
48

Engineering products are compos-
ite systems embodying contributions from
many technical specialties. Thus, it is imper-
ative to expose students to links between var-
ious subjects taught separately in a curriculum
and to familiarize students with making
design choices across technical realms. Com-
puter architecture requires a systems
approach, that is, the ability to make choices
in general and hardware and software trade-
offs in particular. However, constructing com-
plete systems is so enormously complex that
it is hard to teach, and, indeed, is usually not
taught. Instead, students often build acade-
mic point-solution systems, which are imple-
mentations of computer architectures that
they will never use. But the discipline of build-
ing for later use teaches students to place a
high priority on quality, documentation, and
robustness in unforeseen environments. These
habits make students more attractive to later
employers and are also fundamentally useful
mind and work habits.

At the University of Rhode Island (URI),
we developed the Integrated Computer Engi-
neering Design (ICED)1-2 curriculum to give
students the vital experience of building sys-
tems for real use. The key component of
ICED is a two- to three-year project that pri-
marily spans the undergraduate junior and
senior years. The project entails design and

construction of a complete computer system
(including CPU, memory, and compiler) net-
worked to other students’ systems.

By forcing students to think about the
entire system, we concretely establish princi-
ples of computer engineering in the students’
minds. Concurrently, students learn detailed
skills using industrial electronic design
automation (EDA) tools and techniques, so
students can readily practice their craft in
industry. Our goal is to teach students prin-
ciples for a lifetime and detailed skills for their
immediate careers.

Goals
Undergraduate computer engineering pro-

grams should school students in the central
principles of digital communications and pro-
cessing in a broad sense, and develop students’
abilities to think critically and creatively. This
must occur in four short years simultaneous-
ly with many other conflicting demands on a
student’s time.

Computer architecture education should
give students a time-honored classic engi-
neering education, while ensuring that they
learn timely skills, go into industry and
research, and quickly contribute to their pro-
fession. Another goal is imparting the ability
to make skillful hardware and software trade-
offs. This is of paramount importance today

Augustus K. Uht
Jien-Chung Lo

Ying Sun
James C. Daly

James Kowalski
University of Rhode Island

THE AUTHORS DESCRIBE A MULTIYEAR STUDENT PROJECT ON THE DESIGN

AND CONSTRUCTION OF HARDWARE AND SOFTWARE FOR A COMPLETE

COMPUTER SYSTEM. STUDENTS USE AND BUILD UPON THESE SYSTEMS OVER

THEIR UNDERGRADUATE YEARS.

0272-1732/00/$10.00 2000 IEEE

BUILDING REAL COMPUTER
SYSTEMS

especially in mobile and embedded systems
where power, size, and reliability considera-
tions are as important, if not more important,
than classic performance and cost issues.
Embedded systems account for many more of
the world’s processors than do traditional
computers. Such systems also require archi-
tects and engineers to have knowledge of
many fields, such as analog electronics and
probability (seen in the ICED laboratory in
the ICED network and its operation), not just
digital hardware and software.

The ICED program’s strength is that it inte-
grates classic engineering studies with the time-
ly skills needed for current systems. By
focusing on one set of design tools, we can dis-
tribute the learning time over several years,
keeping total job training time low and letting
faculty emphasize principles. The project’s pri-
mary function is to reinforce principles in stu-
dents’ minds by making these principles come
to life in hardware and software. The project’s
long-term time period enables this function
because students always perceive where the
current topic fits in the overall plan.

ICED curriculum
The ICED curriculum (see the sidebar for

the project’s history) uses the CPU as the pri-
mary vehicle for hardware design for two rea-
sons. If students can design a CPU, they can
design any digital hardware. It’s important for
computer engineering students to understand
how a basic general-purpose CPU works
before designing more specialized processors,
such as digital signal processors or complex
network devices (routers).

There are currently six core courses for the
project,

• digital circuit design (sophomore year),
• computer architecture (junior year),
• digital computer design (junior year),
• computer networks (junior year),
• compiler design (senior year), and
• computer system lab (senior year).

Students make hardware and software
design decisions throughout the construction
of their systems. We initially teach trade-offs
directly, and as students progress they learn
them through actual experience. Once a sys-
tem is built, we ask students to meet a new

design requirement for their overall system,
which requires proposing candidate solutions,
choosing a suitable candidate, making design
changes, and evaluating the solution.

Students need experience in complex digi-
tal system design, simulation, construction,
and evaluation. Although currently design is
predominantly performed with simulation,
physical experience with complex hardware is
essential for a computer engineer. As Robert
Colwell, chief architect of the Intel Pentium
Pro, said at a panel session of the International
Symposium on Computer Architecture in
1996, there is something about late-night
debugging of that last hardware problem that
gives student engineers respect for the real dif-
ficulties of hardware that simulations alone do
not provide (paraphrased).

Related curricula
Several schools3 design and build computers

as part of their computer engineering curricu-
la including Georgia Tech4 (with field-pro-
grammable gate arrays, or FPGAs). However,
such projects are usually completed all at one
time, as capstone senior design projects.

We know of no other school that requires a
compiler construction course as part of its com-
puter engineering curriculum,3 although Geor-
gia Tech uses a retargetable C compiler in its
student project. While faculty at various schools
have devised many excellent tools to study com-
puter architecture5—many of which provide
much in the understanding of an existing archi-
tecture—they do not give students a lot of free-
dom in design, trade-offs, and real systems. Also,
many schools construct their own in-house
EDA tools6 instead of using industrial applica-
tions. This keeps the design tools simple and

49MAY–JUNE 2000

ICED’s history
ICED was originally proposed at the University of California, San Diego in 1987-1988 by

Uht and Laurette Bradley (now at GTE), but was not implemented. The initial goal of ICED was
to teach hardware and software trade-offs by having students design and build both a com-
piler and a CPU. Independently, in the early 1990s, Lo investigated the concept of teaching
across the curriculum for computer engineering at the University of Rhode Island, with the
goal of unifying and relating course content throughout the curriculum. Uht and Angaraih
Sadasiv (of URI) obtained funding for ICED in 1997 from the National Science Foundation, and
ICED began operation that year. Further funding was obtained from the Champlin Foundations
in 1999. We have purchased or built most of the laboratory equipment; some hardware test-
ing and software construction remain.

easier to learn, but students do not experience
the full power of industrial tools or become
acclimated to real-world design complexities.

Laboratory tools
Our overall laboratory goal is multiple stu-

dents’ computers communicating with each
other over an Ethernet-like network. During
system test and operation, a logic analyzer lets
students see a vertical slice through the design
levels of the machine. This view includes source
code, assembly code, machine code, digital sig-
nals on the computer bus, and analog pictures
of particular digital signals in the system.

The vast majority of the ICED laboratories
include the design or use of a CPU within an
FPGA, which consists of many uniform logic
cells wired together via an interconnection
network. The FPGA’s configuration consists
of the specific logic functions realized by the
cells and the signal routing and connections,
all held in static RAM. We can reconfigure
FPGAs an unlimited number of times.

We chose Xilinx’s FPGA because it is very
flexible and efficient. We use Virtual Com-
puter Corporation’s EVC1 card for the
FPGA’s platform. The EVC1 provides us with
a very simple interface to the FPGA. It also
saves us a lot of time and expense, since it
comes complete with much of the overhead
hardware and support software.

Prototype system laboratory
Figure 1 shows a schematic block diagram

of the physical components of the lab.

50

REAL SYSTEMS

IEEE MICRO

ICED sys-card

Protoboard

Host – Sun Ultra 1Host's monitor

HP 1662CS
logic analyzer

a = b + c;
add r1, r2, r3

ICED-net
(10Base2-like; RG-58 coax)

EVC1

Power

64
digital
channels

Two analog
channels

Electrical and
Computer Engineering

department LAN
64 bidirectional nets

16-wire
flat cable

BNC

RAM SIMM ICED
d-card

ICED
d-card

LCD

LEDs
DIP connectors

Logic
analyzer
direct
connectors

Student's external

circuits here

a = b + c;
add r1, r2, r3

Figure 1. ICED prototype system and lab station. The student CPU is in the FPGA on the EVC1 card. The logic analyzer is com-
pletely viewable on and controllable from the host.

Figure 2. Virtual Computer Corporation’s EVC1. From left to right, the main
components are the Sun Sbus connector (on obverse, beneath handle), inter-
face and FPGA configuration logic, Xilinx XC4020E-2 20,000-gate-equivalent
FPGA, programmable oscillator module (marked “FOX”), and space and con-
nectors (P3 and P4) for a daughtercard (ICED d-card). A retooled back plate
(not shown) holds two connectors providing external access to the d-card,
EVC1, and hence the FPGA. (Photo courtesy of Virtual Computer Corp.,

The EVC1 card is housed in the chassis of a
Sun Ultra 1 and is connected to one of the Sun
Sbus I/O connectors. We make an external con-
nection to the EVC1 through the back panel of
the Sun via a custom connector and daughter-
card assembly called the d-card. The d-card pro-
vides connections to another custom card,
similar to a motherboard, called the sys-card.
The sys-card contains the student prototype’s
bus and supporting hardware, including the
prototype’s main memory. In turn, the sys-card
is connected through short cables to a generic
protoboard, which holds the student-designed
ICED system interface logic. The sys-card also
provides a standard bayonet-nut-couple con-
nector tap onto the prototype network, ICED-
net. Lastly, we use a Hewlett-Packard logic
analyzer to test, debug, measure, and otherwise
investigate the prototype. The logic analyzer has
64 data-input channels, viewable as state or tim-
ing information, as well as analog signal and
assembly code viewing options.

EVC1 FPGA platform
The major component of the EVC1 (see

Figure 2) is the Xilinx XC4020E-2 FPGA,
nominally equivalent to 20,000 simple gates.
The FPGA is large enough to hold a simple
32-bit processor and can also accommodate
32-bit pipelined CPUs with forwarding at the
cost of extra time to route the FPGA’s more
complex internal interconnections.

The EVC1 has many useful features. First,
there is a general-purpose interface from the
host’s Sbus to the FPGA. In fact, part of the
interface extends to within the FPGA and is
logically connected to student designs via the
EDA tools. Further, students can access many
Virtual Computer Corporation-donated C
software utilities for such purposes as down-
loading design files (configuring the FPGA),
changing the frequency of a separate clock oscil-
lator (the programmable oscillator module, see
Figure 2), general communication with the
FPGA, and resetting and testing the EVC1.

We make external connections to the EVC1
via its standard daughtercard connectors. These
provide access to general I/O pins—config-
urable as input, output, or bidirectional—on
the FPGA. An ICED d-card containing SCSI-
type transceivers plugs into the EVC1 and
sends 64 directionally configurable signals to a
d-card that is piggybacked on the sys-card. Pro-

grammable outputs on the FPGA set the direc-
tions of the signals leaving the EVC1’s d-card.
On the sys-card, the signals are also direction-
ally configurable, this time by jumpers or logic
on the student’s protoboard.

ICED Protosys laboratory station
Figure 3 shows the overall ICED hardware

laboratory setup. The different pieces of
equipment are as follows:

1. host computer display;
2. host computer, shown with cover off;
3. logic analyzer with 64 digital inputs and

two analog inputs;
4. logic analyzer digital probe with 16

inputs;
5. EVC1 card with FPGA and ICED

daughtercard (d-card);
6. ICED system card and chassis (sys-card);
7. ICED computer bus (Ibus) connects d-

card on EVC1 with d-card on sys-card;
8. protoboard holding memory, network,

and LCD to CPU interface logic; and
9. ICED network (ICEDnet).

We use the Protosys equipment as follows.
The host computer runs the equivalent of a
monitor program, allowing it to control the
Ibus and CPU. With these capabilities, we use
the host to download code and data to the
ICED computer’s memory and then start,
stop, or single-cycle the ICED computer. We

51MAY–JUNE 2000

Figure 3. ICED lab station. (Photo by Laurette Bradley.)

also use the host independently of the Proto-
sys to run Mentor Graphics and Xilinx EDA
tools to enter the CPU and other digital
designs and configure them for the FPGA. We
download the configuration data to the FPGA
to create an ICED CPU. We also develop soft-
ware on the host, including compiler and
monitor development.

The custom hardware consists of the d-
cards and the sys-card. The d-cards connect
the FPGA (ICED CPU) to the sys-card. The
sys-card is essentially a realization of the Ibus
and the ICED computer proper with multi-
ple, built-in probing points and great inter-
connection flexibility. The protoboard
connects to the sys-card and holds the stu-
dent-designed interface logic connecting the
ICED computer’s main memory and I/O
devices to the Ibus. Students have access to
generic array logic (reprogrammable logic
devices) and standard SSI and MSI ICs for
this hardware.

The logic analyzer attaches directly to the
sys-card through special connectors, reducing
the wiring drudgery for students. The ana-
lyzer both debugs the ICED computer and
visualizes its operation at multiple abstraction
levels. X Windows and Internet interfaces on
the logic analyzer let users view and control
the analyzer from the host’s display. In the
future, this may also allow some form of
remote access and open up distance-learning
opportunities with the Protosys station.

With this compact yet sophisticated setup
students can make interdependent software and
hardware changes, and readily see their effect.

Custom hardware design goals. Our design goals
for the physical architecture of the Protosys
custom hardware were to minimize student
wiring drudgery, while maximizing design flex-
ibility and pedagogical impact. We also want-
ed to use standardized components to reduce
our costs and to give students additional expo-
sure to real-world systems. From the systems
perspective, we wanted students to focus on
the functional interaction of all of the system
components. Lastly, we wanted a system resis-
tant to unintentional student errors, such as
driving connected buffers to opposite values.

We achieved these goals. We can connect the
Ibus’s 32-bit data bus and 24-bit address bus
directly to the memory via several dual-inline
package (DIP) connectors, bypassing the pro-
toboard. There are address multiplexers for the
memory, which reduces wiring. We provide spe-
cial connectors to allow easy multiple connec-
tions (16) to the logic analyzer, in most cases.
We use a standard dynamic RAM card. Stu-
dents have access to all control signals and must
use them correctly if a system is to work. Stu-
dents must design all of the interfaces: Ibus to
memory, Ibus to LCD display, Ibus to ICED-
net, and so on. Although the 64-bidirectional
signals connecting the d-cards are nominally
configured as the standard ICED Ibus, students
may arbitrarily reconfigure them to suit partic-
ular requirements. The d-card Ibus transceivers
we selected can withstand driving each other in
opposite directions. They also have built-in
thermal protection shutdown circuitry.

We chose a standard dynamic RAM SIMM
(single in-line memory module) to expose stu-
dents to the system and interface problems
and principles of memory refresh. The SIMM
interface design also introduces students to
row address strobe and column address strobe
memory device selection. While these features
may not concern users of today’s high-end sys-
tems (Rambus), they certainly concern the
memory system designers themselves.

We use a 10Base2 Ethernet transceiver for
the physical layer of ICEDnet. It may seem
that this is an antiquated standard to follow,
but it has pedagogical advantages. Students
can directly probe the ICEDnet and see actu-
al data collisions, that is, an actual Carrier
Sense Multiple Access and Collision Detect
protocol in action. While this is not that com-
mon in today’s LANs, with switching and

52

REAL SYSTEMS

IEEE MICRO

Our design goals for the

physical architecture of the

Protosys custom hardware

were to minimize student

wiring drudgery, while

maximizing design flexibility

and pedagogical impact.

point-to-point connections becoming the
norm, the basic concept of resource con-
tention in a communication medium is still
very important, such as in wireless systems.

ICED sys-card
The sys-card is the equivalent of a mother-

board for the ICED computer except that the
CPU is remotely located in the host. While
locating the CPU away from its memory is
normally not done, in this case it let us use a
basic commercial, off-the-shelf FPGA board
(the EVC1) with its associated software and
host interface support. It also helps empha-
size to students the implications of a slow
memory system.

Figure 4 shows the ICED sys-card. It has the
following items and connected components:

1. host computer;
2. d-card;
3. Ibus connectors (two groups of 32-

bidirectional signals each) from host
computer;

4. ICED computer dynamic RAM—8
Mbyte standard SIMM;

5. sys-card to protoboard connectors—thir-
teen 16-pin DIP connectors;

6. Ibus signal indicator LEDs—32 (top) for
data, 24 (lower-right) for address, and 8
(lower-left) for control;

7. logic analyzer quick connectors—thir-
teen 16-signal connectors;

8. logic analyzer digital signal probe—16
signals;

9. ICEDnet connector—10Base2 physical
layer standard;

10. LCD display—16 characters by 2 rows,
general purpose;

11. DC power outputs—+5, +12, −5, −12 V
(the protoboard currently only uses +5);
and

12. EVC1 status display—four LEDs.

While this hardware resides on the sys-card,
we move all the data and control connections
from the sys-card to the protoboard. Several
DIP connectors communicate with the stu-
dents’ circuits on the protoboard. All d-card
signals (after the transceivers) go to the DIP
connectors, as do all signals from the SIMM
and the transceiver configuration signals. The
sys-card and d-card are URI-designed, cus-

tom printed-circuit boards. The d-cards were
assembled externally, the sys-cards at URI. All
testing is performed at URI.

Protoboard and interface logic
The protoboard is a generic circuit-proto-

typing board composed of several push-in
connection arrays. The DIP connectors from
the sys-card plug into one or more of these
arrays. There is one protoboard per student
working group, kept for the project’s dura-
tion, which holds the interface and memory
control circuits and also acts as a patchboard.
The protoboard is only attached to the sys-
card during a laboratory session.

Logic analyzer
Each ICED lab station has its own high-

speed HP 1662CS logic analyzer with 64 data
channels and an integrated two-channel digi-
tizing oscilloscope. Students can view and con-
trol each analyzer from its companion Sun host
via the department’s LAN. Viewing takes place
via an X-Window system. Students also use the
LAN to download disassembly information to
the analyzer, as well as to connect the analyzer
to a software analyzer running on the host.

Comments
The ICED Protosys laboratory station offers

students a great deal of flexibility and exposes
them to hardware and software interaction.

53MAY–JUNE 2000

Figure 4. ICED sys-card. (Photo by Laurette Bradley.)

Once we install all software tools, students
will have access to many interesting capabilities
with the lab equipment. In particular, students
will be able to correlate an analog view of a sig-
nal with a digital view of the signal, with its par-
ticular machine and assembly instruction, and
finally with the corresponding original high-
level source instruction of the test program. This
will let students see the effect on all levels of a
design change at one of these levels, and there-
by see the effects of hardware and software trade-
offs in an extremely concrete way.

ICED software tools and aids
Our students use several key software pack-

ages for the purposes of hardware design,
hardware programming, and for signal and
program variable visualization.

EDA tools
ICED students learn to use modern indus-

trial EDA software tools. These tools are nec-
essary for complex, digital designs, which
require the EDA tools’ automation, simulation,
and verification capabilities before fabrication.

We use commercial software donated by
Mentor Graphics and Xilinx. Students follow
a typical design flow through the tools7 and
use them throughout the curriculum, divid-
ing learning time over many courses. It is not
essential or helpful to use multiple competing
vendors’ tools since once students learn a given
tool, learning a different vendor’s version of
the same tool is relatively easy. The situation is
similar to programmers learning a new lan-
guage, where one imperative language is about
the same as any other, conceptually. By using
one set of tools, we standardize the department
on the set and students do not waste time
learning extra detailed information.

Other software
ICED also exposes students to software

design and debugging aids. In particular, stu-

dents use a disassembler and a symbol utility
within the logic analyzer to interpret and
annotate the prototype’s bus operation. Indi-
vidual assembly instructions on the bus can
then be recognized by the logic analyzer and
displayed to the student in both binary and
mnemonic forms.

Uht wrote a retargetable assembler called
icasm to accommodate students’ different
instruction sets. One version of icasm sup-
ports the canned CPU instruction set
(IcpuED). Students can use icasm directly or
to process the output of their compiler.

ICED students write a complete compiler
for a simple high-level language for their pro-
totype computer. Students use special
Hewlett-Packard software running on the host
and information generated by their compiler
during an application’s compilation run to
show the correspondence between high-level
source code and machine instructions on the
host and the logic analyzer.

ICED operation and challenges
The ICED lab stations are expensive and we

only have five. However, students can design
on any of the Department of Electrical and
Computer Engineering or the College of Engi-
neering’s Sun workstations or Dell Windows
NT PCs. Students only need to use a full lab
station at a lab’s end for physical debugging
and cost and performance investigations.

There are problems with a multiterm,
multiyear project: students may get out of
sequence due to leaves of absence, part-time
study, student exchange program participa-
tion, and so on; a student’s partner may drop
out; or a group may fall far behind. To help
in these situations, students may access a
canned design to restart at the beginning of
each core course, should they desire or need a
fresh start. For example, a predesigned CPU
is available at the beginning of the senior-year
compiler design course.

There is a danger in having canned designs
available, such as weary students premature-
ly giving up on their own designs, where the
use of their own designs is one of our key
goals. We are still struggling with this issue.
One possible solution is some sort of long-
term grade benefit for students who use their
own designs.

Another ongoing issue is creating a bal-

54

REAL SYSTEMS

IEEE MICRO

ICED students learn to use

modern industrial EDA

software tools.

anced distribution of the overall project
among the core courses, especially those of
computer architecture and computer design.
Including some material on detailed computer
and logic design early on (a bottom-up
approach) helps clarify the principles of
instruction set design (a top-down approach)
and firmly grounds students in reality. How-
ever, too much low-level design work early on
can leave insufficient room in the computer
architecture course for traditional course top-
ics We address the latter issue in the follow-
ing years by expanding the three-credit
architecture course into a three-credit lecture-
only course and a two-credit lab course.

We’ve noticed a disturbing trend in our
students’ approach to hardware design. In
the past, making a design error could be close
to fatal for a student’s project, since much of
the hardware was built with handwired
small- and medium-scale ICs. (Of course,
this is still true for custom chip design.)
Therefore students discovered, correctly, that
they needed to spend a lot of time thinking
about and checking their designs before
putting hand to wire. More recently, simu-
lation helped to verify the design. But now
the hardware itself is programmable, and if
students make a mistake, it’s easy to change.
They can hack in a fix, reroute, and recon-
figure. This ease of correction creates a prob-
lem. Students now tend to approach their
hardware design tasks like many approach
software design, by sitting down at a termi-
nal and rapidly beginning a design with lit-
tle thought given to the task at hand.

Although these bad designs do not waste
hardware, they certainly do waste students’
time as well as create bad and buggy designs.
It is an area of concern since we don’t want
hardware to start crashing at the same rate as
many software packages. Fortunately, con-
sumers seem to have little tolerance for buggy
hardware, and the problem may correct itself
in the marketplace.

We instruct students that the first step in
hardware design is to draw designs and wave-
forms with paper and pencil and to continue
analyzing the design until they’re sure it’s right.
Only after this step should they use the EDA
tool and start entering the design. Some stu-
dents listen; more do the second time.

The ICED curriculum is a work in
progress. To date, we have designed and

built all of the custom hardware, and its test-
ing is underway. Some tasks remain in setting
up the laboratory software. We are perform-
ing an evaluation process of the curriculum
that so far has had encouraging results.7 Our
evaluations will continue, and we will contin-
ue to publish them as results become available.

The URI ICED approach is one solution
toward solving competing demands on com-
puter engineering curricula. The ICED cur-
riculum is a novel attempt to bring the
problems and opportunities of a long-term
project to undergraduates. MICRO

Acknowledgments
ICED is supported in part by the National

Science Foundation through grant DUE-
9751215, by a grant from the Champlin Foun-
dations of Rhode Island, and with matching
funds from the Office of the Provost at URI.
Mentor Graphics, Xilinx, and Virtual Com-
puter Corporation provide software donations.
Virtual Computer Corporation, American
Power Conversion Corporation, and Clear-
point Memory provide hardware donations.

We are indebted to Carlo Tognina for his
dedicated and excellent work on the ICED
hardware.

References
1. See selected papers of Augustus K. Uht;

http://www.ele.uri.edu/~uht.
2. A.K. Uht, “The URI Integrated Computer

Engineering Design (ICED) Curriculum:
Progress Report,” to be published in Proc.
American Society of Engineering Educators
Annual Conference, ASEE, Washington,
D.C., 2000.

3. Technical Committee on Computer
Architecture Newsletter: Special Issue on
Computer Architecture Education, D.R.
Kaeli, ed., IEEE Computer Society, Los
Alamitos, Calif., June 1996.

4. J.O. Hamblen et al., “Using Rapid Prototyp-
ing in Computer Architecture Design Labora-
tories,” Technical Committee on Computer
Architecture Newsletter: Special Issue on
Computer Architecture Education, IEEE Com-
puter Society, pp. 44-52, June 1996.

5. Technical Committee on Computer
Architecture Newsletter: Special Issue on

55MAY–JUNE 2000

Computer Architecture Education, D.R. Kaeli,
ed., IEEE Computer Society, Sept. 1997.

6. G.M. Brown and N. Vrana, “A Computer
Architecture Laboratory Course Using
Programmable Logic,” IEEE Trans. Education,
Vol. 38, No. 2, May 1995, pp. 118-125.

7. A.K. Uht and Y. Sun, “The Laboratory Envi-
ronment of the URI Integrated Computer
Engineering Design (ICED) Curriculum,” Proc.
Frontiers in Education Conf., ASEE, Wash-
ington, D.C., 1998, pp. 331-336.

Augustus K. Uht is a licensed professional
engineer and an associate professor at the
Department of Electrical and Computer
Engineering at URI. He is interested in
processor architecture and education. Uht
received a BS and a MEng(Elect) from Cor-
nell University and a PhD from Carnegie
Mellon University. He is affiliated with the
IEEE; ACM; the National Society of Profes-
sional Engineers (NSPE); HKN, the electrical
engineering honor society; and Sigma Xi, the
science honorary society.

Jien-Chung Lo is a professor at the Depart-
ment of Electrical and Computer Engineer-
ing at URI. His research interests include IDDQ

testing and reliable computing. Lo received
an MS and a PhD from the Center for
Advanced Computing Studies at the Univer-
sity of Louisiana, Lafayette. He is a member of
the IEEE Computer Society.

Ying Sun is a professor at the Department of
Electrical and Computer Engineering and is
coordinator of biomedical engineering, both
at URI. His research interests include medical
instrumentation, medical imaging, and mod-
eling of physiological systems. Sun received a
PhD in electrical engineering from Worces-
ter Polytechnic Institute. He is a member of
the IEEE.

James Daly is a professor at the Department
of Electrical and Computer Engineering at
URI. He is interested in integrated circuit
design and education. Daly received a BS
from the University of Connecticut, and an
MEE and a PhD from Rensselaer Polytech-
nic Institute. He is affiliated with the IEEE,
HKN, and Sigma Xi.

James Kowalski is an associate professor and
chair of the Computer Science Department
at URI. His interests include neural networks,
genetic algorithms, and data mining. Kowal-
ski received a BS in physics, an MA in phi-
losophy, and a PhD in mathematical logic
from the University of Notre Dame. He is
affiliated with the IEEE Computer Society,
the American Association for Artificial Intel-
ligence, and the ACM.

Direct questions about this article to Augus-
tus K. Uht at the University of Rhode Island,
A-219 Kelley Hall, 4 East Alumni Ave.,
Kingston, RI 02881-0805; uht@ele.uri.edu.

56

REAL SYSTEMS

IEEE MICRO

Call for Papers
Special Issue on Embedded Fault-Tolerant Systems

September/October 2001 IEEE Micro
Submit papers for this special issue that discuss fundamental research as well as experimental design and evaluation.

The topics of interest include, but are not limited to:
• Fault-tolerant hardware-software codesign of embedded computing systems
• Verification and validation of complex embedded computing systems
• Hardware-software fault-tolerance trade-offs
• Chip-level design of embedded fault-tolerant systems

Submit six (6) copies of the manuscript, in English,
by 1 December 2000 to Dr. Barry Johnson, University of
Virginia, Dept. of El. Eng., Charlottesville, VA 22903, phone:
+1 804 924 7623, e-mail: bwj@virginia.edu. For submission
details, see author guidelines at http://computer.org/micro.

