Buffer, MSHRs: Miss Status Handling Registers;
SLMQ: Speculative Load Miss Queue, BEU: Branch Execu-
tion Unit, WP: Wrong-Path, CP: Correct-Path. As shown in
FIG. 9, the method 900 involves first having the processor
speculatively dispatch load instructions to LQ/ROB (step
902). The cache controller then checks MSHRs and [.Q, and
issues the speculative load request to L1 cache (step 904). The
BEU then signals the branch misprediction (step 906).

The system then determines whether the path is a wrong
path (step 908). If not, the system then clears the speculative
tags for all the correct-path instructions in RS/LQ/ROB (step
910). If the instruction is a load instruction (step 912) and the
cache is ahiton WP line (step 914), then the system marks the
line as CP (step 916). Otherwise the line is not marked.

Ifthe system determines that the path is a wrong path (step
908), then the system marks all of the instructions after the
mispredicted branch as WP in RS/LQ/ROB.MSHRs (step
918). The system must match the speculative branch tag as
appropriate. If the instruction is a load instruction (step 920)
and was not issued before (step 922) then the system sends a
line address and WP signal to the cache controller (step 924).
If'the cache is a miss, then the system marks the MSHR entry
as WP (step 928). When the service is completed, the cache
line is marked as WP.

Ifthe load instruction was issued before (step 922), then the
system determines whether the line is still in request (step
930). If so, the system marks the MSHR entry as WP, and
when service is completed, marks the cache line as WP (step
932). If the line is not still in request (step 930), and if the
SLMQ is implemented (step 934), then the system accesses
cache and marks WP blocks for the WP SLMQ entries (step
936).

The process may be implemented by a system as shown in
FIG. 10 that includes a data cache controller 102 that provides
write-backs to a write buffer (WB) 104. The write buffer 104
is coupled to an .2 cache 106 that includes an 1.2 request
queue and an L2 cache controller. The 1.2 cache 106 is
coupled to a request queue 108, which in turn is coupled to an
interconnection network 110. The interconnection network is
coupled to a response queue 112, other processors 114, and a
shared memory unit 116 that includes a memory controller.

The data cache controller 102 includes a request queue
118, a miss status handling register (MSHR) 120, and an .1
data cache 122. The data cache controller 102 is also coupled
to a load queue 124 that communicates with a reorder buffer
128 in accordance with an architected register file (ARF) 126,
as well as a branch execution unit (BEU) 130. The branch
execution unit 130 communicates with the data cache con-
troller as well as a speculative load miss queue (SLMQ) 132.
The WP-aware cache system may also be designed for uni-
processor systems.

A WP-aware cache block replacement policy is provided in
accordance with an embodiment of the invention. To make the
cache replacement policy wrong-path aware, when a block is
brought into the cache, it is marked as being either on the
correct-path or on the wrong-path. There are several possible
ways to design such a mechanism in addition to the specific
example discussed above. Later, when a block needs to be
evicted from that set in the cache, assuming that all cache
blocks are valid (if not, an invalid block is replaced first),
wrong-path blocks are evicted first, on a LRU basis if there are
multiple wrong-path blocks. The WP block evicted from L1

US 7,721,048 B1

11

data cache will now be written into .2 cache (exclusive
L1-L.2), however, when placed in 1.2, it will stay as LRU. This
will ensure that the WP block that was not used in L1 will not
reside in the [.2 cache for very long (unless it is used). On the
other hand, a wrong-path block that services a correct path
reference is marked as if it was on the correct-path, thus
excluding it from the wrong-path replacement policy. If all
cache blocks originated from a correct-path reference, then
the LRU block in that set is chosen for eviction.

FIG. 11 shows at 1100 a process for performing a wrong-
path aware replacement methodology. As shown in step 1102,
the process begins by selecting the cache set in which the new
line will be placed. The system then checks forinvalid lines in
a set (step 1104), and then determines whether a line is found
to be invalid (step 1106). If so, then the system replaces the
line with a new line (step 1108). If not, the system looks for
WP lines in the set (step 1110). If it does not find a WP line
(step 1112), the system replaces the normal LRU line (step
1114). If it does finds a WP line (step 1112), the system
replaces the LRU WP line with the new line (step 1116). The
system then writes back the replaced WP block into [.2 with-
out changing the MRU information for exclusive L1-1.2, i.e.,
L2 WP block is LRU (step 1118).

In accordance with a further embodiment, the system fur-
ther provides a filtering mechanism that reduces the cache
pollution due by direct and indirect miss wrong-path refer-
ences, and by evicting the unused wrong-path blocks early.
The filtering mechanism is applied to the [.2 cache due to the
long latency of L2 instructions.

The filtering mechanism is based on the observation that if
a speculatively-fetched cache block is not used while it
resides in the L1 cache, then it is likely that that block will not
be used at all or will not be used before being evicted from the
L2 cache.

Exclusive L1 and L2 caches were evaluated. A block that
misses bothin .1 and [.2 allocates a line only in the L1 cache.
Then, when a block is evicted from the L1 cache, it is written
to L2.

The filtering mechanism works as follows: If a wrong-path
block is evicted from the L1 cache before being used by a
correct-path memory reference, it is allocated to the [.2 cache
only ifits .2 sethas an empty way, i.e., at least one cache way
is invalid. If not, then that cache block is discarded, i.e., not
allocated to the [.2 cache, but written to memory only. A
wrong-path block that services a correct-path reference is
handled in the same way as a correct-path block. An example
of such an eviction is shown at 1200 and 1202 in FIG. 12.

We can further filter wrong-path blocks from being placed
in .2 cache by canceling the wrong-path references in the .2
cache request queue as soon as the misprediction is known.
For example, if a requested block is an [.1 cache miss, a
request is sent to the .2 cache controller and placed in a
request queue. At the time that the 1.2 cache controller pro-
cesses this request, if it is known that the load instruction was
on a mispredicted branch path, then this request is simply
discarded without being serviced. (If this request were not
discarded, it would cause an 1.2 miss and could possibly
replace avalid block in the L2 cache.) If there is an invalid line
in the set however, the L2 cache controller services that
wrong-path memory reference and overwrites the invalid
line. Otherwise, the .2 cache controller processes this request
as usual.

FIG. 13 shows at 1300 the speedup results in execution
time for wrong-path aware replacement, .2 wrong-path filter,
and for combination of both, i.e., filter+replacement. FIG. 13
show that a wrong-path aware replacement policy may per-
form very well for some benchmarks. For example, for water,

10

15

20

25

30

35

40

45

50

55

60

12

all three enhancements yield speedups over 30% for the
broadcast-based SMPs. Overall, the performance of the
enhancements varies across benchmarks and systems. On
average, filtering yields higher speedups than wrong-path
aware replacement, while also outperforming replacement
for all benchmarks for directory-based SMPs. For broadcast-
based SMPs, filtering performs better than wrong-path aware
replacement for radix, water and em3d. Employing a simple
wrong-path replacement policy does not significantly
improve the performance of ocean and fft.
WP-aware replacement policy degrades the performance
in some cases: 1% for radix (broadcast), 4% for fft (directory)
and 8% for water (directory). The performance degradation is
mainly due to the WP-aware replacements that are not useful
because they reduce prefetching effect of useful WP blocks
by replacing them first (this blocks may be used later by
correct path if they weren’t replaced). For a WP filter mecha-
nism, only fft (for directory-based SMP) is negatively
affected (3% performance degradation for directory-based
SMP). This performance degradation is due to the decision
that if a WP block is not used in L1 cache it is more likely not
to be used in [.2 cache. Even if the WP block is not used by a
later CP block while it resides in L1 cache, it might have been
used later when it resides in .2 cache. A filter policy, which is
based on this general observation, therefore, may not work for
all applications. For both mechanisms, the performance deg-
radation is due to reducing prefetching effect of some useful
WP blocks. Performance degradation however, does not
occur often as most of the results are positive. When filter and
the wrong-path aware replacement are combined, their
advantages may cancel out each other in some cases (radix
and ocean in broadcast-based SMPs).
In accordance with various embodiments, the invention
provides, therefore, that it is important to model wrong-path
memory references in cache coherent shared-memory multi-
processors. Neglecting to model them may result in incorrect
design decisions, especially for future systems with longer
memory interconnect latencies and processors with larger
instruction windows.
Further, for SMP systems, not only do the wrong-path
memory references affect the performance of the individual
processors due to prefetching and pollution, they also affect
the performance of the entire system by increasing the num-
ber of cache coherence transactions, the number of cache line
state transitions, the number of writebacks and invalidations
due to wrong-path coherence transactions, and the amount of
resource contention (buffer usage, bandwidth, etc.).
For a workload with many cache-to-cache transfers,
wrong-path memory references may significantly affect the
coherence actions. Finally, mechanisms such as filtering
unlikely-to-be-used wrong-path blocks from being placed
into L2 or making the replacement policy wrong-path aware
can significantly improve the SMP performance.
Those skilled in the art will appreciate that numerous
modifications and variations may be made to the above dis-
closed embodiments without departing from the spirit and
scope of the invention.
What is claimed is:
1. A computer processing system that includes a cache
including cache blocks of data, said system comprising:
marking means for identifying and marking as wrong-path
blocks cache blocks that were provided to the cache via
a wrong path with marking data, said cache including a
first cache (I.1) and a second cache (1.2);

ordering means for providing an order in which cache
blocks of data will be replaced in the cache, said order-
ing means being responsive to the marking data;

US 7,721,048 B1

13

replacement means for replacing cache blocks in the cache
in accordance with the ordering means as required; and

write-back means for providing that a wrong-path block
that is evicted from the first cache (I.1) before being used
down a correct path will be placed into the second cache
(L2) as the least recently used (LRU) instead of most
recently used (MRU).
2. The computer processing system as claimed in claim 1,
wherein said marking data includes a single bit of data.
3. The computer processing system as claimed in claim 1,
wherein said system includes adjustment means for unmark-
ing cache block that is already marked if the cache block is
accessed by the computer processing system.
4. The computer processing system as claimed in claim 1,
wherein said system further includes a filtering means for
reducing direct and indirect miss wrong path references.
5. The computer processing system as claimed in claim 1,
wherein said system further includes a early eviction means
for evicting unused wrong path cache blocks with a high
priority.
6. The computer processing system as claimed in claim 1,
wherein said marking means identifies and marks a plurality
of cache blocks responsive to an identification of a single
wrong path by a mispredicted branch.
7. The computer processing system as claimed in claim 6,
wherein said marking means includes a miss status holding
register.
8. The computer processing system as claimed in claim 6,
wherein said marking means includes a speculative load miss
queue.
9. The computer processing system as claimed in claim 1,
wherein said ordering means includes a first-in-first-out
stack.
10. The computer processing system as claimed in claim 1,
wherein said ordering means includes a reorder buffer.
11. A computer processing system that includes a cache
including cache blocks of data, said system comprising:
ordering means for providing an order in which the cache
blocks of data will be replaced in the cache, said order-
ing means being responsive to marking data for identi-
fying and marking as wrong-path blocks cache blocks
that were provided to the cache via a wrong path with
marking data, said cache including a first cache (I.1) and
a second cache (1.2);

adjustment means for unmarking a cache block that is
already marked if the cache block is accessed by the
computer processing system;

replacement means for replacing cache blocks in the cache

in accordance with the ordering means as required; and
write-back means for providing that a wrong-path block
that is evicted from the first cache (I.1) before being used

10

15

20

25

30

35

40

45

50

14

down a correct path will be placed into the second cache
(L2) as the least recently used (LRU) instead of most
recently used (MRU).
12. The computer processing system as claimed in claim
11, wherein said system further includes a early eviction
means for evicting unused wrong path cache blocks with a
high priority.
13. The computer processing system as claimed in claim
11, wherein said marking means includes a miss status hold-
ing register and a speculative load miss queue.
14. The computer processing system as claimed in claim
11, wherein said ordering means includes a reorder buffer.
15. A computer processing method that includes a cache
including cache blocks of data, said method comprising the
steps of:
identifying and marking cache blocks that were provided
to the cache via a wrong path with marking data;

providing an ordering in which the cache blocks of data
will be replaced in the cache, said ordering being respon-
sive to the marking data;

unmarking a cache block that is already marked if the cache

block is accessed by a computer processing system;
replacing cache blocks in the cache in accordance with the
ordering as required; and

providing that a wrong-path block that is evicted from a

first cache (L.1) before being used down a correct path
will be placed into a second cache (L.2) as the least
recently used (LRU) instead of most recently used
(MRU).

16. The method as claimed in claim 15, wherein said
method further includes the step of evicting unused wrong
path cache blocks with a high priority.

17. The method as claimed in claim 15, wherein said
method further includes the step of providing that a block
while it resides in the first cache (I.1) determines its replace-
ment policy in the second cache (I.2) responsive to a bit that
indicates whether the block is a wrong path block or a correct
path block.

18. The method as claimed in claim 15, wherein said
method further includes the step of marking as a correct-path
block a wrong-path block that services a correct path.

19. The method as claimed in claim 15, wherein said
method further includes the step of allocating to the second
cache (L2) a wrong-path block evicted from the first cache
(L1)that is notused by a correct-path memory reference, only
if the second cache (L.2) has at least one cache way that is
invalid.

20. The method as claimed in claim 15, wherein said
method further includes the step of canceling wrong-path
references in the second cache (L.2) request queue as soon as
a mis-prediction is identified.

#* #* #* #* #*

